1	Exhaled Breath Aerosol Shedding by Highly Transmissible Versus Prior
2	SARS-CoV-2 Variants
3	
4	Jianyu Lai ^a *, Kristen K. Coleman ^a *, SH. Sheldon Tai ^a , Jennifer German ^a , Filbert Hong ^a ,
5	Barbara Albert ^a , Yi Esparza ^a , Aditya K. Srikakulapu ^a , Maria Schanz ^a , Isabel Sierra Maldonado ^a ,
6	Molly Oertel ^a , Naja Fadul ^a , T. Louie Gold ^a , Stuart Weston ^b , Kristin Mullins ^c , Kathleen M.
7	McPhaul ^a , Matthew Frieman ^b , and Donald K. Milton ^a
8	
9	^a Institute for Applied Environmental Health, University of Maryland School of Public Health, College
10	Park, MD, USA
11	^b Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore,
12	MD, USA
13	^c Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
14	*Authors J.L. and K.K.C. contributed equally to this manuscript
15	
16	Corresponding author:
17	Dr. Donald K. Milton, University of Maryland School of Public Health, 4200 Valley Drive,
18	College Park, MD 20742, USA email: <u>dmilton@umd.edu</u>
19	Running title: Evolution of SARS-CoV-2 Aerosol Shedding
20	Key points: Highly transmissible variants (Alpha, Delta, and Omicron) demonstrate greater viral
21	aerosol shedding phenotypes compared with prior variants, consistent with a dominant role for
22	airborne transmission of COVID-19. Fully vaccinated and boosted individuals infected with
23	SARS-CoV-2 can shed infectious viral aerosols.

© The Author(s) 2022. Published by Oxford University Press on behalf of Infectious Diseases Society of America. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs licence (https://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reproduction and distribution of the work, in any medium, provided the original work is not altered or transformed in any way, and that the work is properly cited. For commercial re-use, please contact journals.permissions@oup.com 1

1 Abstract

2 Background

- 3 Aerosol inhalation is recognized as the dominant mode of SARS-CoV-2 transmission. Three
- 4 highly transmissible lineages evolved during the pandemic. One hypothesis to explain increased
- 5 transmissibility is that natural selection favors variants with higher rates of viral aerosol
- 6 shedding. However, the extent of aerosol shedding of successive SARS-CoV-2 variants is
- 7 unknown. We aimed to measure the infectivity and rate of SARS-CoV-2 shedding into exhaled
- 8 breath aerosol (EBA) by individuals during the Delta and Omicron waves and compared those
- 9 rates with those of prior SARS-CoV-2 variants from our previously published work.

10 Methods

COVID-19 cases (n=93, 32 vaccinated and 20 boosted) were recruited to give samples, including
 30-minute breath samples into a Gesundheit-II exhaled breath aerosol sampler. Samples were
 quantified for viral RNA using RT-PCR and cultured for virus.

14 **Results**

Alpha (n=4), Delta (n=3), and Omicron (n=29) cases shed significantly more viral RNA copies into exhaled breath aerosols than cases infected with ancestral strains and variants not associated with increased transmissibility (n=57). All Delta and Omicron cases were fully vaccinated and most Omicron cases were boosted. We cultured virus from the EBA of one boosted and three fully vaccinated cases.

20 Conclusions

21 Alpha, Delta, and Omicron independently evolved high viral aerosol shedding phenotypes,

- 22 demonstrating convergent evolution. Vaccinated and boosted cases can shed infectious SARS-
- 23 CoV-2 via EBA. These findings support a dominant role of infectious aerosols in transmission of

SARS-CoV-2. Monitoring aerosol shedding from new variants and emerging pathogens can be
 an important component of future threat assessments and guide interventions to prevent
 transmission.

Keywords: SARS-CoV-2; exhaled breath aerosol; convergent evolution; airborne transmission;
COVID-19.

6

7 Background

8 The transmissibility of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 9 continues to increase as new variants emerge[1–3]. Three variants of concern (VOCs), Alpha 10 (B.1.1.7), Delta (B.1.617.2), and Omicron (B.1.1.529), successively became dominant during 11 2021[4]. Each was identified as having increased transmissibility relative to earlier variants or 12 ancestral strains[1–3].

