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ABSTRACT Although animals encounter a plethora of bacterial species throughout
their lives, only a subset colonize vertebrate digestive tracts, and these bacteria can
profoundly influence the health and development of their animal hosts. However,
our understanding of how bacteria initiate symbioses with animal hosts remains un-
derexplored, and this process is central to the assembly and function of gut bacte-
rial communities. Therefore, we used experimental evolution to study a free-living
bacterium as it adapts to a novel vertebrate host by serially passaging replicate pop-
ulations of Shewanella oneidensis through the intestines of larval zebrafish (Danio re-
rio). After approximately 200 bacterial generations, isolates from evolved populations
improved their ability to colonize larval zebrafish during competition against their
unpassaged ancestor. Genome sequencing revealed unique sets of mutations in the
two evolved isolates exhibiting the highest mean competitive fitness. One isolate ex-
hibited increased swimming motility and decreased biofilm formation compared to
the ancestor, and we identified a missense mutation in the mannose-sensitive hem-
agglutinin pilus operon that is sufficient to increase fitness and reproduce these
phenotypes. The second isolate exhibited enhanced swimming motility but un-
changed biofilm formation, and here the genetic basis for adaptation is less clear.
These parallel enhancements in motility and fitness resemble the behavior of a
closely related Shewanella strain previously isolated from larval zebrafish and sug-
gest phenotypic convergence with this isolate. Our results demonstrate that adapta-
tion to the zebrafish gut is complex, with multiple evolutionary pathways capable of
improving colonization, but that motility plays an important role during the onset of
host association.
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acterial lineages have radiated into practically every imaginable niche on Earth (1, LTI A0
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2). In particular, the vertebrate digestive tract houses bacterial communities whose Published 18 August 2020
composition is distinct from those found in surrounding environments (3, 4), and this
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suggests that host-associated bacteria maintain certain traits that enable them to
colonize animal hosts. In order to establish and maintain host-association, bacteria
must surmount a multitude of complex challenges, including traversing diverse phys-
ical landscapes, harvesting energy from dynamic nutrient sources, and protecting
themselves from antimicrobial compounds. Thus, the number of traits involved in
host-association is likely enormous (5, 6). Despite this complexity, previous analyses
indicate that novel host-microbe symbioses have arisen multiple times throughout
evolutionary history (7). However, it is unknown which suites of traits enable bacteria
to transition to host association or how likely they are to evolve.

It is well established that bacteria residing in vertebrate digestive tracts have
substantial impacts on the health and development of their animal hosts (8-11).
Consequently, many researchers have sought to understand which traits provide
bacteria the capacity to colonize the vertebrate gut (12-17), but this body of work has
relied almost exclusively on snapshots of host-microbe relationships after they have
evolved. Because information may be lost over the course of evolution, it is difficult to
infer traits that facilitate transitions to host association by limiting examinations solely
to strains that have already made such a transition (18).

To better understand how bacteria initiate host associations, we took an experi-
mental evolution approach involving the serial passage of a free-living bacterial strain
through the digestive tracts of a model vertebrate. When combined with genomic
sequencing of evolving lineages, this strategy enables the observation of evolutionary
changes in genotype at fine temporal scales (19). Phenotypic and fitness assays can
then be performed, and this information can be synthesized to understand which sets
of traits facilitate adaptation, how these traits interact to improve fitness, and in what
order these traits are likely to evolve (20-23).

Many insights have been gained from employing this type of approach in vitro, and
experimental evolution practitioners have begun expanding into in vivo environments
to investigate evolutionary dynamics within hosts (24-28). A recent example of this was
conducted by Robinson et al., who experimentally adapted an Aeromonas strain
previously isolated from zebrafish (Danio rerio) to germfree (GF) larval zebrafish to
explore how this bacterium might increase its association with its vertebrate host (29).
These researchers found that evolved Aeromonas isolates achieved higher relative
abundances in the digestive tracts of larvae during competition against their ancestral
strain. Further, these increases in relative fitness appeared to be explained by aug-
mented motility of evolved isolates, leading to higher rates of colonization.

For their study, Robinson et al. used a bacterial symbiont that had been isolated
from a zebrafish gut, and thus it is not known how this Aeromonas species’ relationship
with zebrafish originated or which traits may have been involved in the initiation of this
process. Therefore, while this previous work investigated how established bacterial
symbionts can improve their ability to colonize the host, we sought to understand how
a bacterium might initiate a novel host-microbe symbiosis. We accomplished this by
serially passaging a bacterial species with no documented history of an association with
a metazoan host, Shewanella oneidensis MR-1, through the digestive tracts of a model
vertebrate, zebrafish (Fig. 1). We chose this Shewanella strain because it is one of the
best-studied bacterial strains isolated from a non-host environment, it is genetically
tractable (30), and it is closely related to a Shewanella strain known to colonize larval
zebrafish. We predicted these attributes would maximize our ability to map evolved
phenotypes to genotypes.

After 20 passages, we observed that evolved isolates from five of the six replicate
lines demonstrated a significantly improved ability to colonize larvae compared to their
unpassaged ancestor. We then characterized the two evolved isolates with the highest
average relative fitness and discovered that each isolate had accumulated a distinct set
of mutations. Interestingly, despite these different mutation profiles, both isolates
evolved augmented swimming motility relative to the ancestral reference strain, dem-
onstrating phenotypic parallelism in the adaptive trajectories of these two indepen-
dently evolved isolates. Our findings show that bacteria can rapidly evolve novel host
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FIG 1 Serial passage schematic. GF larvae were incubated with MR-1 populations for 72 h, and then 10
larval guts were dissected and homogenized. A sample of the homogenate was used to inoculate a
subsequent set of GF larvae. This cycle was repeated for 20 passages. The dotted arrow indicates that no
additional S. oneidensis ancestor was added to the experimental system after the first passage.

associations and suggest that swimming motility is advantageous for colonizing
aquatic hosts.

