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A B S T R A C T   

Bioinformatics has been playing a crucial role in the scientific progress to fight against the pandemic of the 
coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS- 
CoV-2). The advances in novel algorithms, mega data technology, artificial intelligence and deep learning 
assisted the development of novel bioinformatics tools to analyze daily increasing SARS-CoV-2 data in the past 
years. These tools were applied in genomic analyses, evolutionary tracking, epidemiological analyses, protein 
structure interpretation, studies in virus-host interaction and clinical performance. To promote the in-silico 
analysis in the future, we conducted a review which summarized the databases, web services and software 
applied in SARS-CoV-2 research. Those digital resources applied in SARS-CoV-2 research may also potentially 
contribute to the research in other coronavirus and non-coronavirus viruses.   

1. Introduction 

To date, the severe acute respiratory syndrome coronavirus 2 (SARS- 
CoV-2) [1–4] has affected more than 8% population and caused over 6.8 
million deaths worldwide (covid.observer, a website displaying the 
COVID-19 world statistics based on the data collected by the Johns 
Hopkins University Center for Systems Science and Engineering). With 
the increased importance of bioinformatics in biological and medical 
research [5–9], in-silico analysis has contributed greatly to SARS-CoV-2 
research. As early as the first identification of SARS-CoV-2 in December 
2019 [1], relevant bioinformatics analyses were performed thoroughly 
by multiple approaches [10–14]. The genomic and three-dimensional 
protein information of SARS-CoV-2 were clarified by sequencing and 
structural experiments [15,16]. SARS-CoV-2, belonging to Coronavir-
idae, is an enveloped plus-strand RNA virus with a genome encoding 16 
non-structural, 4 structural and 9 accessory proteins [17,18]. Multiple 
sequencing technologies were applied extensively to determine the se-
quences of quickly evolving SARS-CoV-2 strains afterwards, resulting to 
an exponentially deposition of the SARS-CoV-2 genomic data. To 
properly store, assess and analyze the gigantic data, substantial bioin-
formatics tools were developed or updated. These relevant 

bioinformatics tools were applied in nearly all aspects of SARS-CoV-2 
research, including sequence/protein information annotation, evolu-
tionary/mutation analysis, epidemiological studies and therapy 
(drug/vaccine) development. With the purpose to provide a compre-
hensive perspective, we reviewed the recent progress in the bioinfor-
matics tools applied to investigate SARS-CoV-2 and summarized the 
features and links of those referred databases/tools in figures (Figs. 1, 2) 
and tables (Tables S1-S4) to facilitate usage of these tools for 
researchers. 

2. SARS-CoV-2 genetic sequence databases 

For the pandemic of SARS-CoV-2 worldwide, the sequencing of 
SARS-CoV-2 genomes was performed globally [19,20]. The sequenced 
SARS-CoV-2 whole genomes are mostly stored and published in the 
Global Initiative on Sharing Avian Influenza Data (GISAID) [21], which 
serves as a rapid virus information sharing platform responsible for 
pandemic situations. As a traditional data-sharing platform, the NCBI 
nucleotide database only stores a small ratio of all published 
SARS-CoV-2 genomes [10]. However, the transcriptomic and epi-
genomic data associated with SARS-CoV-2/COVID-19 are mostly stored 
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in the Gene Expression Omnibus (GEO) dataset and the Sequence Read 
Archive (SRA) of NCBI. 2019nCoVR publishes the SARS-CoV-2 genomes 
sequenced by China institutes and provides a list referring the 
SARS-CoV-2 genomes protected by copyrights [22,23]. This database 
has been upgraded to version 4.0 and renamed RCoV19. In the updated 
version, this database also displays newly identified infections and 
mutations. The sequencing data of SARS-CoV-2 provided by Chinese 
institutes are mostly stored in the China National GeneBank DataBase 
(CNGBdb) [24]. For a better search and retrieving the virus sequence, 
the Virus Data Integration Platform (VirusDIP) compiles viral sequence 
data from NCBI, GISAID and CNGBdb. Those databases are updated 
frequently for the fast increase of SARS-CoV-2 data [25]. 