Multiple lines of evidence point to a dominant role for aerosol inhalation (i.e., airborne 13 transmission) as the primary mode of SARS-CoV-2 transmission[5]. We therefore hypothesize 14 that VOCs associated with increased transmissibility have been selected based on increased 15 16 fitness for transmission via aerosols. We previously reported that individuals infected with the Alpha variant shed viral RNA copies into *fine* aerosols ($\leq 5 \mu m$ in diameter) at an 18-fold greater 17 rate than did individuals infected with ancestral strains and variants not associated with increased 18 19 transmissibility[6]. It is unknown whether continued evolution of more transmissible variants and subvariants is associated with continued increases in aerosol shedding. Our objectives here 20 were to describe the infectivity and rate of SARS-CoV-2 RNA shedding into exhaled breath 21 22 aerosol (EBA) by ambulatory cases during the Delta and Omicron waves and to compare those 23 rates with those of prior SARS-CoV-2 variants from previously published work[6]. We also

compared viral aerosol shedding rates among Omicron subvariants and examined associations of
 viral aerosol shedding with upper respiratory viral load, vaccination, serology, demographic, and
 clinical predictors.

4 Methods

We recruited participants with PCR confirmed COVID-19 from the University of 5 Maryland, College Park and surrounding community[6] from June 6, 2020 through March 11, 6 2022. The University of Maryland Institutional Review Board and the Human Research 7 Protection Office of the Department of the Navy approved this study. All participants provided 8 9 informed consent. We previously reported results for participants enrolled from June 6, 2020 through April 10 30, 2021 [6] and included them here for comparisons with cases enrolled during subsequent 11 waves. Basic demographic data were obtained from a baseline questionnaire. Participants were 12 sampled one to thirteen days post-symptom onset. Each day of sample collection, participants 13 completed online questionnaires to update their symptoms (Supplementary Methods). 14 During viral shedding assessment visits, participants provided saliva, mid-turbinate 15 16 swabs (MTS), phone swabs (as a measure of fomite contamination), venous blood samples, and exhaled breath aerosol (EBA) samples collected with a Gesundheit-II (G-II) human exhaled 17 bioaerosol collector[7] following a loud speaking and singing protocol with spontaneous 18 19 coughing and sneezing[6]. Some participants completed two shedding assessment visits, one to three days apart. 20 Viral RNA was detected and quantified as previously described[6]. RNA copy numbers 21

22 were reported per mL for saliva and per sample for all other sample types (except blood). The

23 limit of detection (LOD, 95% probability of detection) was 62 copies/mL for saliva and 75

1 copies/sample for other samples. Aliquots were sent to the University of Maryland School of Medicine for virus culture. Plasma samples were assayed for antibodies to SARS-CoV-2. IgG 2 antibodies were titered using the SARS-CoV-2 receptor binding domain (RBD) and 3 4 nucleocapsid (N) proteins (ACRO Biosystems) as targets. Genome sequencing of MTS samples 5 was performed using a MinION sequencing system (Oxford Nanopore Technologies, ONT). See 6 Supplementary Methods for detailed sample processing and laboratory analyses. Data cleaning and statistical analyses were completed using R version 4.2.0 and RStudio. 7 Mann-Whitney U Test was used for pairwise comparisons and the Kruskal-Wallis test was used 8 for global comparisons. We used linear mixed-effect models with censored responses[8] to 9 estimate the effect of predictors on EBA viral load, accounting for censored observations below 10 the limit of detection and nested random effects of subjects and samples nested within subjects 11 (Supplementary Methods). We performed sensitivity analyses to determine the impact of cases 12 studied more than five days post-symptom-onset on correlation and regression analyses. 13

14 **Results**

From June 2020 through March 2022, we measured viral load in the exhaled breath of 93 15 16 individuals (age range: 6 to 66 years; Table 1). Participants were mildly symptomatic (97%) or asymptomatic (3%) at the time of sampling. Participants enrolled from June 2020 through April 17 2021[6] were infected with Alpha (n=4) and ancestral/other variants (n=57) prior to widespread 18 19 vaccination. Participants enrolled from September 2021 through March 2022 had an active Delta (n=3) or Omicron (n=29) infection, were fully vaccinated, and had detectable IgG against SARS-20 CoV-2 spike protein RBD. Among the later group, 20 (63%) were boosted, and 5 (16%) had 21 22 detectable IgG against SARS-CoV-2 nucleocapsid (N) protein (Table 1; Supplementary Table 1-23 2).