RESULTS

MR-1 colonizes zebrafish at lower densities than a closely related Shewanella
zebrafish isolate. Gut-associated bacteria are routinely isolated from their animal
hosts. Although MR-1 has never been found within a host gut, other strains belonging
to the Shewanella genus are common in the larval zebrafish microbiota (31). Indeed
MR-1 shares a recent common ancestry with a Shewanella species that was isolated
from the zebrafish gut (Fig. 2; Shewanella ZOR0012 [referred to here as Shew-Z12]).
Interestingly, a whole-genome comparison revealed that MR-1 shares an average
nucleotide identity (ANI) of approximately 89% with Shew-Z12, compared to 72% with
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FIG 2 Relatedness of MR-1 to other Shewanella species. A phylogenetic tree, based on 16S gene sequences (Table S2), shows the

relationship between multiple different Shewanella species.
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FIG 3 Fitness comparison between MR-1 and Shew-Z12. (A) Colonization density achieved in larval guts
after 72 h of colonization under monoassociation conditions for indicated strains. Dissected guts were
plated on TSA and CFU were counted. Each point represents a single dissected gut. (B) Competitive
ability of unpassaged fluorescently tagged MR-1 strain competed against an untagged version of itself
(MR-1wt; left column) or an untagged Shew-Z12 (right column). Each point represents the competitive
index measured for a single larval gut (see Materials and Methods for details on how competitive indices
were calculated).

the more distantly related Shewanella woodyi (Fig. 2). The high degree of overlap
between MR-1 and Shew-Z12 was further reflected when we compared the protein
sequence alignments of Shew-Z12 or S. woodyi against our MR-1 reference genome
(see Fig. S1 in the supplemental material). Relative to S. woodyi, MR-1 displays much
higher levels of amino acid sequence identity with Shew-Z12 on a per-gene basis,
implying greater amounts of functional conservation between MR-1 and Shew-Z12 (see
Fig. S1).

Given the close phylogenetic relationship between MR-1 and Shew-Z12, we wanted
to determine whether MR-1 and Shew-Z12 would have similar larval gut colonization
characteristics. To assess this, we compared the ability of each strain to colonize GF
larval zebrafish guts under both monoassociation and competitive conditions. In both
scenarios, flasks containing 10 to 15 GF larval zebrafish were inoculated with bacterial
densities of ~103 CFU/ml. Gut colonization was assessed by dissecting and plating
larval digestive tracts after 72 h of exposure. In monoassociation MR-1 colonized GF
larvae at ~10-fold lower densities than Shew-Z12 (Fig. 3A). To assess the competitive
fitness of these strains, we competed a strain of MR-1 tagged with a neutral fluorescent
marker against Shew-Z12 at a one-to-one ratio and quantified relative fitness using a
competitive index. The competitive index was calculated by dividing the ratio of each
competitor observed in dissected guts by the ratio of each competitor in the inoculum.
We found that MR-1 significantly underperformed the Shew-Z12 isolate and that this
difference was greater than could be explained by the difference in abundances in
monoassociation (Fig. 3B). Given that MR-1 was neither able to colonize larvae to the
same capacity as Shew-Z12 in monoassociation, nor able to compete effectively with
this closely related host isolate, we concluded that MR-1 has the potential to improve
this host association. We speculated that, given its recent divergence from Shew-Z12,
adapting MR-1 to the host from which Shew-Z12 was isolated could provide some
insight into the adaptive pathways available to bacteria as they transition to life as a
host-associated symbiont.

Serial passage increased fitness in the gut. To understand how MR-1 would adapt
to a vertebrate host gut, we serially passaged six replicate populations through the
digestive tracts of GF larval zebrafish (Fig. TA). At the start of the experiment, each
population was composed of two fluorescently marked MR-1 isolates (dTomato, MR-
1dT; gfp, MR-1gfp) so that passaged populations could be distinguished from the
unpassaged ancestor, and adaptive events could be inferred from changes in each tag’s
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FIG 4 Competitive fitness of evolved S. oneidensis isolates. (A) Competitive ability of MR-1 isolates from each
replicate evolved population against the ancestral MR-1 reference strain. An ancestral competition between tagged
and untagged ancestors (leftmost box) is shown as a control to show the neutrality of the fluorescent tags, and
these data are identical to the leftmost box in Fig. 3B. A linear model was used to compare each group against the
ancestral control (¥, P < 0.05; **, P < 0.01; ***, P < 0.001). Each point represents the competitive index measured
for a single larval gut culled from at least three replicate flasks (n = 89 guts for ancestor versus ancestor, 25 guts
for Shew-Z12 versus ancestor, and 30 guts for all other groups.). The grid at the bottom indicates whether each
evolved isolate contained a mutation in the msh operon. (Top row) A “+" indicates the presence of a msh operon
mutation, and a “-" indicates the absence of a msh operon mutation. The bottom row indicates which gene msh
operon mutations could be found within. (B) Competitive ability of each replicate evolved MR-1 population
competing against the ancestral MR-1 reference strain in TSB. Each point represents the competitive index
measured for a single biological replicate.

frequency within the evolving populations (see Fig. S2). After 20 passages, we assayed
the fitness of a single, randomly selected isolate per evolved population by competing
each isolate against its unpassaged ancestor. Each competition was performed as
described above for the MR-1 versus Shew-Z12 competitions. Of the isolates we tested,
five of the six outcompeted the ancestral strain, exhibiting competitive indices that
were significantly different from the ancestral control group (Fig. 4A). These improve-
ments were not likely due to adaptation to the general lab environment, because
competitions between replicate evolved populations and the MR-1 ancestor in rich
media (tryptic soy broth) produced competitive indices not significantly different from
1.0 (Fig. 4B).