To facilitate the management of the SARS-CoV-2 data, traditional 
viral databases or online genome browsers incorporated the SARS-CoV-2 
data into their analysis platforms. Several SARS-CoV-2 relevant inte-
grative databases were developed. The NCBI Datasets Project built a 
user-friendly page (www.ncbi.nlm.nih.gov/sars-cov-2) to retrieve the 
SARS-CoV-2 data, including the genomes, proteins, CDS sequences, 
annotation and relevant reports. As of August 1, 2023, the SARS-CoV-2 
resource page was redirected to the NCBI SARS-CoV-2 Virus Data Cen-
ter. NIH provides comprehensive COVID-19 open-access data and 
computational resources in datascience.nih.gov/covid-19-open-access- 
resources. The Ensembl COVID-19 browser provides the annotation in-
formation of the SARS-CoV-2 genome [26]. As another general genomics 

Fig. 1. The databases and tools applied in different aspects of SARS-CoV-2 research. The databases and the tools are differentiated by light purple rectangles and light 
green rectangles. The exemplary protein structure diagram is the SARS-CoV-2 spike glycoprotein (PDB ID, 6VXX). 
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database, the UCSC Genome Browser offers comprehensive sequence 
and annotation information and multi-use analysis tools relevant to 
SARS-CoV-2 [27–29]. A specialized page for SARS-CoV-2 was built in 
the traditional virology database, ViralZone [30], too. The Bacterial and 
Viral Bioinformatics Resource Center (BV-BRC) incorporated the 
SARS-CoV-2 into the online viral research platform [31]. In addition to 
providing sequence and literature resources, RCoV19, the UCSC 
Genome Browser, and BV-BRC also offer variant annotation and align-
ment features that can be used to track and identify emerging variants. 
The open-source project Nextstrain provides a personalized visualiza-
tion of the phylogenetic trees and detailed annotation of variants of 
concerns (VOCs), important for comprehending the evolution and 
transmission of SARS-CoV-2 [32]. Nextstrain is popularized by its 
user-friendly data-access tools in the evolutionary analysis of 
SARS-CoV-2. COVID-19 Data Portal integrates resources on viral se-
quences, host sequences, expression, proteins, biochemistry, imaging 
and literature [33]. The Coronavirus Database (CoVdb) collected pub-
lished coronavirus genomes and provides online tools for population 
genetics analysis and functional genomics analysis in a general 

coronavirus viewpoint [34]. 
The online tools provided by databases assisted the bioinformatics 

survey in SARS-CoV-2 research (Figs. 1, 2 and Supplemental Table S1). 
However, systematic or integrated in-silico SARS-CoV-2 research is 
mostly performed on local servers and relies on varieties of analysis 
software or bioinformatics tools (Supplemental Tables S2-S4). In terms 
of the research on SARS-CoV-2 genomics, HAVoC is a tool to assemble 
raw sequences and assign lineages [35]. The workflow ViralFlow is a 
recommended choice for Illumima pair-end sequencing data analysis 
and information processing [36]. The tool automates the 
reference-genome-based analysis pipeline, such as data processing, 
genome assembly, PANGO lineage assignment, mutation tracking, and 
intra-host variant screening. These features are also available in EDGE 
COVID-19 [37]. The resulted sequences and data can be sent to Gen-
Bank, GISAID, and INSDC. To generate high quality alignments, V-pipe 
provides a novel method, ngshmmalign, which is specialized for small 
and highly diversified genomes [38]. The tool supports quality control, 
read alignment, SNP identification and viral haplotype inference, too. 
COVID-Profiler provides both webserver and software to annotate 

Fig. 2. The features provided by different databases. A red circle denotes that the feature (the corresponding item in the column) is provided by the database (the 
corresponding item in the row). ‘DEGs’ denotes differentially expressed genes in the subfigure D. 
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mutations from raw sequencing data and perform phylogenetic analysis 
[39]. The SARS-CoV-2 RECoVERY [40] and poreCov [41] are tools to 
construct viral genomes from raw sequencing data. The former addi-
tionally supports the analysis of variants. HAPHPIPE allows to perform a 
genome-wide assembly of viral consensus sequences and haplotypes, 
enabling rapid analysis of viral sequences generated by next-generation 
sequencing (NGS) platforms and providing high-quality output for 
downstream evolutionary analyses [42]. VADR provides a suite of tools 
to classify and analyze virus sequences, including norovirus, dengue 
fever, and SARS-CoV-2 viruses [43]. 

