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Background: Patients with multiple myeloma (MM), a malignant disease involving bone marrow plasma 
cells, shows significant susceptibility to bone degradation, impairing normal hematopoietic function. The 
accurate and effective segmentation of MM lesion areas is crucial for the early detection and diagnosis of 
myeloma. However, the presence of complex shape variations, boundary ambiguities, and multiscale lesion 
areas, ranging from punctate lesions to extensive bone damage, presents a formidable challenge in achieving 
precise segmentation. This study thus aimed to develop a more accurate and robust segmentation method 
for MM lesions by extracting rich multiscale features.
Methods: In this paper, we propose a novel, multiscale feature fusion encoding-decoding model 
architecture specifically designed for MM segmentation. In the encoding stage, our proposed multiscale 
feature extraction module, dilated dense connected net (DCNet), is employed to systematically extract 
multiscale features, thereby augmenting the model’s sensing field. In the decoding stage, we propose the 
CBAM-atrous spatial pyramid pooling (CASPP) module to enhance the extraction of multiscale features, 
enabling the model to dynamically prioritize both channel and spatial information. Subsequently, these 
features are concatenated with the final output feature map to optimize segmentation outcomes. At the 
feature fusion bottleneck layer, we incorporate the dynamic feature fusion (DyCat) module into the skip 
connection to dynamically adjust feature extraction parameters and fusion processes.
Results: We assessed the efficacy of our approach using a proprietary dataset of MM, yielding notable 
advancements. Our dataset comprised 753 magnetic resonance imaging (MRI) two-dimensional (2D) slice 
images of the spinal regions from 45 patients with MM, along with their corresponding ground truth labels. 
These images were primarily obtained from three sequences: T1-weighted imaging (T1WI), T2-weighted 
imaging (T2WI), and short tau inversion recovery (STIR). Using image augmentation techniques, we 
expanded the dataset to 3,000 images, which were employed for both model training and prediction. Among 
these, 2,400 images were allocated for training purposes, while 600 images were reserved for validation and 
testing. Our method showed increase in the intersection over union (IoU) and Dice coefficients by 7.9 and 6.7 
percentage points, respectively, as compared to the baseline model. Furthermore, we performed comparisons 
with alternative image segmentation methodologies, which confirmed the sophistication and efficacy of our 
proposed model.
Conclusions: Our proposed multiple myeloma segmentation net (MMNet), can effectively extract 
multiscale features from images and enhance the correlation between channel and spatial information. 
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Introduction

Multiple myeloma (MM) is a malignant disorder marked 
by the abnormal proliferation of cloned plasma cells. As the 
global population ages, the incidence of MM continues to 
rise. This condition can manifest as persistent unexplained 
bone pain, and it has the potential to lead to renal failure 
and recurrent bacterial infections, particularly pneumococcal 
pneumonia. These manifestations significantly impact the 
health and overall quality of life of afflicted individuals (1). 
Currently, the diagnosis of MM primarily relies on blood 
tests, bone marrow puncture and biopsy (2), and imaging 
examinations. However, both blood examination and bone 
marrow puncture are invasive methods and unsuitable for 
large-scale screening and systemic detection. Furthermore, 
bone marrow puncture only provides information about a 
single site lesion. In contrast, imaging detection methods 
offer a noninvasive approach for quantifying overall 
tumor information and observing multiple lesions and 
bone tissue simultaneously. This has aided in overcoming 
the limitations of puncture procedures, which can only 
capture partial tumor information. Therefore, accurately 
segmenting the areas of MM lesions from images is crucial 
for precise diagnosis and treatment planning. This process 
not only benefits clinicians in better understanding the 
extent and severity of the lesions but also provides crucial 
evidence for subsequent treatment decisions. Moreover, 
previous studies have shown that precise measurements 
of the volume and various morphological features of MM 
lesions can help predict disease progression (3), forecast the 
development of local bone destruction (4), and contribute 
to the construction of advanced tumor growth models (5). 
It has been established that imaging indicators can be an 
effective supplement to the prognosis of MM (6-8). In 2019, 
Rasche et al. (9) reported that high-risk genetic progression 
markers (such as RAS mutation) were mainly found in 
large lesions with a diameter >2.5 cm. Accurate lesion 

segmentation can facilitate the advancement of similar 
research endeavors.

T h e  i m a g i n g  m e t h o d s  r e c o m m e n d e d  b y  t h e 
International Myeloma Working Group include bone 
marrow magnetic resonance imaging (MRI) (10), computed 
tomography (CT) (11), and positron emission tomography 
computed tomography (PET-CT) (12). Among these, MRI 
is the preferred diagnostic tool for initial assessments, as 
MRI’s outstanding soft-tissue contrast enables the direct 
imaging of the bone marrow with high sensitivity. This 
not only facilitates the detection of bone destruction but 
also allows for the assessment of tumor burden. Figure 1 
illustrates the MRI imaging of a patient’s spinal region and 
the MM lesions. This comprehensive visualization aids in 
understanding the extent of the disease and contributes 
to better-informed diagnostic and treatment decisions. 
The manifestations of MM lesions can generally be 
classified into three categories: localized, diffuse, and salt-
and-pepper types. Different types of lesions often imply 
varying sizes and complex shapes of the affected areas, 
posing challenges for the accurate segmentation of MM. 
In recent years, several researchers have endeavored to 
segment MM plasma cells from microscopic images. Qiu 
et al. (13) proposed a deep learning framework called 
semantic cascade mask region-based convolutional neural 
network (R-CNN) for detecting and segmenting myeloma 
cells. This framework integrates with the proposed feature 
selection pyramid network, uses a mask aggregation module 
to refine high-certainty instance masks, merges them into 
a single segmentation map, and employs the results from 
additional semantic segmentation branches to enhance 
segmentation performance. Paing et al. (14) introduced a 
method for computer-assisted detection and segmentation 
of myeloma cells from microscopic images of bone marrow 
aspirates, employing different mask R-CNN models for 
instance segmentation on different images and applying 

Furthermore, a systematic evaluation of the proposed network architecture was conducted on a self-
constructed, limited dataset. This endeavor holds promise for offering valuable insights into the development 
of algorithms for future clinical applications.
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Figure 1 Example of multiple myeloma lesion area in patients.

deep augmentation to enhance model performance. 
Additionally, some researchers have used medical imaging 
techniques for corresponding analyses of MM. Algorithms 
have been developed for the automatic segmentation 
of disseminated bone marrow and subsequent radiomic 
analysis of 30 different bone marrow spatial (BMS) image 
sets from MRI, achieving automatic and comprehensive 
characterization of bone marrow. Typical bone marrow 
patterns in MM have been shown to correlate with 
radiomic features of corresponding BMS (15). Researchers 
have also automatically segmented pelvic bone marrow 
from T1-weighted whole-body MRI. In this approach, 
imageomic features are extracted from these segmentations, 
and a random forest model is trained to predict the 
presence of plasma cell infiltration (PCI) and cytogenetic  
abnormalities (16). Wennmann et al. (17) trained a no-
new-Net (nnU-Net) to automatically segment pelvic bone 
marrow from whole-body apparent diffusion coefficient 
(ADC) maps in multicenter datasets, achieving a quality 
comparable to that of manual segmentation. Automatically 
extracted ADC values were significantly correlated with 
bone marrow PCI and thus demonstrated potential value 
for automatic staging, risk stratification, or treatment 
response assessment. A whole-body imaging approach for 
segmenting lesion areas in patients MM using MRI can 
assist physicians in better determining lesion locations and 
conditions. Our proposed model has been correspondingly 
improved in terms of feature extraction, upsampling, and 
feature fusion, enabling better capture of global image 
information and applicability for segmenting complex and 
variable MM lesions.