1	Among Delta and Omicron cases, we detected SARS-CoV-2 RNA in saliva, MTS,
2	aerosol, and phone swabs and recovered infectious virus from all sample types except phone
3	swabs (Figure 1; Supplementary Table 3). The majority (21/32; 66%) of Delta and Omicron
4	cases shed detectable viral RNA concentrations in exhaled breath aerosol (EBA). Viral RNA
5	loads in <i>coarse</i> (>5 μ m) and <i>fine</i> (\leq 5 μ m) aerosol fractions ranged from non-detect to 1.8x10 ⁵
6	and 1.8x10 ⁷ RNA copies per 30-minute EBA sample, respectively. The viral RNA load in the
7	fine fraction was on average five times greater than in the coarse fraction and accounted for most
8	of the total exhaled viral RNA load.
9	SARS-CoV-2 aerosol shedding during Delta variant infections
10	We detected viral RNA and cultured virus from EBA provided by two (66.7%) Delta
11	cases. From one, fully vaccinated with NVX-CoV2373, we cultured SARS-CoV-2 from an EBA
12	<i>fine</i> fraction that contained 3.0×10^4 RNA copies. From the other, fully vaccinated with
13	BNT162b2, we cultured virus from an EBA <i>coarse</i> fraction that contained 3.6x10 ² RNA copies.
14	None of the Delta cases were boosted.
15	SARS-CoV-2 aerosol shedding during Omicron (BA.1, BA.1.1, and BA.2) infections
16	Among Omicron cases, we detected viral RNA in the EBA of 19 (66%) and two (both
17	BA.1.1) yielded positive virus cultures from their <i>fine</i> EBA. One was fully vaccinated (not
18	boosted) with BNT162b2 and emitted the highest number of viral RNA copies in a <i>fine</i> EBA
19	sample (1.8×10^7) observed over the course of the pandemic. The other individual, fully
20	vaccinated and boosted with BNT162b2, shed 2.9x10 ³ viral RNA copies into <i>fine</i> EBA.
21	Fine EBA viral RNA loads from Omicron cases were, on average, similar to those from
22	Alpha and Delta cases (Figure 2; Supplementary Figure 1). We did not observe a significant

1 difference in viral aerosol shedding between Omicron BA.1, BA.1.1, and BA.2 (p>0.05;

2 Supplementary Figure 2).

3	Omicron MTS viral RNA load was a weak positive correlate of <i>fine</i> EBA viral RNA load
4	(rho = 0.36 , p = 0.015), in contrast to ancestral strains and other variants where MTS load was
5	moderately positively correlated with EBA load (rho = 0.59 , p < 0.0001 ; Figure 3;
6	Supplementary Figure 3). Omicron viral RNA loads in saliva, however, trended toward a
7	stronger, albeit still moderate, correlation with EBA load (rho = 0.58 , p < 0.0001) compared with
8	earlier strains and variants (rho = 0.41, $p < 0.0001$). A similar pattern was observed for <i>coarse</i>
9	aerosols (Supplementary Figure 4a-4b).
10	Having received a vaccine booster was associated with shedding more viral RNA in
11	coarse EBA (p=0.0056; Supplementary Figure 5). However, boosters were not associated with
12	<i>fine</i> ($p = 0.97$) or total EBA viral RNA load ($p = 0.81$; Supplementary Figure 5).
13	Five Omicron cases (one BA.1, one BA.1.1, and three BA.2) were sero-positive for anti-
14	nucleocapsid (anti-N) IgG at enrolment, one to six days post-symptom onset. Four of the five
15	had received a booster >8 days prior to symptom onset. Two reported prior infection(s); two
16	denied prior infection and one did not respond to questions about prior infection. We detected
17	viral RNA in MTS samples from all five. Their MTS, however, contained significantly fewer
18	RNA copies than Omicron infections in the absence of anti-N IgG (p=0.00045; Supplementary
19	Figure 6). These five were the only Omicron cases that yielded culture-negative MTS samples
20	(Figure 1). We detected viral RNA in saliva from only one of the five, the non-boosted case, and
21	that sample was culture-negative. None of the five shed detectable levels of SARS-CoV-2 RNA
22	in EBA.