For the annotation of SARS-CoV-2 genome sequences, CoV-Seq is an 
online tool providing online tools for the analysis and visualization of 
the SARS-CoV-2 genome [44]. The tool automatically predicts genetic 
boundaries and identifies genetic variants. The tools, MicroGMT [45], 
CorGAT [46], BioAider [47], Coronapp [48], AutoVEM2 [49] and 
VirusViz [50], all allow to perform variant identification analysis. Cor-
GAT focuses on variant function annotation, and AutoVEM2 addition-
ally monitors haplotype subpopulations and prevalence trends. An 
online tool CoV-Spectrum is built by compiling and analyzing 
SARS-CoV-2 data from substantial sources, and allows to visualize in-
formation on variants and search for amino acid and nucleotide muta-
tions [51]. COVID-Miner supports to identify information from genomic 
sequences and has a specific focus on the spike protein and the receptor 
binding domain [52]. The results are useful for vaccine design. Another 
online tool, the COVID-19 Viral Genome Analysis Pipeline, provides 
analysis tools that also focus on spike protein mutations [53]. For 
providing guidance of the vaccine design, CovDif is developed to detect 
the conserved region in the SARS-CoV-2 genome [54]. This tool also 
allows to identify conserved deletions due to point mutations. DeepIPs 
has a specialized deep learning architecture to find phosphorylation 
sites in host cells [55]. This tool assists the understanding of the mo-
lecular mechanisms of SARS-CoV-2 infection and change in host cell 
pathways. 

3. Application in the evolutionary tracking and epidemiological 
monitoring of SARS-CoV-2 genetic variants 

For epidemiological use, the technologies in big data, deep learning 
and artificial intelligence (AI) were applied to diagnose and monitor the 
epidemics of SARS-CoV-2 [56–58], enabling the reports of disease out-
breaks in real-time [59] (Figs. 1, 2B and Table S3). Dedicated to facili-
tate the access and visualization of pandemic data, nCov2019 displays 
the data of SARS-CoV-2 strains along with the collection country and 
relevant clinical information [60]. As an early AI platform, BlueDot 
(bluedot.global) enables to detect the epidemic outbreak and visualize 
the spread of virus in real-time. The SARS-CoV-2 Variations Evaluation 
and Prewarning System (VarEPS) provides the prediction of the risk and 
spread of mutant strains using AI-based algorithm [61]. Based on the 
data from GISAID [21], the Regeneron COVID-19 Dashboard displays 
the geographical distribution of variants, details of mutations and cor-
responding information of patients. The CoV Genome Tracker is dedi-
cated to tracking the Covid-19 epidemic with a haplotype network, a 
model that will be more accurate than phylogenetic tree [62]. For 
analyzing the effects of mutations, CoV-GLUE is a tool to annotate and 
analyze genome files with an emphasis on variations in amino acid se-
quences [63], while CovMT focuses on mutations in the RBD region of 
the virus [64]. SARS2Mutant allows to perform variant amino acid 
analysis based on numerous, high-quality SARS-CoV-2 protein se-
quences from GISAID [65]. ViruSurf [66] and International Database of 
SARS-CoV-2 Variations (IDbSV) [67] provide effective methods to 
search information regarding amino acid mutations and nucleotide 
variants. 

The evolutionary analysis based on epidemiological and clinical data 
to identify the mutation pattern of SARS-CoV-2 is important for the 
prevention and control of SARS-CoV-2. In terms of building phyloge-
netic trees, PAUP [68] is frequently used [69–71] and the applied 