Traditional medical image segmentation methods have 
conventionally relied on manually designed features and 
rules, often employing techniques such as thresholding 
segmentation (18), region growing (19), and edge  
detection (20). However, these approaches encounter 
challenges when faced with complex structures and 
significant grayscale variations in medical images. Deep 
learning, particularly CNNs, has revolutionized medical 
image segmentation by enabling models to learn features 
and patterns directly from data, yielding remarkable 
outcomes. CNNs are particularly adept at capturing 
hierarchical representations of images, starting from low-
level features such as edges and textures to high-level 
semantic features that are crucial for accurate segmentation. 
This hierarchical feature extraction capability is crucial 
in medical imaging in which subtle differences in texture 
or shape hold critical diagnostic information. CNN 
architectures, such as U-Net (21), DeepLab (22) series, 
and V-Net (23), have emerged as prominent research focal 
points in the realm of medical image segmentation. The 
U-Net structure, leveraging both encoder and decoder 
components, facilitates the simultaneous capture of global 
and local features, rendering it adaptable for a diversity of 
medical imaging tasks. 

To  enhance  U-Net ’s  pe r formance ,  numerous 
improvements and variants have been proposed. Residual 
connections (24), as seen in the residual U-Net (ResU-
Net) (25), mitigate the gradient disappearance problem, 
accelerate model training, and improve overall performance. 
U-Net++ (26), by incorporating more intricate connection 
modes, further enhances information transmission and 
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feature extraction, leading to improved performance. 
Attention U-Net (27) introduces an attention mechanism, 
directing the network to focus more on crucial areas, 
thereby enhancing image segmentation accuracy. Chen 
et al. (28). introduced the Transformer (29) into medical 
image segmentation, presenting Transformer U-Net 
(Trans-UNet), a model capable of precisely locating pixel 
information and overcoming the inherent locality of 
traditional convolution operations. Despite the progress 
achieved by these methods in enhancing segmentation 
network performance, the need for a series of upsampling 
and downsampling operations to enlarge the receptive 
field for pixel-level prediction remains. However, these 
operations inevitably result in information loss and 
underutilization. Furthermore, obtaining a sufficient 
amount of global information remains challenging, limiting 
the segmentation network’s capacity to achieve higher 
accuracy.

Multiscale features play a pivotal role in the domains 
of computer vision and image processing. As image 
analysis tasks grow in complexity, it has been increasingly 
recognized that single-scale feature extraction may be 
inadequate for responding effectively to variations in 
diverse scenes and objects. Consequently, multiscale feature 
extraction has attracted considerable attention, as it may 
represent a potent tool for addressing challenges in image 
processing tasks. In real-world applications, objects may 
manifest with varying sizes, shapes, and orientations, posing 
a challenge for traditional single-scale feature extraction 
methods in capturing this diversity. Modern methods for 
extracting multiscale features include a range of structures 
and techniques, including pyramid structures (30), attention 
mechanisms, and convolution kernels with distinct receptive 
fields. Scholars have made notable contributions to the 
field of multiscale feature extraction. For instance, Xia 
et al. (31) introduced the multi-scale context-attention 
network (MC-Net), a multiscale context attention network 
that integrates multiscale and context attention modules. 
This network demonstrates proficiency in capturing both 
local and global semantic information surrounding the 
target. Additionally, Yang et al. (32) proposed a multiscale 
attention network designed specifically for the automatic 
segmentation of glomerular electron dense deposits in 
electron microscope images. This method employs fully 
convolutional networks, incorporating multiscale skip 
connections and attention mechanisms. The multiscale skip 
connection merges feature maps of varying scales, while the 

attention mechanism concentrates on prominent structures, 
resulting in discriminative feature representations. Yan  
et al. (33) introduced a feature variation (FV) module adept 
at adaptively adjusting the global attributes of features 
to enhance feature representation ability, demonstrating 
effectiveness in segmenting coronavirus disease 2019 
(COVID-19) infection. The experimental results included 
Dice similarity coefficients (DSCs) of 0.987 for lung 
segmentation and 0.726 for COVID-19 segmentation. Li  
et al. (34) developed the multi-scale fusion U-Net (MF 
U-Net), a multiscale fusion network designed for breast 
cancer lesion segmentation. The model incorporates a 
wavelet fusion module (WFM) to segment irregular and 
blurred breast lesions, a multiscale dilated convolution 
module (MDCM) to manage segmentation difficulties caused 
by large-scale changes in breast lesions, and focal DSC loss.

The contributions of this article can be summarized as 
follows:

(I) A new encoder-decoder architecture for MM 
segmentation is proposed, which enhances the 
network’s ability to extract multiscale features, 
enriches the diversity of features, and effectively 
improves the accuracy of the model in lesion 
segmentation.

(II) We propose dilated dense connected net (DCNet), 
an innovative feature extraction module designed 
to replace the conventional convolutional block, 
thereby extending both the depth and width of 
the network. This modification aims to bolster the 
sensory field of the model, facilitating multiscale 
feature extraction.

We introduce a dynamic feature fusion (DyCat) module 
that amalgamates the strengths of dynamic convolution (35) 
and the attentional feature fusion (AFF) module (36). This 
module possesses the capability to flexibly reprocess feature 
maps in both the encoder and decoder stages, enabling 
adaptive adjustments to the feature fusion process and 
consequently enhancing the overall fusion effect.

We propose the CBAM-atrous spatial pyramid pooling 
(CASPP) module, which integrates dilated convolution (37) 
with both channel and spatial attention mechanisms (38), 
specifically designed for the decoding stage. This module 
effectively prioritizes channel and spatial information while 
extracting multiscale features. The resulting output from 
the CASPP module is then concatenated with the final 
feature map, leading to a significant enhancement in both 
the performance and generalization ability of the model.
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Figure 2 An overview of our proposed MMNet model. The cube represents the feature map. The proposed DCNet, DyCat, and CASPP 
modules are integrated into the framework in order. DCNet, dilated dense connected net; Conv, convolution; CASPP, CBAM-atrous spatial 
pyramid pooling; DyCat, dynamic feature fusion; MMNet, multiple myeloma segmentation net. 
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Methods

This study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013) and was 
approved by the Ethics Committee of The First Affiliated 
Hospital of Chongqing Medical University (No. K2023-
314). The requirement for individual consent was waived 
due to the retrospective nature of the analysis. 

Using the U-Net model as a foundation, this paper 
introduces a novel MM segmentation model incorporating 
the principles of the dense convolution module (39), 
dynamic convolution, atrous convolution, atrous spatial 
convolution pooling pyramid (ASPP), and attention 
mechanism. The comprehensive segmentation process 
and network architecture are depicted in (Figure 2). The 
multiple myeloma segmentation net (MMNet) is an end-to-
end implementation designed to leverage both global and 
local information, enhancing the semantic information’s 
comprehensiveness and diversity. As with the original 
U-Net, MMNet consists of three fundamental components: 
encoder, decoder, and bottleneck layer. During the 

encoding stage, our proposed multiscale feature extraction 
module is sequentially employed. In the decoding stage, 
the proposed CASPP module is used to preserve multiscale 
features, subsequently fusing them with the final generated 
feature map. Within the bottleneck layer of feature fusion, 
our proposed DyCat module is employed to achieve more 
effective feature extraction and more comprehensive fusion. 