Comparative genomics revealed multiple candidate adaptive mutations. To
investigate the genetic determinants of the adaptation, we sequenced the genomes of
each passage 20 evolved isolate. The reads from each isolate were aligned to the
ancestral reference genome to identify mutations that have accumulated during serial
passage. This analysis revealed numerous mutations per genome (see Table S1 in the
supplemental material), which made it difficult to distinguish adaptive mutations from
nonadaptive mutations. For example, mutations with neutral or even slightly deleteri-
ous impacts on fitness could have increased in frequency simply through their linkage
with another, more beneficial mutation.

Therefore, to infer adaptive mutations, we focused on mutations that had accumu-
lated in similar genomic regions across several of our evolved isolates, as such events
would be unlikely to occur by chance. In five of the six evolved isolates, we observed
mutations in the mannose-sensitive hemagglutinin pilus operon (the operon contain-
ing mshH to mshQ [mshH-QJ; Fig. 4A; see also Table S1, yellow shaded) suggesting that
the Msh pilus encoded by this operon likely influences larval gut colonization. These
mutations were located in the mshG (L1 and L4), mshL (L2 and L3), and mshE (L6) genes
(Fig. 4A; see also Table S1), which encode integral membrane platform, secretin, and
ATPase proteins, respectively (32). Interestingly, the Msh pilus has been shown to play
arole in a number of other host-microbe systems. For instance, within the Vibrio genus,
Msh pili have been suggested to be important for adherence to human intestinal cells
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FIG 5 MshOP amino acid conservation between MR-1 and Shew-Z12. The bar across the top shows the MshH-Q
amino acid conservation between MR-1 and Shew-Z12. A schematic depicting the organization of the mshH-Q
operon is shown below. Per site, blue indicates the same amino acid is present in both species, while yellow
indicates mismatches. Aligned sequences are shown for genes in which we observed mutations in our evolved
isolates. In each row of the displayed sequences, MR-1 is featured on top and Shew-Z12 is featured on the bottom.
MshQ did not accumulate mutations in our experiment, but it is shown to illustrate that much of the divergence
in this protein resulted from a difference in length between MR-1 and Shew-Z12. The color coding in each
sequence alignment indicates the degree of conservation. Amino acids with similar biochemistry are bluer, while
those with divergent biochemistry are more yellow. A scale bar above the figure indicates a length of 500 amino
acids.

(33), as well as colonization of the digestive tract of Caenorhabditis elegans (34), and the
light organ of Euprymna tasmanica (35). In addition, in both Vibrio and Pseudomonas
systems, evidence suggests this pilus can interact with components of the mammalian
immune system (12, 36). These observations strengthen the hypothesis that MR-1's Msh
pilus was a target of selection in our study.

Notably, the L1 isolate contained a mutation in the mshG gene (similar to L4) but did
not have a significant colonization advantage over the ancestor (see Table S1). If the
other two mutations in L1 were deleterious and recently acquired, it could reconcile
L1’s nonadaptive performance with its presence in its population after 20 passages.
Alternatively, if the specific mshG mutation observed in L1 and L4 is not advantageous,
the difference in relative fitness exhibited by these two isolates might be explained by
the additional mutations that are unique to each isolate. More detailed evolutionary
genomic analyses that clarify the chronology of accumulated mutations in our evolved
isolates could help to establish the basis for L1’s apparent lack of adaptation.

To assess whether the msh operon mutations, we observed provided evidence that
MR-1 was on a similar adaptive trajectory to one potentially taken by Shew-Z12, we
compared the proteins encoded by the msh operon (mshH-Q) of our reference MR-1
strain to that of Shew-Z12. If evolved MR-1 isolates were on a convergent adaptive
trajectory with Shew-Z12, we expected that the mutations found in our evolved isolates
would result in amino acid residues similar in identity or biochemistry to those found
in Shew-Z12. However, based on our msh operon protein alignment we did not find any
evidence that differences between the MR-1 and Shew-Z12 were ameliorated by
evolved mutations. Our alignment did reveal several regions with elevated divergence
between ancestral MR-1 and Shew-Z12 (Fig. 5). In particular, Shew-Z12's MshQ protein
appeared to be noticeably larger than MR-1's MshQ protein. The fact that there were
substantial regions of divergence between the MshH-Q amino acid sequences of MR-1
and Shew-Z12 left open the possibility that the adaptive changes we observed might
amount to evolutionary convergence at the functional or regulatory level. Determining
this definitively would require more mechanistic and expression-focused approaches,
respectively.
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FIG 6 Crystal violet biofilm assay comparing L3, L5, and Shewanella sp. strain ZOR0012 to the ancestor.
The optical density (570 nm) corresponds to the crystal violet intensity. Higher optical density readings
indicate more robust biofilms. Statistical groupings are indicated by letters above each bar for a
significance threshold of P < 0.05. Letters in common between groups indicate the absence of a
significant difference in each group’s mean. Only the L3 isolate shows a significantly altered biofilm
phenotype compared to the wild-type ancestor.

The L5 isolate, which exhibited the highest mean fitness of the isolates we tested,
contained an entirely unique set of mutations that were not observed in any other
evolved isolates. This raises the potential that the L5 isolate may be on a divergent
adaptive trajectory, evolving unique phenotypes associated with the exploitation of a
distinct niche. Alternatively, it is also possible that L5 may be on a parallel phenotypic
evolutionary trajectory, evolving phenotypes similar to those of the other evolved
isolates, although via a different set of mutations. To distinguish between these
hypotheses, we examined the phenotypes of aggregation behavior and motility in
isolate L5 and in isolate L3, the Msh-mutant-containing isolate with the highest mean
fitness (Fig. 4).