methods include the maximum parsimony and the maximum likelihood. 
FastTree is an effective tool in building large phylogenies and estimating 
the reliability [72,73]. Similar to FastTree, IQ-TREE is a maximum 
likelihood tool that enables a rapid assessment of various replacement 
models and choosing the best model for input sequences [74]. Beast 
performs well in the following evolutionary analysis steps [75]. This 
software applies the principles of Bayesian evolutionary analysis to es-
timate the phylogenetic relationship and the divergence time, and uses 
strict or relaxed molecular clock models to estimate rooted, 
time-measured phylogenies. For a simultaneous estimation of epidemi-
ological parameters and pathogen phylogenies, the software PhyDyn, 
BEAST2 provides Bayesian phylogenetic inference using the models to 
deal with structured populations and complex population dynamics 
[76]. The Bayesian inference of phylogenies uses the Markov chain 
Monte Carlo (MCMC) and the results assist to understand the evolu-
tionary history. The package Tracer is used to visualize and analyze 
MCMC trace files generated by Bayesian inference, including features 
such as kernel density estimation, multivariate visualization, and de-
mographic trajectory reconstruction [77]. Another associated tool, 
Skygrowth, allows to use Bayesian and MCMC techniques to estimate 
phylodynamic inferences about effective population sizes for time-scale 
phylogenies [78]. The Susceptible-Exposed-Infectious-Removed model 
(SEIR) is wildly used in evolutionary analysis to predict the pandemic 
curve of SARS-CoV-2 [79]. 

The genetic subtypes of viruses are important for visualizing and 
analyzing geographical distribution. The Informative Subtype Markers 
(ISM) is a developed framework for the genetic subtyping of SARS-CoV- 
2 [80]. The result contains the regional differences in virus subtypes and 
the visualization of the subtypes that emerged at different times. The 
Genome Detective Coronavirus Typing Tool allows to identify the virus 
type, the genotype and the lineage of some nucleotide sequence [81]. 
Another tool, named Covidex, also allows to type the SARS-CoV-2 
genome sequence [82]. Due to the large number of viral genomes, it is 
challenging to identify and assign lineages to gigantic SARS-CoV-2 se-
quences. For this issue, the software Pangolin is developed to assign the 
most likely lineage to a genomic sequence based on Pango nomenclature 
[83]. This software supports online and command line modes. Another 
online tool, CoVizu graphically displays the global genomic and lineage 
diversity of SARS-CoV-2, including the phylogenetic trees and evolu-
tionary relationships between lineages [84]. Recombination may have a 
profound effect to the evolutionary process, and the detection of 
recombination events is essential to track and understand the evolu-
tionary trajectory of viruses [85,86]. Concerning this issue, PoSeiDon is 
developed to provide an easy-to-use Nextflow pipeline to accurately 
detect positive selection and recombination events at specific points in 
the protein coding region [87]. Moreover, ViruClust is a tool to compare 
the spatiotemporal lineages and genome sequences of SARS-CoV-2, and 
supports the comparison of two sets of genomes and the prediction of 
lineage prevalence [88]. The results assist to identify possible variations. 
CovidPhy is a tool to process the sequencing data or accept identification 
codes stored in GISAID or GenBank, classify the genome into major 
phylogenetic nodes and provide information on the global frequency of 
viral variants and branches [89]. The effective phylogenetic tree opti-
mization software matOptimize enables the optimization of the targeted 
SARS-CoV-2 phylogenies [90]. 

4. Protein structure interpretation 

Except for the genomic and protein sequence level, studies on the 
protein structure of SARS-CoV-2 contribute to the development of 
structure-based therapies and vaccines. The non-structural, structural 
and accessory proteins participate in host cell entry, genome replication 
and transcription, and viral assembly and release [91]. Until now, the 
crystal structures of nearly all SARS-CoV-2 proteins have been resolved 
and published, according to the statistics provided by PDB 
COVID-19/SARS-CoV-2 Resources [92]. Analysis of the structures of 