DCNet 

In the MR images of most patients myeloma, MM lesions 
of various scales are typically present, often characterized by 
their diminutive size. This poses a significant challenge for 
basic image segmentation models in accurately delineating 
all the lesions. Consequently, the extraction of features 
from lesion regions at different scales is a pivotal task 
for MM segmentation algorithms. Given that receptive 
fields of varying sizes correspond to distinct capabilities in 
capturing long-range dependencies, our designed DCNet 
feature extraction module primarily comprises two DC 
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Figure 3 DCNet is constructed from the fundamental component DC_Conv, which in turn encompasses the critical subcomponent, DCBlock. 
DCNet, dilated dense connected net; DC_Conv, DC convolution; Conv, convolution; BN, batch normalization; SiLU, sigmoid linear unit.
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convolution (DC_Conv) modules in a densely connected 
configuration. The structure of the DC_Conv module is 
depicted in Figure 3. This module harnesses the advantages 
of multiscale receptive fields and can be partitioned into 
four branches: the first branch, featuring two DC blocks 
(DCBlocks), is densely connected; a 1×1 convolution forms 
another branch, introducing additional nonlinearity to the 
feature map and enhancing generalization ability; a third 
branch incorporates a 1×1 convolution followed by a 3×3 
convolution in series, facilitating the extraction of deeper 
features from the feature map and effectively amalgamating 
features at different levels; the fourth branch is a residual 
connection employed to mitigate issues of gradient 
explosion and disappearance during training. Finally, the 
output feature maps of each branch undergo concatenation 
processing, and the features are further extracted through 
a 3×3 convolution, ultimately outputting the specified 
dimension.

Based on the receptive field enhancement (RFE) module 
in YOLO-FaceV2 (40), the envisioned DCBlock structure 
comprises three branches. Following a 1×1 convolution 
operation, each branch employs dilated convolutions with 
expansion rates of 1, 2, and 3, respectively, incorporating 
residual connections to fortify the fusion of multiscale 
features and augment the receptive field. Ultimately, a 
weighting mechanism is applied to each branch’s feature, 
ensuring a balanced representation across the diverse 

branches.
For clarity, we establish a dense connection between two 

DC_Conv blocks to form the feature extraction module 
DCNet within MMNet. Dense connections can effectively 
enhance the capabilities of DCNet. This means that there 
are direct connections between each DC_Conv block, 
allowing features to be transmitted more efficiently from 
one block to the next without the loss of information or 
features. Consequently, this enhances the dimensionality 
of the feature maps and the depth of the network while 
avoiding overfitting. During the feature extraction stage, we 
sequentially employ the proposed feature extraction module, 
augmenting the feature map dimension and receptive field. 
This approach enables the fusion of multiscale features, 
thereby improving the accuracy of myeloma lesion area 
recognition.

The architectural depiction of the model during the 
encoding stage, along with the dimension information 
regarding the input and output feature maps of its internal 
modules, is presented in (Table 1).

DyCat module 

In the conventional U-Net architecture,  the skip 
connection straightforwardly concatenates the encoder and 
decoder feature maps, potentially resulting in constrained 
information transmission. This paper introduces a novel 
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Table 1 The architecture and dimensions of the encoding phase

Layers Parameter Input dimension Output dimension

DCNet 1 Tate (1, 2, 3) 320×320×3 320×320×134

Conv 1 3×3 320×320×134 320×320×64

Max pooling 1 2×2, stride2 320×320×64 160×160×64

DCNet 2 Rate (1, 2, 3) 160×160×64 160×160×384

Conv 2 3×3 160×160×384 160×160×128

Max pooling 2 2×2, stride2 160×160×128 80×80×128

DCNet 3 Rate (1, 2, 3) 80×80×128 80×80×768

Conv 3 3×3 80×80×768 80×80×256

Max pooling 3 2×2, stride2 80×80×256 40×40×256

DCNet 4 Rate (1, 2, 3) 40×40×256 40×40×1,536

Conv 4 3×3 40×40×1,536 40×40×512

Max pooling 4 2×2, stride2 40×40×512 20×20×512

DCNet 5 Rate (1, 2, 3) 20×20×512 20×20×3,072

Conv 5 3×3 20×20×3,072 20×20×1,024

Layers, the modules used in the encoding stage; Parameters, the internal parameters of each module; Input dimension, the size and 
dimension of the input feature map of each module; Output dimension, the size and dimension of the output feature map of each module; 
DCNet, dilated dense connected net; Conv, convolution.

dynamic feature connection method, DyCat, which 
leverages dynamic convolution and the AFF feature fusion 
module to dynamically adapt convolution parameters and 
the feature fusion process. This dynamic approach ensures 
a more comprehensive and effective fusion of features 
between the encoder and decoder. Not only does it enhance 
the model’s performance, but it also exhibits remarkable 
efficacy in complex lesion scenarios.

The DyCat mechanism is illustrated in Figure 4, 
showing the output feature map of the encoder stage 
passing through two branches. One branch employs a 1×1 
convolution to extract more abstract feature information 
and reduce computational complexity, while the other 
branch employs three 3×3 dynamic convolutions connected 
by a residual connection. Dynamic convolution enables 
the dynamic adjustment of convolution kernel weights 
based on input data characteristics. This adaptability to 
feature output of the encoder stage enhances flexibility in 
feature processing, allowing the model to better capture 
local features within the image. Similarly, for the feature 
map of the decoder stage, three 3×3 dynamic convolutions 
connected by residuals are employed to adaptively extract 
features. Subsequently, the AFF attention feature fusion 

mechanism is employed to fuse the feature maps of the 
two components. This fusion process, distinct from simple 
summation or concatenation, dynamically combines 
semantic and scale-inconsistent features more effectively.

The AFF module was introduced by Dai et al. in 2021 
(36), and it can effectively integrate the features of different 
layers or branches and improve the performance of the 
model. Its principal element is the multiscale channel 
attention module (MS-CAM). Channel attention is derived 
through two branches with distinct scales, addressing the 
challenge in the effective fusion of features at different 
scales. MS-CAM employs point-by-point convolution for 
channel scale processing, foregoing the use of convolution 
kernels with varying sizes. The calculation formula for 
channel attention in local features is expressed as follows:

( ) ( )( )( )( )( )2 1L X B PWConv B PWConv Xδ=  [1]

First, the number of channels of input features is 
reduced to half of the original by 1o 1 1PWC nv ∗  point-by-
point convolution. Subsequently, the batch normalization 

(BatchNorm) layer is applied for normalization ( B ), and 
the rectified linear unit (ReLU) activation function is used 
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Figure 4 Illustration of the DyCat module. DyCat is mainly composed of dynamic convolution, residual connection, and AFF feature fusion 
modules. DyConv, dynamic convolution; AFF, attentional feature fusion module.
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for nonlinear processing (δ ). The number of channels is 
then restored to the original number of input channels via 

the convolution of 1o 1 1PWC nv ∗ . The computed weight 
value is used to execute the attention operation on the 
input feature, yielding the output. The specific formula is 
provided below:

( ) ( ) ( )( )X X M X X L X g Xσ′ = ⊕ = ⊕ ⊕  [2]

The symbol ⊕  represents the multiplication of the 
corresponding elements of the two feature maps, and the 
calculation formula of the global feature channel attention 

adopts ( )g X . The difference between it and ( )L X  is that 

the input X  is first subjected to a global average pooling 
operation. Given two features X  and Y  for feature fusion, 
the calculation method of AFF is as follows:

( ) ( )( )2 2 1Z X M X Y Y M X Y= ⋅ ⋅ + + ⋅ ⋅ − +  [3]

where Z  is the output feature after feature fusion, M  is the 

MS-CAM, and +  is the initial feature integration.

CASPP module

To enhance the model’s feature capture during upsampling, 
promote channel correlation, achieve precise spatial 

positioning, and ensure that the final output feature map 
encompasses comprehensive and effective multiscale 
features, we introduce the CASPP module. The CASPP 
module’s design stems from a nuanced understanding of 
the challenges neural networks face in handling multiscale 
and channel correlations. Although the ASPP module 
effectively integrates multiscale information through 
atrous convolution, it fails to emphasize channel and spatial 
positioning correlations. To address this limitation, we 
introduce channel and spatial attention modules following 
the ASPP, enabling adaptive focus on channel and spatial 
information. This refinement enhances the model’s ability 
to capture crucial features and accurately identify lesion 
areas.