Several recent studies have demonstrated that aggregation and motility behaviors
can have deterministic impacts on the spatial distribution and competitive dynamics of
bacteria within the larval zebrafish gut (37-39), and aggregative behaviors are thought
to be a crucial step during successful infection by several human pathogens (33, 40, 41).
In addition, shifts in motility could impact the rate with which our evolved isolates
encounter larval hosts or navigate to their optimal habitat within the gut (14). There-
fore, changes in either of these phenotypes could alter how evolved isolates compete
with the ancestral MR-1 strain, and differences in these phenotypes between the L3 and
L5 isolates could suggest they have adapted to separate niches within our host system.

L3 and L5 isolates exhibit different biofilm phenotypes. We compared the
capacity of each isolate to form biofilms using static polystyrene plate-based biofilm
assays in larva conditioned medium (LCM). This medium was collected from flasks of GF
larval zebrafish at 4 days postfertilization (dpf)—the time when we inoculate larvae
during competition assays—and it should provide a similar nutrient profile to that
experienced by MR-1 during our evolution experiment. We found that L5’s biofilm
phenotype was comparable to that of the ancestor, while L3 had a reduced biofilm
phenotype (Fig. 6). We also assessed how the biofilm phenotypes of the L3 and L5
isolates compared to that of Shew-Z12 and found that Shew-Z12 had a mean biofilm
phenotype that was intermediate between L3 and L5, although not significantly
different from the MR-1 ancestral strain (Fig. 6). Given that L3, L5, and Shew-Z12 are all
capable of outcompeting the MR-1 ancestor in their ability to colonize GF larval
zebrafish guts, and yet these strains display a range of biofilm phenotypes under the
conditions tested, we conclude that our biofilm assay is not capable of predicting
competitive fitness in vivo. However, our results demonstrate that the unique muta-
tional profiles of the L3 and L5 isolates result in distinct aggregative behaviors.
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L3 and L5 are more motile than the ancestor. Since Robinson et al. previously
demonstrated that serially passaged Aeromonas populations, which were more motile
than an unpassaged ancestor, were able to better colonize GF larval zebrafish (29), we
hypothesized that MR-1 could similarly improve host colonization in our study via
enhanced motility. A common assumption in microbiology is that there is a trade-off
between adherence and motility (42-45), wherein cells that tend to be more adherent
also tend to be less motile and vice versa. Given the difference we observed between
the ability of L3 and L5 to adhere to surfaces, we wondered whether these strains might
also exhibit a difference in motility.

We quantified the cellular swimming speeds and motile population fractions of
these strains within flasks of GF larvae, by analyzing fluorescence microscopy images
with an automated cell tracking algorithm. These assays were conducted in competi-
tion (evolved isolate versus ancestor) to mimic the conditions under which we assessed
fitness. Thus, if differences in motility were dependent on the competitive dynamics
between the evolved isolates and their ancestor, we would capture that in these assays.
Surprisingly, despite their differing biofilm phenotypes, we found that both the L3 and
L5 isolates were more motile than the ancestor. The evolved strains demonstrated both
faster speeds (Fig. 7A and B), and they had a larger portion of their population that was
motile (Fig. 7C). These results confirm that motility can be important for larval zebrafish
colonization.

We next compared the motility phenotypes of our MR-1 ancestor and evolved
isolates to the zebrafish isolate. Our hypothesis was that Shew-Z12 would also exhibit
greater motility than the MR-1 ancestor. We examined Shew-Z12 motility as described
above, with the exception that Shew-Z12 and our ancestral MR-1 strains were assayed
in monoassociation. Attempts to fluorescently tag Shew-Z12 were unsuccessful, leaving
no way to distinguish this species via fluorescence microscopy, and thus we collected
data for these assays in bright field. We found that Shew-Z12 too exhibited faster
swimming speeds and a greater motile fraction of the populations compared to the
MR-1 ancestor (Fig. 7). This supports the hypothesis that in our study MR-1 evolved
along an adaptive trajectory that is phenotypically convergent with Shew-Z12.

The MshL missense mutation is sufficient to explain evolved phenotypes.
Intriguingly, in a prior study Jones et al. used soft agar motility assays to demonstrate
that V. cholerae mshA deletion mutants, which lack the major pilin subunit of the Msh
pilus, exhibited larger migration zones compared to wild-type V. cholerae (46). Given
the increased motility observed in our evolved isolates and the prevalence of msh
operon mutations in our sequencing data, we tested whether the missense mutation
we found in the L3 isolate (MshL-T300P) was sufficient to recapitulate its evolved
phenotypes. We constructed this mutation in the ancestral MR-1 genomic background
and assessed the competitive fitness, biofilm-forming capacity, and motility pheno-
types of the resulting mutant. For all three phenotypes, the MshL-T300P mutant
performed similarly to the L3 isolate which contained this mutation (Fig. 8), demon-
strating the sufficiency of this mutation to generate the evolved phenotypes. As before,
we conducted our motility assays under competitive conditions, using a fluorescently
labeled version of the MshL-T300P mutant, to mimic the conditions we used to assess
the L3 isolate’s motility. In addition, to assess whether the MshL-T300P mutation was
the primary driver of increased fitness in the L3 isolate, we competed the L3 isolate
against the MshL-T300P mutant. We hypothesized that if the MshL-T300P mutation
imparted an increase in fitness that was comparable to the L3 isolate, competing them
should result in a dramatic reduction in the L3 isolate’s competitive index. This is
precisely what we observed (Fig. 8A, rightmost column), implying that the MshL-T300P
mutation was the primary driver of adaptation in the L3 isolate. Importantly, the fact
that the competitive indices measured for the latter competition were all greater than
1 (>0 after log transformation), could indicate the presence of additional adaptive
mutations in the L3 isolate.
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FIG 7 Motility characteristics of evolved and zebrafish isolates compared to ancestor. (A) Histograms comparing the swim speeds of L3,
L5, and Shew-Z12 with the ancestral MR-1 strain are shown based on aggregated observations from three flasks per comparison. (B) Mean
swim speeds of L3, L5, and Shew-Z12 relative to the ancestor. For each flask, represented by a point, the mean mutant swim speed was
divided by the mean ancestral swim speed. One-tailed t tests against a w value of 1 (our null expectation) were conducted to assess
whether each group exhibited swim speeds that were significantly faster than the ancestor (*, P < 0.05; **, P < 0.01). (C) Fractions of L3,
L5, Shew-Z12, and ancestral MR-1 populations that were observed to be motile (swimming speeds > 2 um/s). Each point represents the
motile fraction for a single flask, and each bar represents data from three separate flasks. For each panel, the L3 and L5 comparisons were
performed under competition, while the Shew-Z12 comparison was performed under monoassociation conditions. Error bars indicate the