1 Three Omicron cases (one BA.1, two BA.1.1) were children aged 6-12 years. None of their fine EBA samples contained detectable SARS-CoV-2 RNA; one coarse EBA sample 2 contained a trace amount. MTS samples from all of the children were culture-positive. All saliva 3 4 and EBA samples were culture-negative. Predictors of viral aerosol shedding from Omicron (BA.1, BA.1.1, and BA.2) infections 5 Among the 29 Omicron cases, higher saliva viral RNA load, systemic symptom score, 6 7 and number of coughs per 30-minute sampling session were significant predictors for higher *fine* 8 EBA viral RNA load in a model adjusted for age, sex, and subvariant BA.2 compared with BA.1 and BA.1.1 (Figure 4 a-b). Only higher saliva viral RNA load and systemic symptom score were 9 significant predictors for higher coarse EBA viral RNA load in an adjusted model 10 (Supplementary Figure 7 a-b). The BA.2 subvariant was not associated with significantly greater 11 shedding into either fine or coarse EBA compared with BA.1 and BA.1.1. 12

13 Evolution of SARS-CoV-2 aerosol shedding

Over the course of the pandemic (Figure 4 c-d), three highly transmissible SARS-CoV-2 14 variants (Alpha, Delta, or Omicron), as well as higher systemic symptom score, saliva viral RNA 15 load, age, and number of coughs per 30-minute sampling session were significant predictors for 16 17 higher *fine* EBA viral RNA load in an age and sex adjusted model. Highly transmissible VOCs were associated with increased coarse aerosol shedding in unadjusted analyses but were not 18 significant predictors in adjusted models. Higher systemic symptom score, MTS viral RNA load, 19 20 and age were significant predictors for higher *coarse* EBA viral RNA load in an adjusted model controlling for age and sex (Supplementary Figure 7 c-d). Day post symptom-onset was not a 21 22 significant predictor of viral RNA load in EBA and a sensitivity analysis including only cases 23 studied \leq 5 days post onset was consistent with these results (Supplementary Tables 4a-4b).

Delta and Omicron cases coughed more frequently than Alpha, ancestral strains, and other variant cases (Supplementary Figures 8a-8b). The highest cough count was from a BA.1.1 case who coughed 69 times during the 30-minute sampling session. Two participants (one infected with Omicron BA.2 and one with ancestral strain, B.1.509) sneezed during the sampling sessions, each sneezing once. Omicron cases generally reported more upper and lower respiratory symptoms compared with those infected with ancestral strains and other variants (Supplementary Figures 8a-9b).

8 **Discussion**

This study, using a well-characterized breath aerosol collector[6,9,10], demonstrated that 9 both fully vaccinated and boosted COVID-19 cases can shed infectious SARS-CoV-2 aerosols. 10 We also observed that Alpha, Delta, and Omicron infections were associated with significantly 11 greater viral aerosol shedding than infection with ancestral strains and variants not associated 12 with increased transmissibility (Figures 2 and 4). These data indicate that a characteristic of 13 highly transmissible variants is a high rate of viral shedding into aerosols. These three highly 14 transmissible variants represent three distinct SARS-CoV-2 clades that independently evolved 15 16 high viral aerosol shedding phenotypes. This evidence for convergent evolution of increased viral aerosol shedding is consistent with a dominant role for airborne transmission (inhalation of 17 viral aerosols regardless of distance that the aerosol traversed) in the spread of COVID-19[5]. 18 19 We did not observe statistically significant differences in the geometric mean rates of viral RNA shedding into EBA among the three highly transmissible variants (Figure 4c,d, 20 Supplementary Figure 1). The highest viral EBA shedders had Omicron infections; the highest 21 had 1.8x10⁷ RNA copies in a *fine* EBA sample, three orders of magnitude higher than the 22 23 maximum for Delta and previously reported Alpha variant infections[6], and only 2.4-fold less

than the maximum we previously observed for influenza[11]. This suggests that variants
associated with more extreme viral EBA outliers (supershedders) may drive increased
transmissibility through superspreading. Thus, superspreading as a biological factor, not just a
result of social behavior[12], may be a driving force behind dominance of new variants when
they differ minimally regarding immune escape.