Specifically, as depicted in Figure 5, the feature map 
undergoes transformation into a specified dimension 
through a 3×3 convolution after the DyCat module. 
Subsequently, it enters an ASPP module that includes 
expansion rates of 1, 6, 12, and 18 for further extracting 
the multiscale features. These multiscale features are 
subsequently routed through the channel and spatial 
attention modules sequentially. As distinct channels 
may offer information on various facets of the lesion 
and given the dynamic nature of the lesion’s location, 
shape, and size within the image for MM segmentation, 
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Figure 5 CASPP structure diagram. The feature map is applied to the channel and spatial attention mechanism after four types of dilated 
convolutions with different expansion rates are implemented. W, width; H, height; C, channel; MLP, multilayer perceptron; CASPP, CBAM-
atrous spatial pyramid pooling.
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the integration of spatial attention renders the network 
more adaptable to diverse spatial layouts, consequently 
enhancing segmentation accuracy. This design excels in its 
comprehensive attention to multiscale, channel, and spatial 
information, thereby augmenting the network’s proficiency 
in comprehending and interpreting intricate pathological 
images.

A summary of the model’s architecture in the whole 
decoding stage and the dimension information of the input 
and output of the feature map of its internal module are 
provided in Table 2.

Binary cross-entropy and Dice loss 

The loss function employed in this experiment is the binary 
cross-entropy and Dice loss (BCEDiceLoss), a widely used 
metric in image segmentation tasks. BCE loss is a prevalent 
metric in binary classification problems, encompassing 
binary image segmentation. It measures the discrepancy 
between the predicted probability and the actual binary 
label. The formula is provided below:

( ) ( )
1

1 ˆ ˆlog (1 ) log 1
N

i i i i
i

BCELoss y y y y
N =

= − ⋅ + − ⋅ −  ∑  [4]

where N  is the number of samples, iy  is the true label of 
the i  th sample, and ˆiy  is the prediction probability of the i  
th sample.

Dice loss is commonly employed in image segmentation 
tasks to assess the similarity between the predicted region 
and the ground truth region. The formula is expressed as 
follows:

2 Intersection1
Intersection

DiceLoss
Union

×
= −

+
 [5]

where Intersection is the intersection of the predicted region 
and the real region, and Union is the union of the predicted 
region and the real region. Consequently, the formula of 
BCEDiceLoss can be expressed as follows:

BCEDiceLoss BCELoss DiceLossλ µ= ⋅ + ⋅  [6]

where λ  and µ  are parameters that weigh two loss 
functions, usually between 0 and 1, and BCEDiceLoss 
combines the two aspects of BCELoss and DiceLoss and 
comprehensively considers the accuracy of the prediction 
probability and the similarity between the predicted region 
and the real region. This enables the model to learn the 
characteristics of the MM lesion area more comprehensively 
in the optimization process, which helps to improve 
the segmentation performance of the model in complex 
scenes. In addition, in this study, the weights of BCELoss 
and DiceLoss were set to 0.5 and 1, respectively. Since 
the boundary of the lesion in the MM image is blurred, 
giving more weight to the Dice loss helps to improve the 
sensitivity of the model to boundary pixels.
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Table 2 The architecture and dimensions of the decoding phase

Layers Parameter Input dimension Output dimension

DyCat 1 3×3 & 1×1 40×40×512 & 40×40×512 40×40×1,024

DenseConvBlock 1 3×3 40×40×1024 40×40×512

CASPP 1 Rate (1, 6, 12, 18) 40×40×512 40×40×512

Upsample 1 Scale factor 2 40×40×512 80×80×512

DyCat 2 3×3 & 1×1 80×80×256 & 80×80×512 80×80×768

DenseConvBlock 2 3×3 80×80×768 80×80×256

CASPP 2 Rate (1, 6, 12, 18) 80×80×256 80×80×256

Upsample 2 Scale factor 2 80×80×256 160×160×256

DyCat 3 3×3 and 1×1 160×160×128 & 160×160×256 160×160×384

DenseConvBlock 3 3×3 160×160×384 160×160×128

CASPP 3 Rate (1, 6, 12, 18) 160×160×128 160×160×128

Upsample 3 Scale factor 2 160×160×128 320×320×128

DyCat 4 3×3 and 1×1 320×320×64 & 320×320×128 320×320×192

DenseConvBlock 4 3×3 320×320×192 320×320×64

Conv 6 3×3 320×320×960 320×320×64

Conv 7 1×1 320×320×64 320×320×1

Layers, the modules used in the decoding stage; Parameters, the internal parameters of each module; Input dimension, the size and 
dimension of the input feature map of each module; Output dimension, the size and dimension of the output feature map of each module; 
DyCat, dynamic feature fusion; CASPP, CBAM-atrous spatial pyramid pooling; Conv, convolution.

Datasets

The experimental data were collected by The First Affiliated 
Hospital of Chongqing Medical University. The region of 
interest was manually delineated by a physician assistant 
with 5 years of experience and a radiologist and verified by 
a musculoskeletal radiologist with 14 years of experience. 
MRI was performed using 1.5- or 3.0-T MRI device 
(MAGNETOM Essenza or Skyra, Siemens Healthineers, 
Erlangen, Germany). The imaging protocol was as follows: 
a sagittal turbo spin echo (TSE) T1-weighted sequence 
(repetition time/echo time =490/10 ms, field of view  
=32 cm, matrix size =320×320, slice thickness =3 mm), 
a sagittal TSE T2-weighted sequence (repetition time/
echo time =2,900/102 ms, field of view =32 cm, matrix size 
=400×400, slice thickness =3 mm), a sagittal T2-weighted 
Dixon sequence (repetition time/echo time =3,000/82 ms, 
field of view =32 cm, matrix size =300×300, slice thickness 
=3 mm), and an axial TSE T2-weighted sequence (repetition 
time/echo time =3,740/108 ms, field of view =18 cm, matrix 
size =300×206, slice thickness =4 mm). The image data 

consisted of three sequences: T1-weighted imaging (T1WI), 
T2-weighted imaging (T2WI), and short tau inversion 
recovery (STIR). Typically, areas of bone destruction or 
marrow infiltration appear as low signal on T1WI and high 
signal on T2WI. On STIR sequences, due to suppression 
of bone marrow fat signal, lesions exhibit higher signal 
intensity compared to that on T2WI; thus, by combining 
images from different sequences, we could better leverage 
the data, improving the model’s training effectiveness, 
generalization ability, and robustness, thereby enhancing its 
capability to handle the diverse data encountered in real-
world applications. These data encompassed MRI images of 
45 patients with MM, with most patients undergoing three 
different sequences, while a few underwent one or two 
sequences. This resulted in 753 original MR images and 
their corresponding ground-truth labels. Given the typically 
large size of the original images, for optimal utilization 
of computing resources and accelerated convergence, we 
resized all original MR images to 320×320 after converting 
them to standard image formats. To mitigate the impact of 
limited data on model performance and enhance robustness, 
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Table 3 Analysis of heterogeneity in size and shape of multiple myeloma lesions in our self-constructed dataset

Index
Training set Test set

Lesion size (pixels) Lesion count Lesion size (pixels) Lesion count

Mean value 193.58 2.60 222.60 1.88

Standard deviation 282.49 3.29 300.19 1.45

Coefficient of variation 1.46 1.26 1.35 0.77

we applied data augmentation techniques to the original 
dataset. These techniques included random horizontal and 
vertical flips, image rotation, and scaling, which expanded 
the dataset to 3,000 images. In this augmented dataset, 80% 
of the images were used for training, and 20% were used 
for validation and testing. The data processing flowchart is 
shown in Figure 6.

We thoroughly analyzed the heterogeneity of MM lesion 
images in both the training and testing datasets. The lesions 
exhibited significant variations in both size and number. 
The statistical analysis results are presented in Table 3. We 
calculated the statistical features for lesion size and quantity 
in each of the mask images, including mean, standard 
deviation, and the coefficient of variation. The lesion size 
was measured in pixels. Specifically, the lesion size was 
determined by calculating the number of pixels within the 
lesion area on the mask image. 