95% confidence interval.

DISCUSSION

We serially passaged replicate bacterial populations through the intestines of GF
larval zebrafish to explore how a non-host-associated bacterium adapts to a novel
vertebrate host. We expected that there would be an abundance of niche space
available to evolving MR-1 populations. For example, cells capable of colonizing larval
guts must compete externally in the aqueous environment in order to access the larvae,
and then compete in vivo so they will be sampled and carried over in subsequent
passages. Both environments likely contain unique sets of selective pressures. On one
hand, we hypothesized that this might select for divergent adaptive trajectories
resulting in unique genotypes, and associated phenotypes, that would allow for the
exploitation of distinct niches. Alternatively, if selection resulted in adaptation to a
single niche within our system, we expected that specialists for that niche would exhibit
high relative fitness, leading to phenotypic parallelism among adaptive lineages. Such
parallelism could indicate that only a small number of traits are likely to facilitate the
initiation of host associations. Moreover, because traits that are common among
independent adaptive genotypes have an increased likelihood of playing a causal role
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FIG 8 Effects of MshL-T300P on competitive fitness, biofilm formation, and motility. (A) Competitive
ability of the MshL-T300P mutant against the ancestral MR-1 reference strain (middle box) and the L3
isolate (right most box). The ancestral control competition (tagged ancestor versus untagged ancestor)
is shown in the leftmost box, and these data repeated from Fig. 3B and 4A. A one-tailed t test was
conducted to determine statistical relationships between group means (***, P < 0.001). Each point
represents the competitive index measured for a single larval gut culled from at least three replicate
flasks (n = 89 guts for ancestor versus ancestor, 30 guts for MshL-T300P versus ancestor, and 20 guts for
MshL-T300P versus L3). (B) The optical density (570 nm) corresponds to crystal violet intensity. Higher
optical density readings indicate more robust biofilms. A one-tailed t test was conducted to determine
statistical relationships between group means (***, P < 0.001). (C) Histograms comparing the swim
speeds of the MshL-T300P mutant with the ancestral MR-1 strain are shown based on aggregated
observations from four flasks per comparison. MshL-T300P swim speed, 8.2 = 1.2 wm/s; ancestor swim
speed, 5.6 = 0.5 um/s (means * the standard deviations). (D) Fractions of MshL-T300P and ancestral
MR-1 populations that were observed to be motile (swimming speeds > 2 um/s). Each point represents
the motile fraction for a single flask, and each bar represents data from four separate flasks. A one-tailed
t test was conducted to determine statistical relationship between group means (**, P < 0.01). For panels
B and D, the error bars indicate the 95% confidence interval.

in enhancing fitness, such parallelism could provide evidence that phenotypes are
adaptive. To address these hypotheses, we examined the mutations and phenotypes of
two evolved isolates with the highest mean fitness in our experimental system: isolates
from the L3 and L5 populations.
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Interestingly, the improved competitive fitness we observed in the L3 and L5 isolates
was associated with unique genotypes (see Table S1), and this suggested that each
isolate found idiosyncratic strategies for adaptation. L3 contained a missense mutation
in the mshL gene, and mutations in the msh operon were observed in five of six of the
evolved isolates we sequenced (Fig. 4A, lower grid; see also Table S1). Further, we
demonstrated the MshL-T300P mutation found in the L3 isolate was sufficient to
significantly improve larval colonization, which supports the conclusion that the msh
operon mutations we observed were likely adaptive. The Msh pilus has also been
implicated in several other host-microbe systems (12, 33-36), and therefore focusing on
the products encoded by this operon may yield fruitful avenues for researchers
interested in manipulating host-microbe interactions.

Less clear is which mutations in the L5 isolate’s genome are adaptive. The mutations
we identified fell within genes that were annotated as a sensor histidine kinase, a
lipoprotein, a diguanylate cyclase, and a hypothetical protein (see Table S1). These
mutations could affect a broad range of cellular and physiological processes. Intrigu-
ingly, several studies have shown that diguanylate cyclase expression can affect biofilm
and motility behaviors in Gram-negative bacteria (46-50); however, without further
investigation it is difficult to predict which mutations observed in the L5 isolate actually
play an adaptive role in MR-1’s ability to colonize larvae. We plan to disentangle the
effect of these mutations in future work.