M. Tan et al.                                                                                                                                                                                                                                     



Computational and Structural Biotechnology Journal 21 (2023) 4697–4705

4701

SARS-CoV-2 proteins helps to reveal the conformation, function and 
mechanism [93–96]. The molecular structure and function of 
SARS-CoV-2 may determine the possible antiviral medication. The 
Protein Data Bank (PDB) published the experimentally-determined 3D 
structure of the virus, including nucleic acids, proteins and poly-
saccharides [92]. So did NIH 3D, which developed a dedicated page for 
SARS-CoV-2 [97]. Based on those resources, the database Covid-19. 
bioreproducibility.org provide a validated and curated dataset of coro-
navirus protein structures, including 2942 SARS-CoV-2 protein struc-
tures and 206 protein structures of other coronaviruses [98]. The 
Genome-wide Structure and Function Modeling of SARS-CoV-2 Virus 
(for details, see Table S1) contains 3D structural models generated by 
the D-I-TASSER/ C-I-TASSER pipeline [99] and functional annotations 
of SARS-CoV-2 proteins. Coronavirus3D provides the integrated infor-
mation of the protein 3D structures from PDB and the sequence mutation 
information from CNCB [100]. CoV3D provides a comprehensive data-
set of SARS-CoV-2 protein structures and related complexes, and has a 
focus on the glycosylation of the spike protein [101]. The SARS-CoV-2 
3D database combines the computationally predicted data and the 
experimentally validated data to enable the prediction of potential 
ligand binding and analysis of mutation sites [102]. The prediction 
method is based on the 3D structures and the prediction results is 
indicative for future relevant drug discovery. Moreover, understanding 
the relationship between 3D structure and dynamics is necessary to 
study how biological macromolecules work. SCoV2-MD produces sim-
ulations using a molecular dynamics method to investigate the 
structure-dynamics-function relationships of viral proteins [103]. Those 
structural databases/tools contribute to the structural analysis of 
SARS-CoV-2 proteins. Taking the investigation of a nonsynonymous 
mutation in some specific SARS-CoV-2 protein as an example, PDB, 
Covid-19.bioreproducibility.org or NIH 3D helps to retrieve the struc-
tural model of the protein. More information of the protein can be 
further retrieved from Coronavirus3D and CoV3D. Thereafter, we can 
predict the ligand binding and other effect influenced by the mutations 
through SARS-CoV-2 3D, as well as the dynamics of biological macro-
molecules using SCoV2-MD. Those initial analysis results may assist post 
analyses, such as protein-protein interaction through docking [104]. 

5. Virus-host interaction and pathway research 

For the interaction between the RBD in the spike protein and the host 
receptor (ACE2) is critical in the invasion of virus, both the Peptide 
Inhibition Covid 19 Repository [105] and the SARS-CoV-2 Interactome 
3D [106] visualize the interaction between RDB and ACE2, facilitating 
further exploration of this mechanism. Mutations present on the spike 
protein are likely relevant to viral adaptation and immune escape, Spi-
kePro enables a rapid prediction of the adaptation of some mutant based 
on the structural models [107]. VirHostNet contains a relatively com-
plete virus-host protein interaction resources that facilitates target 
determination and drug design [108]. Furthermore, DBCOVP is an 
important resource for experimental biologists engaged in coronavirus 
research studies and provides the complete repertoire, various 
sequence-structural properties and T-cell/B-cell epitopes of structural 
virulent glycoproteins from betacoronavirus [109]. 

As a traditional pathway database, the KEGG Pathway database 
displays the pathways associated with COVID-19 and coronavirus [110]. 
Another pathway database WikiPathways display the curated dataset 
concerning the molecular mechanisms of COVID-19 and the pathways 
related to SARS-CoV-2 [111]. Based on single-cell data, the database 
SCovid collected over 3000 significantly differentially expressed genes 
(DEGs) from ten human tissues [112]. SCovid can predict the essential 
genes and relevant potential therapeutics for different tissues. The pre-
diction applies the machine learning technology. Another database, 
SARSCOVIDB, provide the analysis of the molecular impact of viral 
Infection by utilizing all infection-associated DEGs identified by 
literature-mining [113]. PAGER-CoV is a platform to search pathways 

associated with infection, inflammatory response and tissue repair 
[114]. The pathway search method is based on identified DEGs. The 
exhibited result is inductive for the identification of relevant molecular 
biological mechanisms and therapeutic approaches. 