In the training set, the coefficients of variation for lesion 
size and quantity were 1.46 and 1.26, respectively. In the 
test set, these coefficients were 1.35 for lesion size and 0.77 
for lesion quantity. Generally, a coefficient of variation 
exceeding 1 indicates substantial variations in lesion size 

and number among different patients in both training and 
test sets. This heterogeneity poses significant challenges to 
lesion segmentation algorithms. The distribution of lesions 
is illustrated in (Figure 7), which includes box plots and 
histograms of lesion size and quantity in both the training 
and test sets. Box plots depict the distribution of lesion size 
and quantity data across patients, offering insights into their 
range, central tendency, and outliers. Histograms display 
the frequency distribution of lesion size and quantity data, 
partitioning them into intervals; the count of lesions and 
patients within each interval are thus presented in bar chart 
format.

Implementation procedure

The hardware and software configurations, along with the 
hyperparameter settings employed in the experiments, are 
summarized in Table 4. Each experiment adopted uniform 
hyperparameters for training, validation, and testing. The 
model achieving the highest intersection over union (IoU) 
value on the validation set was kept as the final model. 
Notably, to maintain the integrity of the experimental 
outcomes, no pretrained weight parameters were used 
before or after model optimization.

Statistical analysis

In model performance evaluation, rigorous statistical 
analysis is crucial for ensuring the reliability and validity 
of results. In our study, we employed independent 
samples t-tests to compare P values across various metrics 
from different experiments, including ablation studies, 
model comparison experiments, and module comparison 
experiments. Subsequently, we applied the Benjamini-
Hochberg procedure to correct each P value for multiple 
comparisons to control the false-discovery rate. The P value 
is a statistical measure used to determine the significance of 
results, representing the probability of observing the data 

Figure 6 Data expansion process. MRI, magnetic resonance 
imaging.
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Figure 7 Box plots and histograms of lesion size and quantity in the training and test sets. (A) Box plots and histograms depicting lesion sizes 
and counts in the training set. (B) Box plots and histograms for lesion sizes and counts in the test set. The box plots illustrate the distribution 
of lesion sizes and counts, while the histograms display the frequency distribution of lesion sizes and counts.
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or more extreme data under the null hypothesis. In our 
study, lower P values indicated that the observed differences 
between models were unlikely to be due to chance, 
suggesting statistical significance. The independent samples 
t-test was used to compare the means of two independent 
groups to assess whether there was statistical evidence of a 
significant difference between the means of the populations 
in question. The formula for the t-test statistic is as follows:

1 2
2 2

1 2

1 2

X Xt
s s
n n

−
=

+

 [7]

Where 1X   and 2X  are the sample means, 2
1S  and 2

2S  

are the sample variances, and 1n  and 2n   are the sample 
sizes. The Benjamini-Hochberg procedure was employed 
to control the false-discovery rate in multiple testing, 
allowing us to make more confident assertions about the 
significance of our research findings and thereby enhancing 
the credibility of our conclusions.

Results

In this section, the evaluation indicators used in the 
experiment are described. Following this is a detailed 
analysis of the experimental results of MMNet on this 
dataset and the complex comparison with other advanced 
algorithms. In addition, the series of ablation experiments 
carried out to verify the effectiveness of the proposed 
module is outlined.

Evaluation metrics

The choice of evaluation metrics directly mirrors the 
algorithm’s quality. This study primarily employed five 
indicators to assess algorithmic performance, including IoU, 
Hausdorff distance, precision, recall, and Dice coefficient. 
Theoretically, a smaller Hausdorff distance index indicates 
superior segmentation performance, whereas values closer 
to 1 for the other indices signify enhanced segmentation 
performance. The formulae for each evaluation index are 
outlined as follows:

_ _
_ _

Area of OverlapIoU
Area of Union

=  [8]

( ) ( ) ( )( ), max , , ,Hd A B h A B h B A=  [9]

Here,  ( ),Hd A B  denotes  the  Hausdorf f  d is tance 

of two point sets A  and B ,  where ( ),h A B  denotes 

the nearest distance from point set A  to point set B : 

( ), max mina A b Bh A B a b∈ ∈= − . Similarly, ( ),h B A  denotes the 

nearest distance from point set B to point set A.

TPPrecision
TP FP

=
+

 [10]

TPRecall
TP FN

=
+

 [11]

2
2

TPDice
TP FP FN

×
=

× + +
 [12]

Ablation experiments for evaluation module performance

For a quantitative analysis of the MMNet algorithm’s 
detection performance on the myeloma lesion segmentation 
dataset, this study used UNet as the benchmark model 
but did not employ pretrained weight parameters for the 
models pre- or postenhancement. While maintaining 
consistent experimental configurations, the input image 
resolution was fixed at 320×320. Incrementally, the DCNet, 
DyCat, and CASPP modules were added to original UNet 
model. The optimal model file generated by each module 
served as the benchmark model, and ablation experiments 
were conducted on the same test set to assess each 
module’s impact on lesion segmentation performance. The 
comprehensive experimental results are detailed in Table 5. 
The data marked with an asterisk in the table denote the 
optimal value for each evaluation index.

Table 4 The hardware, software configuration, and super parameter 
setting used in the experiment

Name Configuration information

Development language Python 3.8.10

Framework PyTorch 1.11.0, cuda 11.3, cudnn 8200

CPU Intel (R) Xeon (R) Platinum 8255C CPU 
@ 2.50 GHz

GPU V100-SXM2-32 GB GPU

Loss function BCEDiceLoss

Optimizer SGD

Learning rate 0.001

Number of epochs 250

CPU, central processing unit; GPU, graphics processing unit; 
SGD, stochastic gradient descent.

https://cn.bing.com/dict/search?q=development&FORM=BDVSP6&cc=cn
https://cn.bing.com/dict/search?q=language&FORM=BDVSP6&cc=cn
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Figure 8 The fluctuations in IoU and loss for each model in the ablation experiment, along with visualizations depicting the magnitude of 
the Dice coefficient. (A) The Dice coefficient histogram. (B) Loss downward trend graph. (C) IoU rising trend graph. Dice, Dice similarity 
coefficient; IoU, intersection over union.  
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Table 5 Ablation studies on the different architectures

Models Method IoU HD Precision Recall Dice

Model 1 Baseline 0.638±0.032 51.35±5.15 0.852±0.019 0.707±0.033 0.752±0.027

Model 2 Baseline + DCNet 0.682±0.029 44.67±4.88 0.845±0.020 0.766±0.029 0.787±0.024

Model 3 Baseline + DyCat 0.664±0.031 50.14±5.61 0.854±0.019* 0.738±0.032 0.771±0.026

Model 4 Baseline + CASPP 0.685±0.031 44.38±5.00* 0.823±0.025 0.786±0.027 0.789±0.025

Model 5 Baseline + DCNet + DyCat 0.692±0.027 46.54±5.33 0.850±0.019 0.775±0.026 0.796±0.022

Model 6 Baseline + DCNet + CASPP 0.687±0.029 45.64±4.89 0.827±0.025 0.785±0.025 0.789±0.024

Model 7 Baseline + DyCat + CASPP 0.680±0.029 44.45±4.65 0.819±0.023 0.778±0.025 0.783±0.023

Model 8 Baseline + DCNet + DyCat + CASPP 0.716±0.025* 46.68±4.94 0.847±0.020 0.814±0.022* 0.819±0.019*

Each evaluation index is expressed as mean ± 95% confidence interval. *, best result in the table. IoU, intersection over union; HD, 
Hausdorff distance; Dice, Dice similarity coefficient; DCNet, dilated dense connected net; DyCat, dynamic feature fusion; CASPP, CBAM-
atrous spatial pyramid pooling.