Regarding the biofilm phenotypes we assessed, the L3 isolate displayed a reduced
ability to form biofilms, while neither the L5 isolate nor Shew-Z12 exhibited biofilms
that differed significantly from the MR-1 ancestor phenotype. Although this suggests
biofilm formation does not correlate with competitive fitness, the cell densities required
to generate detectable biofilms in these assays are orders of magnitude higher than
would be experienced by MR-1 in a larval flask. Therefore, it is possible the aggregative
behaviors we observed are not representative of the behaviors MR-1 isolates would
manifest when competing to colonize the larval gut. Nonetheless, the ability to form
robust biofilms could pose several advantages with respect to host colonization.
Bacteria are known to form intimate associations with host epithelial tissues, and the
ability to form biofilms can be critical to successful host colonization and host speci-
ficity (51, 52). In addition, bacterial aggregates can shield internal members from harsh
environmental conditions until more favorable conditions are encountered within a
host, wherein large numbers of cells can detach and colonize (53). Similarly, upon
colonization of a host, biofilms can also protect bacterial members from harmful host
defenses (54). Given these potential advantages, it makes sense that the evolved isolate
with the highest mean fitness, L5, would maintain a robust ability to form biofilms.

Conversely, we demonstrated that the L3 isolate’s reduced biofilm phenotype could
be explained by the MshL-T300P mutation. MshL encodes a putative outer membrane
pore protein through which the Msh pilus extends (32, 46, 55, 56). Consistent with what
others have found for the Msh pilus, if the MshL-T300P mutation was a loss of function
mutation, it could reduce MR-1's Msh pilus expression—and its ability to form bio-
films—resulting in a more planktonic existence (46, 57-59). In turn, this could increase
L3’s encounter rate with zebrafish larvae that are swimming through the aqueous
environment. In this way, the L3 isolate would have a competitive advantage over
ancestral cells that were adherent to flask surfaces and were therefore less able to
access larval hosts. We found some support for this mode of adaptation in that evolved
isolates L2-L6 appear to outcompete the ancestor in the aqueous environment outside
the larvae during our competitive fitness assays (Fig. S3). However, the CFU counts used
in these assessments occurred under conditions that permitted population exchanges
between larval guts and the external environment. If evolved MR-1 strains had a distinct
in vivo advantage, efflux from the larval digestive tract could inflate external counts,
making it difficult to disentangle the influence of each portion of the experimental
environment on competitive fitness. We plan to dissect the impacts of different features
of our system on the fitness of evolved isolates in a future work. Alternatively, reduced
expression of the Msh pilus could potentially help the L3 isolate evade elements of the

July/August 2020 Volume 11 Issue 4 e01519-20

mBio’

mbio.asm.org 11


https://mbio.asm.org

Lebov et al.

larval immune system upon gut colonization (12, 36). Neither of these hypotheses
necessarily accounts for the L3 isolate’s faster swimming speeds, although specula-
tively, it is possible that if MR-1 were not producing pili, it might be able to devote more
resources to motility which is energetically costly (60).

In our study, the fact that the L3 and L5 isolates evolved to outcompete the
ancestor, while exhibiting distinct biofilm phenotypes, suggests that each isolate could
be pursuing alternative adaptive strategies. However, even though biofilm formation
often trades off with motility (43-45), we observed selection for enhanced motility via
two separate genetic pathways, which lends support to the conclusion that augmented
motility is adaptive. Further, this phenotype was also observed in the closely related
zebrafish isolate, Shew-Z12. Interestingly, the motile fraction of Shew-Z12's population
is reduced compared to either the L3 or L5 isolates (Fig. 7C). This could stem from the
fact that Shew-Z12 evolved its motility characteristics in the presence of a bacterial
community, whereas our experiment was conducted under germfree (i.e., axenic)
conditions. It is possible that this historical difference may have altered the costs or
benefits of motility, leading Shew-Z12 to evolve distinct motility characteristics. For
example, cross-feeding between community members could alter bacterial foraging
requirements and result in unique motility optimization (61, 62).

Although it is not clear exactly how motility improves host colonization in our
system, one possibility is that enhanced motility increases chemotactic responses to
host-produced chemical gradients, thereby increasing bacterial encounter rates with
larval zebrafish. Alternatively, once an evolved MR-1 cell encounters a host, faster
swimming speeds could help strains traverse narrow junctions within the host to reach
the gut more quickly than their ancestral competitor (14). However, prior work showed
no fitness advantage for a hypermotile Aeromonas strain gavaged into the oral cavity
of larval zebrafish, suggesting this mode of fitness enhancement may be less likely (29).
Another option is that after bacterial cells migrate into the digestive tract, motility
could help bacteria resist expulsion induced by intestinal contractions (39). Ultimately,
our results add to a growing body of evidence implicating motility as an important trait
for host colonization (14, 17, 29, 63), and the phenotypic parallelism we observed
suggests that traits associated with dispersal can play a critical role in the establishment
of host-microbe symbioses (64).

MATERIALS AND METHODS

Zebrafish husbandry. To ensure animal specimens were treated ethically in all experiments involv-
ing zebrafish, we adhered to the standard protocols and procedures approved by the University of
Oregon Institutional Animal Care and Use Committee (IACUC protocol 15-98). GF derivations were carried
out as described by Melancon et al. (70). Details about larval gut dissections can be found the Serial
passage section.

Bacterial strains. Our ancestral reference S. oneidensis (MR-1) and Shew-Z12 strains were obtained
from Karen Guillemin’s laboratory at the University of Oregon. Detailed protocols for all modifications to
MR-1, including Tn7-mediated gfp and dTomato insertions as well as allelic exchange applications, can
be found in Wiles et al. (65). The MshL-T300P mutation allelic construct was created via PCR amplification
of the mutated segment from the evolved L3 isolate’s genome, and the resulting mutant (MshL-T300P)
genetically differs from the ancestor by only a single base pair. All S. oneidensis strains were cultured in
tryptic soy broth at 30°C under shaking conditions.

