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A B S T R A C T   

Purpose: To automatically segment and measure the levator hiatus with a deep learning approach and evaluate 
the performance between algorithms, sonographers, and different devices. 
Methods: Three deep learning models (UNet-ResNet34, HR-Net, and SegNet) were trained with 360 images and 
validated with 42 images. The trained models were tested with two test sets. The first set included 138 images to 
evaluate the performance between the algorithms and sonographers. An independent dataset including 679 
images assessed the performances of algorithms between different ultrasound devices. Four metrics were used for 
evaluation: DSC, HDD, the relative error of segmentation area, and the absolute error of segmentation area. 
Results: The UNet model outperformed HR-Net and SegNet. It could achieve a mean DSC of 0.964 for the first test 
set and 0.952 for the independent test set. UNet was creditable compared with three senior sonographers with a 
noninferiority test in the first test set and equivalent in the two test sets collected by different devices. On 
average, it took two seconds to process one case with a GPU and 2.4 s with a CPU. 
Conclusions: The deep learning approach has good performance for levator hiatus segmentation and good 
generalization ability on independent test sets. This automatic levator hiatus segmentation approach could help 
shorten the clinical examination time and improve consistency.   

1. Introduction 

Female pelvic floor dysfunction or disorder (PFD) are prevalent in 
postpartum women with increasing morbidity that could reduce the 
quality of life to a certain degree. This condition is related to the 
weakness of levator ani muscles that support the pelvic organs. The 
group of PFD conditions includes defecation, urination, sexual activity 
disorders, pelvic organ prolapses (POP), and pelvic cavity pain [1]. 

Transperineal pelvic floor ultrasound is currently well-accepted in 
clinical practice, and the levator hiatus dimension is an essential diag-
nostic index since it has been proven a standardized parameter [2–5]. 
However, it’s difficult to represent the levator hiatus by conventional 2D 
ultrasound imaging since the muscles lie in the true axial view of the 

pelvis from the pubic symphysis to the puborectalis loop. 3D ultrasound 
technology can visualize the pelvic floor muscles and evaluate muscles’ 
integrity and function with reconstruction. After acquiring a static 3D 
volume image, a 2D axial (C-plane) levator hiatus image is reconstructed 
by rendering technology. 

The manual approach is frequently adopted to outline the levator 
hiatus contour in this 2D C-plane rendered ultrasound image to compute 
the hiatus area for clinical diagnosis [6]. A semiautomatic outlining 
levator hiatus approach was first proposed in 2016 to reduce clinicians’ 
workload [7]. However, it required manually inputting the pubic sym-
physis and pubovisceral muscle position in the C-plane in the initial step, 
and the Dice similarity coefficient (DSC) could achieve 0.92. 

Artificial intelligence is increasingly applied in clinical practice, and 
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many machine learning methods have been developed to help clinical 
workflow optimization and decision making [8,9]. Deep learning is a 
subgroup of machine learning which can automatically extract and learn 
features for further analysis [10]. Machine learning and deep learning 
have been extensively applied to medical image analysis and have suc-
ceeded in image classification, object detection and segmentation 
[11–16]. In the past five years, several machine learning and deep 
learning methods have been developed for fully automatic hiatus seg-
mentation on C-plane ultrasound images [13–16]. In 2019, Li et al. [13] 
applied convolutional neural networks to segment the levator hiatus 
automatically with a DSC of 0.964. Most of the studies used a training set 
and test set split from the same dataset. Van Den Noort et al. [14] trained 
a deep learning model and tested it with two independent datasets, with 
mean DSCs of 0.94 and 0.93. The two test sets were collected from the 
same ultrasound device with the same setting but by different operators. 
Therefore, there are still considerable similarities between these two test 
sets. However, algorithm performance is usually affected by different 
ultrasound systems and different operators in clinical practice. Clinical 
practice, therefore, requires a more generalized model to adapt to 
different situations. Thus, the developed model needs to be further 
evaluated for its robustness and generalizability. 

This study developed three deep learning algorithms to segment the 
levator hiatus on C-plane fully automatically rendered ultrasound im-
ages. We evaluated the performance with two test sets independently 
collected by different devices and operators. The performances of al-
gorithms were assessed by comparing with three senior sonographers in 
the first test set and their generalizability was evaluated in the second 
test set. 

2. Material and methods 

2.1. Data 

The data used in this study were composed of two independently 
collected datasets. Both datasets comprise pelvic floor ultrasound data 
from postpartum women or older women in the Third Affiliated Hospital 
of Sun Yat-sen University. Informed consent was obtained from all pa-
tients. The two datasets were collected by different operators and 
different ultrasound devices. Access to both datasets was approved by 
the institutional review board of the Third Affiliated Hospital of Sun Yat- 
sen University. 