The experimental results indicated that compared to 
the baseline model, the models with each of the DCNet, 
DyCat, and CASPP modules individually added led to 
increases in IoU of 4.46, 2.63, and 4.71 percentage points 
and improvements in Dice coefficient of 3.56, 1.96, and 3.7 
percentage points, respectively. Some model structures also 
exhibited enhancements in indicators such as Hausdorff 
distance, precision, and recall. Furthermore, the judicious 
combination of different modules significantly elevated 
image segmentation accuracy. The IoU and Dice coefficient 
indicators for combinations such as those of DCNet with 
DyCat and of DCNet with CASPP surpassed those of 
the individual modules. Notably, the performance of the 
MMNet model, formed by integrating all three modules, 

outperformed the combination of any two modules in terms 
of IoU, Dice coefficient, and recall rate. These results prove 
that the three proposed modules individually enhance the 
accuracy and efficiency of MM lesion region segmentation, 
substantiating the effectiveness of MMNet.

The histogram of the Dice coefficient, the loss change 
curve, and the IoU change curve of each model in the 
ablation experiment are visualized in Figure 8A-8C. Notably, 
the MMNet model demonstrated a tendency toward 
stability after 200 iterations, exhibiting a final loss value 
lower than that of any model in the ablation experiment. 
Additionally, its final IoU value and Dice coefficient 
surpassed those of all models in the ablation experiment.

As a visual depiction of the impact of various modules on 
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Figure 9 Visualization of segmentation outcomes for each model within the ablation study. Red represents ground truth labels, while green 
represents the model’s predicted regions. GT, ground truth.

 Image GT (overlay) GT Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8

the segmentation performance of MM, the segmentation 
results of each model are displayed in Figure 9. The baseline 
model, lacking additional modules, exhibited the poorest 
segmentation performance. Model 2, incorporating a 
method for extracting multiscale features and expanding the 
receptive field, notably enhanced lesion area perception. 
The introduction of the DyCat and CASPP modules 
effectively mitigated the issue of insufficient segmentation, 
as is particularly evident in columns 5, 6, and 7 of Figure 9, 
which show that the segmentation of small lesion areas and 
nuanced details significantly improved with the introduction 
of the combination of these two modules. Ultimately, by 
incorporating all modules into MMNet (Model 8), the 
network amalgamated the advantages of the three modules, 
preserving richer details and semantic information, resulting 
in the successful identification of almost all lesion areas. 
Based on both evaluation indices and visual segmentation 
analysis, it is evident that the proposed modules indeed 
enhance the performance in myeloma segmentation.

Furthermore, to validate the significant differences 
between various model variants and MMNet in the 
ablation study, we employed an independent samples t-test 

to compare the P values across different metrics. Each P 
value was then corrected for multiple testing using the 
Benjamini-Hochberg procedure. As shown in Table 6, 
there were notable differences between MMNet and its 
variants, particularly for the original model (Model 1). After 
correction, the P values for the Dice coefficients of these 
two models remained below 0.001, indicating a significant 
difference compared to MMNet.

Ablation experiments evaluating the internal parameters 
of the module

The performance of deep learning models is intricately 
linked to their structural design, with the selection of 
hyperparameters emerging as a critical determinant of 
model efficacy. In our proposed DCNet and CASPP 
modules, we employ a fusion of dilated convolutions 
featuring varying expansion rates. Dilated convolutions 
introduce intervals within the convolution kernel, thereby 
expanding the receptive field without inflating parameter 
counts. Through adjustment of the expansion rate, we can 
modulate the sampling density of convolution operations 
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Table 7 The influence of different dilation rates on the DCNet module

Dilation rate
Baseline + DCNet

IoU HD Precision Recall Dice

1, 2, 3 0.682±0.029* 44.67±4.88* 0.845±0.020 0.766±0.029* 0.787±0.024*

2, 4, 8 0.652±0.031 48.13±5.22 0.846±0.021* 0.727±0.032 0.762±0.027

6, 12, 18 0.590±0.034 52.97±4.98 0.836±0.019 0.661±0.037 0.710±0.031

Each evaluation index is expressed as mean ± 95% confidence interval. *, best result in the table. DCNet, dilated dense connected net; 
Dilation rate, the different combinations of different dilation rates in the module; IoU, intersection over union; HD, Hausdorff distance; Dice, 
Dice similarity coefficient. 

Table 8 The influence of different dilation rates on the CASPP module

Dilation rate
Baseline + CASPP

IoU HD Precision Recall Dice

1, 2, 3, 4 0.677±0.030 44.17±4.31* 0.817±0.024 0.777±0.027 0.782±0.025

1, 6, 12, 18 0.685±0.031* 44.38±5.00 0.823±0.025* 0.786±0.027* 0.789±0.025*

6, 12, 18, 24 0.674±0.028 44.75±5.15 0.819±0.024 0.775±0.025 0.782±0.024

Each evaluation index is expressed as mean ± 95% confidence interval. *, best result in the table. CASPP, CBAM-atrous spatial pyramid 
pooling; Dilation rate, different combinations of different dilation rates in the module; IoU, intersection over union; HD, Hausdorff distance; 
Dice, Dice similarity coefficient. 

on input, enabling flexible control over receptive field 
size. To scrutinize the impact of distinct dilation rates on 
CASPP and DCNet module performance, we examined the 
combinations of varied dilation rates within these modules. 
This analysis aimed to delineate performance disparities 
attributable to internal parameters and refine the module 
design. Detailed outcomes of these investigations are 

presented in Tables 7,8.

Ablation experiment of CASPP module

The CASPP module is composed of ASPP, channel, 
and spatial attention mechanisms. To ascertain whether 
the CASPP module could outperform its constituent 

Table 6 The P value of the significance test (t-test) of each evaluation index between MMNet and other model variants in the ablation experiment 
(corrected for multiple testing using Benjamini-Hochberg adjustment)

Model Method
P value

IoU HD Precision Recall Dice

Model 1 Baseline 1.04×10−3 2.66×10−1 7.03×10−1 1.68×10−5* 9.78×10−4*

Model 2 Baseline + DCNet 2.12×10−1 8.75×10−1 9.07×10−1 9.51×10−2 1.95×10−1

Model 3 Baseline + DyCat 3.74×10−2 5.37×10−1 5.95×10−1 3.41×10−3 3.13×10−2

Model 4 Baseline + CASPP 4.63×10−1 7.06×10−1 4.63×10−1 3.48×10−1 3.48×10−1

Model 5 Baseline + DCNet + DyCat 4.57×10−1 9.72×10−1 9.72×10−1 2.15×10−1 4.57×10−1

Model 6 Baseline + DCNet + CASPP 2.35×10−1 8.72×10−1 2.35×10−1 2.40×10−1 2.35×10−1

Model 7 Baseline + DyCat + CASPP 3.22 ×10−1 4.44×10−1 3.22 ×10−1 3.22×10−1 3.22 ×10−1

*, P values less than 0.001. MMNet, multiple myeloma segmentation net; IoU, intersection over union; HD, Hausdorff distance; Dice, Dice 
similarity coefficient; DyCat, dynamic feature fusion; DCNet, dilated dense connected net; CASPP, CBAM-atrous spatial pyramid pooling.
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components individually, we conducted a series of ablation 
studies. The findings from these experiments are presented 
in Table 9. For a fair comparison, an equivalent number of 
standalone ASPP and attention modules were implemented 
into the model architecture at the same location as that of 
the CASPP module. The outcome revealed that the singular 
application of ASPP or attention modules yielded inferior 
results to that of the integrated CASPP module. This 
suggests that the CASPP module synergistically leverages 
the strengths of both ASPP and attention mechanisms, 
fostering a mutually reinforcing effect. This strategic 
integration enables the model to exhibit heightened 
sensitivity to both spatial and channel information while 
simultaneously maintaining focus on multiscale features. 
Such a configuration significantly enhances the overall 
performance of the model.