6. Clinical performance 

In terms of the diagnosis, continuous SARS-CoV-2 mutation increases 
the difficulty to perform real-time virus detection, possibly resulting in 
ineffective treatment. For this issue, the database CoV2ID was developed 
to enable an effective analysis of oligonucleotide sequences [115]. The 
analysis method takes the genetic diversity of virus into consideration. 
Another resource, CoVrimer, collects published primer sequences and 
allow to change parameters to design potential primer pairs [116]. In 
terms of transmission monitoring, the tool A2B-COVID estimates the 
likelihood of infection between specific individuals and thus estimate 
and predict possible transmission events, through integrating the viral 
genomic data and information in the location of infected individuals 
[117]. CalmBelt is another tool that allows to identify patterns of 
outbreak transmission, detect potential variants, visualize the correla-
tion of virulent strains, and track potential diagnostic escapes [118]. 
Transmission of the virus in different populations may vary in severity. 
Through automatic machine learning, an online platform COVI-
DOUTCOME is developed to estimate the disease severity based on 
sequence mutations and patient age [119]. In terms of clinical predic-
tion, the Dynamic Nomogram is used to predict the prognosis of cancer 
patients with SARS-CoV-2 infection [120]. The information techniques 
have helped to shorten the time cost of diagnosis, improve the accuracy 
of diagnosis [121–125] and predict the transmission chain [126]. The 
Integrative CT Images and CFs for COVID-19 (iCTCF) is an open resource 
of chest computed tomography (CT) images and clinical features (CFs) 
for COVID-19, which is developed by Huazhong University of Science 
and Technology [127]. By using CT slices and CF data, iCTCF could 
accurately predict COVID-19 based on a convolutional neural network 
(CNN) model via deep learning. 

The pandemic of SARS-CoV-2 used to make the development of drug 
and vaccine urgent. Molecular characterization and biological activity 
play a significant role in the study of drug discovery. Through assem-
bling drug information from multiple literature resources, the COVID19 
Drug Repository provides information on drug descriptions, side effects, 
publications, and pharmacological data [128]. Another database 
CORDITE provides detailed information on drug interactions, targets, 
clinical data, and publications [129]. A newly developed database, 
COVID-19Base, provides SARS-CoV-2 relevant information on disease, 
incorporating genes, miRNAs, drugs, side effects, and other factors 
[130]. iBioProVis allows to visualize the bioactive space of a compound 
and thus infer the potential target location of the compound of interest 
[131]. REDIAL-2020 is a package of tools to screen new compounds for 
anti-SRAS-CoV-2 activity by applying machine learning models [132]. 
Exploring the interaction between viruses and the human body also 
contributes the development of new drugs. Anh-Tien Ton et al. devel-
oped the Deep Docking (DD), a deep learning platform for 
structure-based virtual screening billions of molecular structures in a 
short time [133]. The COVID-19 Docking Server allows to predict the 
mode of binding of SARS-CoV-2 targets to ligands such as small mole-
cules, peptides and antibodies, thus providing credibility for subsequent 
drug discovery [134]. In May 2023, the tool was updated to version 2.0 
and renamed nCoVDock2, supporting more targets and adding a docking 
scoring feature [135]. The epitope prediction tool BepiPred-2.0 allows 
to predict the B-cell epitopes by selecting regions with high scores [136] 
and has been upgraded to version 3.0. Moreover, a series of bioinfor-
matics tools were applied for antigenicity, physicochemical properties 
and protein structure prediction of the chimeric vaccine candidate. 
CRESSP uses the structural properties of proteins to identify 
cross-reactive epitopes in the SARS-CoV-2 and human proteomes [137]. 
This information serves as a foundation for further research into the 
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function of molecular mimicry in the post-infection diseases. Deep 
learning is supported by EMoMiS for evaluation of antigen-antibody 
binding, which provides helpful information for vaccine formulation 
and improvement [138]. CoVex collects information on virus-human 
protein interactions, human protein-protein interactions and 
drug-target interactions and is feasible to comprehend the molecular 
mechanisms of pathogenesis and evaluate potential therapy alternatives 
by investigating the virus-host-drug interactions [139]. 