Dataset1 was collected by Philips EPIQ 7 with a V9-2 transducer and 
VM 5.2 software platform (Andover, MA, United States), including 540 
hiatus C-plane ultrasound images from 90 women in DICOM format. It 
was split into a training set (360 images from 60 women), a validation 
set (42 images from 7 women), and a test set (138 images from 23 

women). In this study, Dataset1 was used to train the deep learning 
models and evaluate the performance between algorithms and 
sonographers. 

Dataset2 was collected by GE Voluson E8 and E10 (with a RAB 4–8 
MHz volume probe) from GE Medical Systems (Tiefenbach, Austria), 
including 679 hiatus images from 368 women in JPEG format. In this 
study, Dataset2 was used as an independent test set to further evaluate 
the algorithms’ performances between different ultrasound devices and 
their generalizability. 

All data were annotated by three senior sonographers (with more 
than 10 years of ultrasound experience and more than 5 years of pelvic 
floor ultrasound experience). The minority obeys the majority mecha-
nism applied to label fusion and obtain the final ground truth. 

2.2. Algorithm 

The ultrasound images were pre-processed by uninformatively 
cropping the background and resizing to a fixed target size (768 *544) 
automatically using Python programming language. The images were 
changed to HSV channel and then to binary with a fixed threshold (80 
for grayscale from 0 to 255). The bounding box of this connected region 
in this binary image is used for image cropping. The training set was 
augmented in various ways, such as image rotation and zooming, to add 
data diversity. In this study, three deep learning networks were applied 
to train hiatus segmentation models. They were U-Net with ResNet34 
(UNet-ResNet34), HR-Net, and SegNet. The trained segmentation 
models were tested in two test sets from Dataset1 (n = 138) and Dataset2 
(n = 679). Then, post-processing was applied only to keep the maximum 
connected region of the segmentation results. Fig. 1 shows the flow chart 
of algorithm training and testing. 

The UNet, HR-Net, and SegNet are shown in Fig. 2. UNet is based on 
the widely used image segmentation network U-Net architecture [17] 
and uses the ResNet architecture [18] as the encoder in the down-
sampling section. This study used U-Net with a pre-trained ResNet34 as 
the backbone for levator hiatus segmentation. HR-Net starts with a 
high-resolution convolution stream, gradually adds high-to-low streams, 
and connects these streams in parallel to realize multiresolution fusion. 
The essential advantage is that it can maintain high resolution during 
the whole process [19]. SegNet consists of an encoder network and a 
corresponding decoder network, using max-pooling indices to up sample 
[20]. 

These deep learning networks were implemented on an Ubuntu 
18.04 with an NVIDIA GTX 1080Ti GPU and an Intel Core i7- 
6800 K @ 3.40 GHz CPU using Pytorch. The same loss function and 
stochastic gradient optimizer were applied to these three deep learning 
architectures. The loss function combined focal loss [21] and dice loss, 

Fig. 1. Flow chart of levator hiatus segmentation.  
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the initial learning rate was 1e-3 and the number of epochs was 40. The 
batch size used for UNet, HR-Net, and SegNet were 6, 3 and 2. 

2.3. Evaluation metrics 

Four metrics were used for algorithm performance evaluation: DSC, 
HDD (Hausdorff distance), relative error of segmentation area, and ab-
solute error of segmentation area [22–25]. DSC and HDD are two widely 
used segmentation metrics. DSC is used to evaluate segmentation’s 

overlapping degree, and HDD is used to assess the maximum distance 
between the segmentation contour and ground truth contour [23]. The 
expressions are described below. 

DSC(A, B) =
2||Area(A) ∩ Area(B)||
||Area(A)|| + ||Area(B)||

HDD(A, B) = max(max
a∈A

(min
b∈B

||a − b||), max
b∈B

(min
a∈A

||a − b||))

Considering that the levator hiatus area is an essential diagnostic 

Fig. 2. Architecture of UNet-ResNet34, HR-Net and SegNet.  
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index in ultrasound pelvic floor assessments [24,25], the segmentation 
area’s relative error and absolute error were also included in the result 
evaluation. According to pixel spacing, HDD and absolute area error 
were adjusted to cm and cm2. 

For HDD and relative error of area, noninferiority tests and equiva-
lence tests are conducted to analyze the performance between the al-
gorithm and sonographers and the algorithm performance between 
Dataset1 and Dataset2. 