Comparative experiments

To ascertain whether the MMNet algorithm outperforms 

other algorithms in MM segmentation, we conducted 
compara t i ve  exper iment s ,  w i th  MMNET be ing 
contrasted against other advanced image segmentation 
algorithms, including U-Net, U-Net++, UNeXt (41), 
multi-scale attention net (MA-Net) (42), Atten-UNet,  
MultiResUNet (43), and spatial- and channel-wise coarse-
to-fine attention network (SCOAT-Net) (44). The results 
are presented in Table 10. To ensure the fairness of the 
comparative experiment, none of the models employed 
pretrained weight parameters, and the experimental results 
in the table are derived from the respective retraining of 
the code. Besides the discrepancies in the network model, 
all other implementation details align with those in the 
MMNet model.

Table 10 reveals that the proposed algorithm attained the 
top scores in four evaluation indicators, IoU, Hausdorff 
distance (HD), recall, and Dice, and ranked second in 
precision. These results could be attributed to the stem 
from U-Net’s emphasis on general segmentation tasks, with 
a focus primarily on common rules, which overlooks the 

Table 9 Ablation study for the CASPP module

Modules IoU HD Precision Recall Dice

ASPP 0.676±0.031 43.99±5.02* 0.854±0.019* 0.751±0.031 0.780±0.026

Attention mechanisms 0.651±0.032 47.66±4.91 0.794±0.027 0.756±0.029 0.760±0.027

CASPP 0.685±0.031* 44.38±5.00 0.823±0.025 0.786±0.027* 0.789±0.025*

Each evaluation index is expressed as mean ± 95% confidence interval. *, best result in the table. CASPP, CBAM-atrous spatial pyramid 
pooling; IoU, intersection over union; HD, Hausdorff distance; Dice, Dice similarity coefficient; ASPP, atrous spatial convolution pooling 
pyramid.

Table 10 Comparison of segmentation results of different network models in the multiple myeloma dataset

Method IoU HD Precision Recall Dice

U-Net 0.638±0.032 51.35±5.15 0.852±0.019* 0.707±0.033 0.752±0.027

U-Net++ 0.623±0.033 54.39±5.61 0.840±0.022 0.698±0.034 0.739±0.028

Atten-UNet 0.613±0.033 51.73±5.31 0.819±0.026 0.693±0.032 0.729±0.029

UNeXt 0.452±0.035 63.92±4.64 0.685±0.037 0.537±0.037 0.584±0.036

MA-Net 0.612±0.033 54.50±5.13 0.818±0.023 0.694±0.035 0.729±0.029

MultiRes-UNet 0.557±0.035 66.80±5.16 0.825±0.029 0.633±0.039 0.688±0.035

SCOAT-Net 0.601±0.030 51.53±4.88 0.839±0.021 0.670±0.031 0.726±0.027

MMNet (ours) 0.716±0.025* 46.68±4.94* 0.847±0.020 0.814±0.022* 0.819±0.019*

Each evaluation index is expressed as mean ± 95% confidence interval. *, best result in the table. IoU, intersection over union; HD, 
Hausdorff distance; Dice, Dice similarity coefficient; Atten-UNet, attention U-Net; MA-Net, multi-scale attention net; SCOAT-Net, spatial- 
and channel-wise coarse-to-fine attention network; MMNet, multiple myeloma segmentation net.
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Figure 10 The fluctuations in IoU and loss for each model in the comparative experiment, along with visualizations depicting the magnitude 
of the Dice coefficient. (A) Dice coefficient histogram. (B) Loss downward trend graph. (C) IoU rising trend graph. Dice, Dice similarity 
coefficient; IoU, intersection over union; Atten-UNet, attention U-Net; MA-Net, multi-scale attention net; SCOAT-Net, spatial- and 
channel-wise coarse-to-fine attention network; MMNet, multiple myeloma segmentation net.
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unique features present in myeloma images. Furthermore, 
the proposed algorithm, leveraging multiscale features, 
dynamic convolution, and an attention mechanism, 
exhibited clear performance advantages, particularly 
in measurements. These advantages aid in overcoming 
challenges posed by variations in size or shape, enabling 
proficiency in accurately segmenting the more nuanced 
features of myeloma. There are numerous evaluation indices 
available for image segmentation tasks, with IoU and Dice 
often being considered the most important. IoU represents 
the intersection and union ratio between the segmentation 
result and the ground truth label, offering a direct measure 
of the segmentation algorithm’s effectiveness. The Dice 
coefficient, a statistical index used to measure the similarity 
of two sets, is frequently employed to quantify the similarity 
between two samples. In our experiment, the IoU and Dice 
indicators demonstrated an impressive improvement of 
26.45% and 23.5%, respectively, compared to the lowest-
performing model (UNeXt), underscoring its relatively 
superior accuracy in distinguishing between lesions and 
background areas. These outcomes underscore the efficacy 
of our proposed method in myeloma lesion segmentation.

To enable a comprehensive comparison of model 
disparities, we generated a loss change curve, an IoU change 
curve, and a histogram illustrating the Dice coefficient 
variations across different models during the comparative 
experimental validation phase. These visualizations are 
presented in Figure 10.

To visually and qualitatively illustrate the disparities in 
the segmentation performance of MM among different 
comparison models, Figure 11 showcases the segmentation 

outcomes of each comparison model. In Figure 11, the first 
and second columns display the original MR image and its 
corresponding ground truth label, respectively; columns 3–9 
demonstrate the segmentation results of U-Net, U-Net++, 
Atten-UNet, MultiResUNet, MA-Net, UNeXt, and 
SCOAT-Net. The last column illustrates the segmentation 
results of the MMNet model proposed in this paper. As 
anticipated, certain competitive networks (such as U-Net++) 
exhibited subpar segmentation performance in images 
featuring small lesions, struggling to accurately identify 
the lesion area. For other networks, such as MA-Net and 
UNeXt, the absence of multiscale features hampered 
segmentation when images containing lesions of varying 
scales were present, making them less effective than our 
proposed MMNet. Additionally, MMNet demonstrated a 
robust competitive edge in detecting images with indistinct 
boundaries.

The MR images in the fourth row in Figure 11 illustrate 
extramedullary infiltration MM. In this context, our 
proposed model performed excellently, achieving accurate 
segmentation without confusion with the surrounding soft 
tissue. This further demonstrates the high generalization 
capability and reliability of our model in segmenting MM 
lesions.

To validate the significant differences between MMNet 
and the other image segmentation models, we conducted 
independent samples t-tests to compare the P values of 
these metrics, which was followed by Benjamini-Hochberg 
multiple testing correction. The results are presented 
in Table 11. Specifically, for the IoU, Dice, and recall 
metrics, the P values for each model were predominantly 
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Table 11 The P values from the significance test (t-test) between MMNet and other compared methods in different metrics (corrected for 
multiple testing via the Benjamini-Hochberg adjustment) 

Method
P value

IoU HD Precision Recall Dice

U-Net 1.04×10−3 2.66×10−1 7.03×10−1 1.68×10−5* 9.78×10−4*

U-Net++ 1.29×10−4* 7.04×10−2 6.89×10−1 3.91×10−6* 1.29×10−4*

Atten-UNet 1.95×10−4* 1.37×10−1 1.87×10−1 8.56×10−6* 1.95×10−4*

UNeXt 1.58×10−22* 2.11×10−6* 3.96×10−10* 1.08×10−22* 4.78×10−19*

MA-Net 2.45×10−5* 4.90×10−2 7.64×10−2 3.82×10−6* 2.45×10−5*

MultiRes-UNet 4.86×10−12* 9.66×10−6* 3.33×10−2 2.95×10−13* 1.03×10−10*

SCOAT-Net 6.71×10−7* 2.26×10−1 6.25×10−1 8.02×10−10* 2.09×10−6*

*, P values less than 0.001. MMNet, multiple myeloma segmentation net; IoU, intersection over union; HD, Hausdorff distance; Dice, Dice 
similarity coefficient; Atten-UNet, attention U-Net; MA-Net, multi-scale attention net; SCOAT-Net, spatial- and channel-wise coarse-to-fine 
attention network. 