Serial passage. Overnight tryptic soy broth (TSB) cultures (5 ml) of MR-1 isolates tagged with either
green fluorescent protein (MR-1gfp) or dTomato fluorescent protein (MR-1dT) were diluted 1:100 in TSB
and allowed to grow out to late log phase (4 to 5 h). Six replicate ancestral populations were then
generated by combining subcultures of MR-1gfp and MR-1dT at a 1:1 ratio. These mixtures allowed us
to infer the occurrence of adaptive events based on fluorescent tag frequency changes observed
throughout the experiment (see Fig. S2). Beneficial mutations occurring in a tagged genomic back-
ground should cause the frequency of that tag to increase over time. Next, 10 ul of each of these
replicate ancestral populations were used to inoculate larval flasks containing ~15 ml of embryonic
medium and ~15 GF larval zebrafish at 4 days postfertilization (dpf; inoculating MR-1 densities were
~106 CFU/ml). Larvae were then incubated with MR-1 populations at 28°C for 72 h. At 7 dpf, 10 larvae
were euthanized with tricane and mounted on a glass slide, and their digestive tracts were dissected.
Glass slides were coated with 3% methylcellulose to help immobilize larvae during dissections. After the
dissections, all 10 digestive tracts culled from each flask were placed in a single 1.7-ml tube containing
500 wl of EM and ~100 pul of 0.5-mm zirconium oxide beads (Next Advance, Averill Park, NY). The
contents the larval guts in each of these tubes were then immediately homogenized using a bullet
blender tissue homogenizer (Next Advance) for 60 s at power 4. To preserve our ability to revive replicate
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populations after each passage, we created freezer stocks by using a pipette to mix 200 ul from each
homogenized tube with 200 ul of 50% glycerol (25% glycerol final concentration). These freezer stocks
were stored at —80°C. The remaining contents of each homogenized tube was then stored at 4°C for 0
to 14 days, at which point ~250 ul were sampled to inoculate a subsequent set of GF larval flasks (~15
larvae in ~15 ml of EM). Upon inoculation, 100 ul of each larval flask was dilution-plated in triplicate to
quantify the inoculating population densities (typically ~103 CFU/ml) and determine tag frequencies.
This cycle was repeated for 20 passages. All six replicate evolving populations were maintained
separately throughout our experiment.

Comparative genomics. We submitted our MR-1 and Shew-Z12 strains to the Washington State
University Molecular Biology and Genomics Core (WSUGC) for long read sequencing. Genome assembly
for MR-1 was conducted by WSUGC, whereas genome assembly for Shew-Z12 was conducted in-house
with Canu v1.7.1 (66). To generate annotation files for these genomes, we relied on Prokka v1.12 (67), and
RAST v2.0 (68).

Phylogenetics. Using Integrated Microbial Genomes and Microbiomes (69) (IMG/M; https://img.jgi
.doe.gov/), we collated a set of 16S rRNA genes from 28 Shewanella species, 2 Vibrio species, and 1
Aeromonas species (see Table S2 for metadata). These 16S rRNA genes were entered into Clustal Omega
(https://www.ebi.ac.uk/Tools/msa/clustalo/) to generate a multiple sequence alignment file and a sub-
sequent Newick-formatted phylogenetic tree file. This file was then visualized with FigTree v1.4.4
(http://tree.bio.ed.ac.uk/software/figtree/).

Genome comparisons between S. oneidensis and other Shewanella species. The average se-
quence identity (ANI) was calculated using the EZBioCloud online ANI calculator (71) to quantify the ANI
between S. oneidensis and Shew-Z12.

Specific gene and operon comparisons between S. oneidensis and Shew-Z12. ANI was calculated
using the same tool described in our whole-genome comparisons above. For MshH-Q comparisons, we
separately concatenated the amino acid sequences of each gene in the mshH-Q operons of S. oneidensis
and Shew-Z12 in series by relying on our RAST-annotated files. We then generated multiple sequence
alignment (msa) files using Clustal Omega web tool (72) that compared these MshH-Q sequences and
used them to depict sites of divergence along the mshH-Q operon (Fig. 5). Visualizations of single gene
or multigene comparisons between S. oneidensis and Shew-Z12 were created using Clustal Omega-based
msa files that were imported into Jalview2 (73). To highlight regions of divergence within genes, we
color-coded our comparisons using the color by annotation feature of Jalview2 (Fig. 5). This feature color
codes amino acid comparisons per site based on biochemical conservation.

Evolved mutation calling. We selected one randomly chosen isolate per evolved replicate popu-
lation (six isolates total) by using an inoculation loop to dilution streak a sample from each population’s
freezer stock on TSA (tryptic soy agar) plates (one plate per evolved population, totaling six plates) and
incubating the plates at 30°C for 24 h. For each population, we overnight cultured four colonies that
resulted after 24 h of growth and then created freezer stocks (stored at —-80°C) that consisted of a 1:1
mixture of each cultured isolate and an equal volume of 50% glycerol (final concentration, 25% glycerol).
To create genomic libraries for each evolved isolate, we used an inoculation loop to generate overnight
cultures from each isolate’s corresponding freezer stock and then extracted genomic DNA from each
culture using a Promega Wizard genomic DNA purification kit (catalog no. A1120). Single-end 150-bp
libraries were generated from these genomic DNA extractions according to the Nextera XT DNA library
prep kit reference guide (Document 15031942 v02), and these libraries were sequenced on the lllumina
HiSeq 4000. According to this same protocol, we also sequenced the genomes of our ancestral MR-1gfp
and MR-1dT strains on the Illumina HiSeq 4000. To identify candidate adaptive mutations, we used
breseq 0.31.0 in consensus mode to compare each Illumina sequenced isolate to the annotated ancestral
reference separately and then looked for single nucleotide polymorphisms and indels that were present
in each evolved isolate but absent in MR-1gfp and MR-1dT isolates (74). With the exception of mshH-Q
genes, the gene annotations for the mutations listed in Table S1 were determined by Prokka v1.12 (67).
The mshH-Q gene annotations were determined by RAST v2.0.