3. Results 

The quantitative results of the test set from Dataset1 are listed in  
Table 1 (mean ± SD). A1, A2, and A3 represent the manually contoured 
annotations of three senior sonographers. A voting mechanism fuses the 
reference ground truth by A1, A2, and A3. For all metrics, the UNet 
architecture outperformed the other two models. UNet achieved a mean 
DSC of 0.964 ± 0.02, HR-Net had a mean DSC of 0.930 ± 0.04, and 
SegNet had a mean DSC of 0.952 ± 0.02. The HDD also indicated that 

the segmentation output from UNet had the least maximum distance 
compared with the ground truth. The same result could be concluded by 
the levator hiatus area’s relative error and absolute error. The box plot of 
the evaluation metrics on Dataset1 is shown in Fig. 3. 

Considering the significance of these metrics to clinical diagnosis, a 
noninferiority test is conducted on HDD and the relative error of area to 
analyze the performance between the algorithms’ segmentation results 
and sonographers’ manual contouring results with hypothesis difference 
values = 0.2 and 0.05, respectively. The p-values are listed in Table 2. 
For UNet, all the p-values are < 0.05. The UNet’s HDD is no more than 
0.2 cm higher than senior sonographers, and the area relative error is no 

Table 1 
Performance of UNet-ResNet34, HR-Net, and SegNet on Dataset1.   

DSC HDD 
(cm) 

Relative error of 
area (%) 

Absolute error of 
area (cm2) 

A1 0.972 
± 0.03 

0.25 
± 0.13 

4.50 ± 0.06 0.97 ± 1.24 

A2 0.968 
± 0.02 

0.30 
± 0.15 

5.95 ± 0.05 1.28 ± 1.05 

A3 0.972 
± 0.03 

0.26 
± 0.14 

4.46 ± 0.08 0.88 ± 1.20 

UNet- 
ResNet34 

0.964 
± 0.02 

0.30 
± 0.17 

4.40 ± 3.30 0.98 ± 0.89 

HR-Net 0.930 
± 0.04 

0.55 
± 0.33 

9.87 ± 7.54 2.09 ± 1.61 

SegNet 0.952 
± 0.02 

0.46 
± 0.40 

6.04 ± 4.65 1.32 ± 1.16  

Fig. 3. Algorithm segmentation and manual contouring performance in Dataset1. A1, A2 and A3 represent three manually contoured annotations.  

Table 2 
P-value of noninferiority test between algorithm and human.   

HDD (cm)a Relative error of area (%)b 

A1 A2 A3 A1 A2 A3 

UNet-ResNet34  0  0  0  0  0  0 
HR-Net  1  0.944  0.999  0.689  0.072  0.702 
SegNet  0.656  0.127  0.507  0  0  0  

a H0: Algorithm-Human> = 0.2, H1: Algorithm-Human < 0.2. 
b H0: Algorithm-Human> = 0.05, H1: Algorithm-Human < 0.05. 

Table 3 
Performance of UNet-ResNet34, HR-Net, and SegNet on Dataset2.   

DSC HDD 
(cm) 

Relative error of 
area (%) 

Absolute error of 
area (cm2) 

UNet- 
ResNet34 

0.952 
± 0.03 

0.38 
± 0.27 

6.40 ± 0.06 1.30 ± 1.68 

HR-Net 0.894 
± 0.08 

0.91 
± 0.59 

14.88 ± 0.16 2.77 ± 2.67 

SegNet 0.924 
± 0.06 

0.70 
± 0.69 

10.5 ± 0.12 2.08 ± 2.61  
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more than 5% higher. The same result can be concluded for area relative 
error of SegNet. 

To test the generalization of the models and evaluate their perfor-
mances on datasets collected from different devices, the trained models 
were tested on Dataset2. The test results are listed in Table 3. The mean 
DSC of UNet reached 0.952 ± 0.03, and the HDD was 0.38. Fig. 4 shows 
the box plot of the evaluation metrics results in two test sets. 

An equivalence test is conducted on HDD and the relative error of 
area results between test sets in Dataset1 and Dataset2. Table 4 indicates 
that UNet’s performance can be regarded as equivalent in these two test 
sets when the hypothesis is an HDD difference less than 0.2 cm, and the 
relative error of the area difference is less than 5%. The performance 
results of HR-Net and SegNet cannot be regarded as equivalent based on 
the same hypothesis. 

Fig. 5 shows examples of segmentation results using UNet in the test 
sets of Dataset1 and Dataset2. The worst-case in Dataset2 has a DSC of 
only 0.654. Besides this, all other cases had a DSC higher than 0.75. In 
this specific case, a vast enlargement of levator hiatus led to the loss of 
pubic symphysis, which made an incorrect contour placement of UNet. 
With deep learning approaches, the levator hiatus segmentation model 
takes an average of 2 s to process one case with a GPU and takes 2.4 s 
with a CPU. It can help reduce pelvic floor ultrasound scanning time 
compared with the manual outlining levator hiatus approach. 