Figure 11 The efficacy of various segmentation models was visually assessed using a custom multiple myeloma segmentation dataset. 
From left to right respectively are the original image and the ground truth label, followed by the segmentation results of U-Net, U-Net++, 
Attention-UNet, MultiResUnet, MA-Net, UNeXt, SCOAT-Net, and the proposed MMNet model. Red represents ground truth labels, 
while green represents the model’s predicted regions. GT, ground truth; Atten-UNet, attention U-Net; MA-Net, multi-scale attention net; 
SCOAT-Net, spatial- and channel-wise coarse-to-fine attention network; MMNet, multiple myeloma segmentation net.

 Image GT (overlay) GT U-Net U-Net++ Atten-UNet MultiResUnet MA-Net UNext SCOAT-Net MMNet
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Table 12 Comparative analysis of performance: DCNet versus other backbone networks

Backbone IoU HD Precision Recall Dice

MobileNet 0.467±0.033 60.17±4.45 0.687±0.034 0.574±0.036 0.603±0.033

EfficientNet 0.533±0.034 59.94±5.35 0.749±0.031 0.627±0.036 0.663±0.033

DenseNet 0.644±0.033 50.25±5.19 0.850±0.023 0.713±0.033 0.755±0.028

ResNet 0.650±0.032 48.25±4.95 0.853±0.021* 0.721±0.033 0.760±0.028

DCNet ours) 0.682±0.029* 44.67±4.88* 0.845±0.020 0.766±0.029* 0.787±0.024*

Each evaluation index is expressed as mean ± 95% confidence interval. *, best result in the table. DCNet, dilated dense connected net; 
Backbones, different feature extraction networks; IoU, intersection over union; HD, Hausdorff distance; Dice, Dice similarity coefficient. 

Table 13 P values from significance tests (t-tests) between the DCNet and other feature extraction models across different metrics (corrected for 
multiple testing via the Benjamini-Hochberg adjustment) 

Method
P value

IoU HD Precision Recall Dice

MobileNet 3.65×10−18* 5.93×10−6* 1.13×10−13* 1.08×10−14* 2.11×10−16*

EfficientNet 1.10×10−9* 4.43 ×10−5* 9.08×10−7* 2.23×10−8* 1.18×10−8*

DenseNet 1.80×10−1 1.87×10−1 7.32×10−1 1.03×10−1 1.80×10−1

ResNet 3.04×10−1 3.73 ×10−1 5.80×10−1 2.65×10−1 3.04×10−1

*, P values less than 0.001. DCNet, dilated dense connected net; IoU, intersection over union; HD, Hausdorff distance; Dice, Dice similarity 
coefficient. 

below 0.001. This indicates the accuracy and robustness 
of MMNet, further substantiating the veracity of these 
observed differences.

Comparative experiments with other backbone networks

To assess the comparative performance of DCNet against 
other feature extraction networks in extracting features 
from MM images, we conducted a comprehensive 
evaluation. We selected several widely employed backbone 
networks for comparison, including MobileNet (45), 
EfficientNet (46), DenseNet, and ResNet (47). The results 
of our horizontal comparison experiment are presented 
in Table 12. Our proposed DCNet outperformed all other 
networks, exhibiting superior scores across various metrics 
such as IoU, Hausdorff distance, recall, and Dice. These 
results suggest that DCNet excels in capturing information 
across different scales, thus substantiating its superiority and 
effectiveness in feature extraction for MM images.

Moreover, to validate the significant differences of 
DCNet compared to other feature extraction networks, we 

employed an independent samples t-test to compare the P 
values of these metrics and applied Benjamini-Hochberg 
correction for multiple testing. The detailed results are 
presented in Table 13. For MobileNet and EfficientNet, the 
corrected P values of all metrics remained relatively low. In 
contrast, for DenseNet and ResNet, the corrected P values 
were comparatively higher. These findings suggest that 
DCNet may exhibit performance differences across various 
metrics when compared to DenseNet and ResNet. These 
differences were more pronounced when the comparison 
involved MobileNet and EfficientNet, further highlighting 
the potential advantages of DCNet as a feature extraction 
network for MM lesion segmentation.

Discussion

Conducting multiscale feature extraction on images of 
MM patients is pivotal for the efficient segmentation of 
MM lesions. We employed an encoding-decoding network 
structure and integrated newly designed modules, DCNet 
and CASPP, to efficiently extract multiscale features from 

https://zhuanlan.zhihu.com/p/37189203
https://blog.csdn.net/weixin_44023658/article/details/105843701
https://zhuanlan.zhihu.com/p/37189203
https://blog.csdn.net/weixin_44023658/article/details/105843701
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images and enhance the correlation between channel and 
spatial information. Furthermore, MMNet incorporates 
our newly proposed DyCat module in the feature fusion 
process, enabling dynamic feature selection and adaptive 
adjustment of the fusion process. Ablation experiments 
demonstrated the effectiveness of the individual modules 
proposed in our method. Our approach achieved an 
IoU score of 0.716±0.025 and a Dice coefficient score of 
0.819±0.019 on the self-constructed dataset.

To the best of our knowledge, most current segmentation 
tasks in the field of MM focus on the segmentation of 
myeloma plasma cells within microscopic images. Paing  
et al. (14) developed a variety of mask R-CNN models 
using different image types, including raw microscopic 
images, contrast-enhanced images, and stained cell images, 
for instance segmentation of MM cells. They applied deep 
augmentation techniques to enhance the performance of 
the Mask R-CNN model. Bozorgpour et al. (48) designed 
a two-stage deep learning approach for detecting and 
segmenting MM plasma cells, which was evaluated in 
the SegPC2021 Grand Challenge and achieved second 
place in the final testing phase among all participating 
teams. Moving beyond microscopic images, Wennmann 
et al. (17) trained an nnU-Net on a multicenter dataset 
to automatically segment bone marrow from whole-body 
ADC images, achieving segmentation quality comparable 
to that of manual methods. The automatically extracted 
ADC values were significantly correlated with PCI, thus 
demonstrating potential value for automatic staging, 
risk stratification, and treatment response assessment. In 
our study, we used the spinal MR images of patients to 
segment MM lesions. This imaging approach provided 
improved localization and assessment of lesion conditions. 
Additionally, we proposed a model with enhanced features 
in feature extraction, upsampling, and feature fusion, which 
more effectively captures global image information and is 
suitable for segmenting the complex and variable lesions 
associated with MM. In future research, we will further 
explore the application of MMNet in other medical image 
segmentation tasks. We plan to extend its application to 
whole-body imaging datasets and 3D datasets to validate 
its performance in different dimensions and more complex 
scenarios. Moreover, we will focus on investigating 
MMNet’s  potential  in multimodal medical  image 
processing, integrating various types of imaging data (such 
as MRI, CT, and PET) for joint analysis, with the aim of 
improving segmentation accuracy and diagnostic precision.

Conclusions

This study focused on the automatic and precise 
segmentation of MM in MRI. Through an analysis of 
the distinctive characteristics of MM lesions, we propose 
an innovative automatic segmentation method, MMNet. 
Through the integration of three innovative modules, 
DCNet, CASPP, and DyCat, the network performance 
is improved in the coding, decoding, and feature fusion 
components, respectively. This enhances the ability to 
extract multiscale features, expands the depth and width 
of the network, enriches the diversity of features and 
the feature fusion process, and effectively improves the 
accuracy of the model in lesion segmentation. Extensive 
experimental results confirmed the ability of our proposed 
module to achieve precise segmentation of MM lesions. 
Furthermore, our findings confirmed the superior 
performance of our proposed model in MM segmentation 
when compared to other advanced image segmentation 
models.
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