Competition assays. Overnight 5-ml TSB cultures of competing strains were diluted 1:100 in TSB and
allowed to grow to late log stage (4 to 5 h). Then, 500 ul of each competitor was then mixed in a single
1.7-ml tube so that competitors were at an approximate 1:1 ratio. Competition mixtures were pelleted
(7,000 relative centrifugal force [rcf] for 5min) and resuspended in 1 ml of sterile EM. Resuspended
competition mixtures were diluted 1:100, and 7.5-ul portions of these dilutions were used to inoculate
GF larval flasks containing ~15 ml of EM and ~15 larvae at 4 dpf. Inmediately after inoculation, triplicate
100-ul samples from each competition flask were dilution plated to establish the inoculation ratio of
competitor 1 to competitor 2 (CFU/ml). After inoculation, flasks were incubated at 28°C for 72 h. At 7 dpf,
embryonic medium samples were taken from each flask to quantify CFU in the water column, and
multiple larvae per flask were euthanized with tricaine (75). Their guts were dissected and individually
placed in 1.7-ml tubes containing 500 ul of sterile EM and ~100 ul of 0.5-mm zirconium oxide beads
(Next Advance). The contents the larval guts in each these tubes were then immediately homogenized
using a bullet blender tissue homogenizer (Next Advance) for 60 s at power 4. Homogenized tubes were
then dilution plated to determine the CFU/gut for each competitor. A competitive index (Cl) was
calculated for each dissected gut by dividing the ratio of competitor 1 to competitor 2 found in each gut
by the mean inoculation ratio determined from the triplicate measurements for each corresponding flask,
as follows:

competitor l:competitor 24,

competitor l:competitor 2, ocutum
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We used Dunnett contrasts to compare dissected larval guts grouped from separate flasks with a linear
model where flasks were considered a random effect.

Rich medium competitions. Overnight TSB cultures of competing strains were diluted 1:100 in TSB
and allowed to grow to late log stage (4 to 5 h). Then, 500 ul of each competitor was then mixed in a
single 1.7-ml tube so that competitors were at an approximate 1:1 ratio. Competition mixtures were
pelleted (7,000 rcf for 5 min) and resuspended in 1 ml of TSB. Resuspended competition mixtures were
diluted 1:100, and 5-ul portions of these dilutions were added to 10 ml of TSB in a 20-ml test tube.
Immediately after inoculation, triplicate 100-ul samples from each competition culture tube were
dilution plated to establish the inoculation ratio of competitor 1 to competitor 2 (CFU/ml). We incubated
each competition at 30°C for 24 h with agitation (angled back and forth rocker, 60 rpm), at which point
we again took triplicate 100-ul samples from each competition tube and dilution plated them to quantify
the CFU/ml for each competitor. Competitive indices were calculated by dividing the final CFU ratio of
competitor 1 to competitor 2 by the inoculation ratio, as follows:

competitor 1:competitor 2,

COmpetitor liCompemOT Zinoculum ’

Biofilm assay. Triplicate biological replicate overnight TSB cultures of strains of interest were diluted
1:100 in TSB and allowed to grow out to late log stage (3 to 5h). Next, 1-ml portions of subcultured
strains were pelleted (7,000 rcf for 5 min), and the pellets were normalized to an optical density at 600 nm
of 1.0 via resuspension with sterile EM. Then, 150-ul portions of each resuspension were added to four
wells of a round-bottom 96-well polystyrene plate (Greiner Bio-One, catalogue no. 650185) per biological
replicate. The plate was incubated at 30°C for 24 h, and the volume of each well was removed with a
multichannel pipette. The wells were rinsed twice with 200 ul of sterile EM, and each well was stained
with 180 ul of 0.1% crystal violet (CV). The plate was incubated at room temperature for 10 min, at which
point the crystal violet was removed with a multichannel pipette, and the wells were again rinsed twice
with 200 ul of sterile EM. The CV was solubilized with 100% dimethyl sulfoxide (DMSO) for 15 min with
agitation (~180 rpm on a rotating minishaker), and 100 ul of the solubilized CV was added to 100 ul of
100% DMSO in a flat-bottom 96-well polystyrene plate (Corning, Inc., reference no. 3595). The optical
densities were then measured for each well at 570 nm.

Motility assays. Next, 5-ml overnight TSB cultures of strains of interest were diluted 1:100 in TSB and
allowed to grow to late log stage (4 to 5 h). Strains were then prepped for inoculation as described
above. A volume of 7.5 ul of each strain prepared for inoculation was used to inoculate GF larval flasks
containing ~15 ml of EM and ~15 larvae at 4 dpf. Inoculated larval flasks were incubated at 28°C for 13
to 17 h, at which point bacteria in each flask were imaged on an inverted microscope (Nikon Eclipse Ti-e)
by focusing on the bottom interior surface of the flask. Ten 30- to 45-s movies were then captured at a
rate of 15 to 24 frames/s. When movies were taken of competing populations, each population was
fluorescently tagged with either gfp or dTomato, and movies were taken separately to capture the
motility dynamics of each tagged population independently within the same flask. Single strain movies
were taken in a bright field. Bacteria tracking was performed in MATLAB using previously described
software (https://pages.uoregon.edu/raghu/particle_tracking.html). In brief, bacterium-like objects were
identified by intensity thresholding after bandpass filtering and then localized using a radial symmetry
algorithm (76). Tracks were assembled using nearest-neighbor linking. Tracks shorter than five frames
were discarded. As an additional filtering step to remove multiple tracks assigned to the same, nonmotile
bacterium, tracks with a difference in mean position of <1.7 um were culled, keeping only the longest
track. Based on the measured distribution of swimming speeds, a cutoff of 2 um/s was used to
operationally distinguish a “motile” bacterium from a “nonmotile” one.

Data availability. Our genome assemblies and raw sequencing files are available for download
under BioProject accession no. PRINA633711.
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