4. Discussion 

In this study, we developed a deep learning-based method to auto-
matically segment the levator hiatus, which can help optimize the cur-
rent pelvic floor ultrasound scanning workflow by replacing the manual 
contouring operation with an automatic approach to save clinicians time 
and improve scanning efficiency. We implemented three deep learning- 
based levator hiatus segmentation algorithms and tested their perfor-
mances with two test datasets. The experimental results show that UNet 
outperforms the other two models by achieving mean DSCs of 0.964 
± 0.02 and 0.952 ± 0.03 in the two test sets. When using 0.2 cm for 
HDD and 5% for the relative error of the levator hiatus area as the 
acceptable difference, UNet can be regarded as acceptable compared 
with three senior sonographers. The results showed that this fully 
automatic levator hiatus segmentation algorithm has high accuracy and 
can assist clinical operation. UNet’s performance can also be regarded 
equivalent in the two different test sets with the same acceptable dif-
ference. This indicates that this deep learning approach has good 
robustness and generalizability. It is possible that the model can be 
adapted to different clinical situations. 

In prior studies, Bonmati et al. [15] trained a deep learning algorithm 
and achieved a DSC of 0.90 in leave-one-patient-out cross-validation in 
2018. The training and test sets were split from the same data source in 
this study. However, algorithm performance is usually affected by the 
device and operator for pelvic floor ultrasound. Further evaluation with 
an independent set is needed to demonstrate the algorithm’s robustness. 
In 2019, Van Den Noort F et al. [14] trained U-Net and further evaluated 
it with an independent test set that achieved a DSC of 0.93. This inde-
pendent test set was collected by another operator. Still, it used the same 
ultrasound device and settings, which resulted in many similarities be-
tween the training set and the independent test set. Compared with prior 
works, we created the test set from the same dataset as the training set 
and evaluated algorithm performance with test sets collected by 
different ultrasound devices and different operators to simulate different 
clinical scenes and assess further algorithm robustness. There are more 

Fig. 4. Algorithm performance in two test sets.  

Table 4 
P-value of equivalence test between two test sets.   

HDD (cm)a Relative error of area (%)b 

UNet-ResNet34  0  0 
HR-Net  1  0.502 
SegNet  0.809  0.187  

a H0: |metric difference|> = 0.2, H1: |metric difference|< 0.2. 
b H0: |metric difference|> = 0.05, H1: |metric difference|< 0.05. 
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considerable differences between the training set and the independent 
test set, and thus, a more solid experimental conclusion can be drawn. In 
2021, Williams et al. [26] proposed a method to measure levator hiatus 
area from 3D pelvic ultrasound images, including C-plane extraction and 
levator hiatus segmentation. Compared with an expert, the mean HDD 
was 11.26 ± 5.95 mm and the mean area absolute error was 2.66 
± 2.78 cm2. Williams’ study covered not only levator hiatus segmenta-
tion but also the previous step: C-plane extraction. However, the 
computer-observer differences were only evaluated with one clinician, 
leading to a highly operator-dependent. Compared to Williams’ study, 
we focused on levator hiatus segmentation and achieved higher per-
formance and more reliable results. 

This automatic segmentation tool can be applied to levator hiatus 
analysis in pelvic floor ultrasound scanning in clinical practice. This DL- 
based segmentation system has been installed into an experimental ul-
trasound device to optimize the practice workflow. With the automatic 
contouring function, there is no need to trace the margin of levator hi-
atus manually, which is time-consuming. In addition to being integrated 
into an ultrasound device, it can also serve as an offline post-processing 
workstation. It may also be generalized to different clinical sites and 
different ultrasound devices and help reduce inconsistencies between 
other operators. 

There are several limitations to this study. First, this is a single-site 
study, and both datasets were collected from the same hospital and 
lacked ethnic differences. In the future, a global multisite study can be 
conducted to add data diversity and further evaluate algorithm robust-
ness between different ethnicities. Second, current segmentation algo-
rithms are applied to 2D C-plane rendered ultrasound images, and a 3D 
segmentation approach can be explored in future research. Moreover, 
muscle analysis could also be further explored in addition to levator 
hiatus dimension analysis. 

In conclusion, we have developed and evaluated deep learning le-
vator hiatus segmentation algorithms with two independent test sets. 
The experimental results showed that one deep learning algorithm, 
UNet-ResNet34, has good performance and generalizability. This auto-
matic levator hiatus segmentation approach may be applied in clinical 

practice to help shorten examination time and improve consistency. 
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Fig. 5. Segmentation results of UNet-ResNet34 in the 0th, 25th, 50th, 75th and 100th DSC percentiles in the test set from Dataset1 and Dataset2. The green lines 
represent the ground truth contour; the red lines represent the algorithm segmentation contour. 
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