An in-depth understanding of the mechanisms of immune escape is 
essential for the development of effective drugs and vaccines. A web- 
based resource CoronaVIR integrates several modules, including geno-
mics, diagnosis, immunotherapy, drug designing, immunotherapy and 
drug design, and enables the screening of possible vaccine candidates 
and drug target information [140]. The Immune Epitope Database [141] 
allows to predict candidate targets for immune responses to SARS-CoV-2 
[142]. Another database, ESC, reports SRAS-COV-2 variants related to 
potential antibody escape, in order to keep up with the rapid discovery 
of immune escape mechanisms [143]. Vaccine design requires a thor-
ough understanding of the immunology systems and antibody data 
collection. The Oxford Protein Informatics Group developed 
CoV-AbDab, a collection of published or patented antibodies and 
nanobodies that bind to SARS-CoV-2 [144]. Monoclonal antibodies have 
both the capacity to divide continuously like the tumor cells and the 
capacity to produce antibodies like the immune cells. The Stanford 
Coronavirus Resistance Database (CoV-RDB) provides a neutralizing 
susceptibility data for SARS-CoV-2 mutations, SARS-CoV-2 monoclonal 
antibodies, recovery plasma and vaccine plasma variants [145]. This 
dataset helps to investigate the treatment of viral infection and the 
design of therapeutic regimens. Cov19VaxKB provides a web-based 
interface to search the information relevant to SARS-CoV-2/COVID-19 
on vaccines, clinical trials, publications and vaccine adverse events 
[146]. This database also allows the statistical analysis and target pre-
diction in vaccine design. COVIDep [147] and hCoronavirusesDB [148] 
enables the search for B cell and T cell epitopes for vaccine target 
development. COVIDep combines immunological data from 
SARS-CoV-2 and SRAS-CoV, while hCoronavirusesDB includes the 
sequence data as well as experimentally validated B cell and T cell 
epitope data. 

For the prevention of SARS-CoV-2, molecular docking and associated 
algorithms are applied in drug discovery and target prediction. Through 
integrating substantial transcriptomic profiles relevant to SARS-COV-2, 
COVID19db provides a dataset of the drug-target-pathway interactions 
associated with COVID-19 [149]. The platform additionally offers 
analysis tools and drug development resources for locating prospective 
therapeutic targets at a transcriptomic level. DockCoV2 is a molecular 
docking-based resource and provides experimental data, pathway de-
tails, and enrichment analysis results [150]. This database also enables 
the prediction of the binding affinity of medications to proteins linked to 
stinger protein initiation, variant proteins, and human proteins. Another 
database, D3Targets-2019-nCoV, not only enables the prediction of drug 
targets from the drugs with experimental or clinical supports, but also 
enables virtual screening based on the structure of proteins to identify 
target compounds for potential drugs [151]. These should contribute to 
the advance in virology research and drug development. Based on 
well-established chemical genomics methods and analytical algorithms, 
Virus-CKB provides blood-brain barrier (BBB) prediction, docking to 
viral targets, and fingerprint-based similarity search [152]. These 
database utilities assist pharmacological research in potential thera-
peutic repurposing, drug combination, and drug-drug interaction (DDI) 
prediction. 

7. Conclusion 

Covering from genomic analysis to clinical performance, bioinfor-
matics played an important role in SARS-CoV-2 research, although most 
part of the contribution is predictive and instructive. The validation of 

biological functions and clinical application predicted by bioinformatics 
approaches still need extensive experiments. Biological and medical 
experiments, as well as the sequencing, in turn would generate more 
data, which may induce new bioinformatics analyses and the creation of 
new bioinformatics tools based on the generated data. The digitalization 
of SARS-CoV-2 and the data mining based on the mega data, which has 
been performed outstandingly, is owing to the development of algorithm 
and informatics science in this digital age and this post-genomic era. The 
analysis of the gigantic biological data supports different aspects of 
SARS-CoV-2 research, and the establishment of a comprehensive data 
storage and analysis system is bound to the computational advances in 
the past three years. Hopefully, the databases, web service and stand-
alone tools summarized in this review (Figs. 1, 2 and Tables S1-S4) will 
contribute to future studies of SARS-CoV-2 in theoretical aspects and 
clinical uses, moreover to research of general virology. Finally, we hope 
that this review would make it easier for researchers with different 
backgrounds to locate bioinformatics tools that are appropriate for the 
purpose of their research. 
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