6 The *fine* aerosol fraction ($\leq 5 \mu m$) consistently contained greater numbers of viral particles based on RNA copy number compared with the *coarse* aerosol fraction (>5 µm), and 7 dominated the total aerosol load in all of the SARS-CoV-2 infections studied throughout the 8 pandemic. This pattern mirrored results from earlier studies of influenza[11,13–15]. These 9 observations are consistent with data showing that bubble film burst due to airway closure and 10 reopening is the dominant mechanism of respiratory aerosol generation[16–18] and that bubble 11 films concentrate microorganisms relative to their concentration in bulk fluids by orders of 12 magnitude[19–21]. When considered together with the relatively more efficient concentration 13 and aerosolization of enveloped compared with naked protein capsid viruses[22], it is perhaps 14 not surprising that respiratory viral pandemics of the last >100 years have been caused by 15 enveloped viruses. 16

We previously reported that, for infections studied through April of 2021, high MTS viral RNA load was a strong risk factor for high viral RNA load for both *coarse* and *fine* EBA fractions[6]. With Omicron, however, we see a clear shift toward saliva being a stronger predictor of the viral RNA load in EBA. This was evident for both *coarse* and *fine* EBA viral RNA in our regression models for Omicron infections (Figures 4a,b) and can be clearly seen in our correlation plots. These results are consistent with previous reports that Omicron cases tend to have lower viral loads in their nasopharynx compared with Delta cases[23,24]. Therefore, the

1 observation that Omicron cases have similar or higher rates of viral RNA shedding suggests that nasopharynx is not the source of exhaled viral aerosols. By contrast, detailed studies of 2 3 respiratory aerosol generation point to the small airways, larynx, and oropharynx as the major 4 sources of exhaled particles during breathing, talking, and singing, and small airways and larynx as the primary sites of fine particle generation [16,25]. Taken together, these data suggest that 5 selection may be favoring variants that replicate more efficiently at sites where aerosols are 6 generated, and that viral RNA in EBA and saliva may reflect viral load in the posterior pharynx 7 and mucociliary transport of virus from the lower respiratory tract. 8 Hui et al[26] found that Omicron variants replicated to 70-fold higher titers in human 9 bronchial ex vivo cultures than wild-type or Delta strains at 24 and 48 hours after infection, 10 suggesting that Omicron infections may produce higher viral loads in conducting airways. 11 Higher viral load and resulting inflammation and irritation of intrathoracic airways could explain 12 the higher cough counts. However, if cough related shear forces were a major mechanism of 13 viral aerosol generation, cough should be a stronger predictor of viral load in coarse than in fine 14 aerosol. That the reverse is true, as we previously observed for influenza [11], indicates that 15 cough is not a primary mechanism of infectious aerosol generation in these viral infections. 16 Omicron BA.2 appeared to be more transmissible than BA.1 in a study of Danish 17 households[27]. However, the reported increase in transmissibility of BA.2 over BA.1 was 18 19 limited to unvaccinated primary cases; fully vaccinated and boosted primary cases infected with 20 BA.2 were significantly less likely to transmit BA.2 than BA.1[27]. Antibody escape is not thought to be responsible for the dominance of BA.2 over BA.1[28,29]. One recently observed 21 22 advantage of BA.2 is an increased competence for replication in human nasal and bronchial 23 tissues[30]. This change did not appear to impact average viral aerosol shedding rates among

vaccinated/boosted individuals with Omicron breakthrough infections; we did not see evidence
of a significant difference in viral RNA aerosol shedding between people infected with BA.1,
BA.1.1 and BA.2. Given that the dominance of BA.2 seems to have been associated with
transmission by unvaccinated individuals, we might expect to see increased aerosol shedding
from unvaccinated cases. Our data cannot address that possibility because all Omicron cases in
our study were fully vaccinated and some boosted.

Five participants with an Omicron infection were positive for anti-N protein IgG at the 7 time of enrolment. The presence of anti-N IgG may indicate prior infection (reported by two 8 participants) and a broad immune response to infection, including IgA secretion, which is a 9 potent neutralizer of SARS-CoV-2 during early infection[31]. Infection produces a more robust 10 IgA response than intramuscular vaccination[32] and concentrations decline more slowly after 11 infection than those of IgG[33]. These participants had no PCR-detectable levels of virus in 12 EBA, phone swabs and all but one saliva sample, and the viral RNA load in their MTS was 13 significantly lower than that of other Omicron cases. These observations together suggest that 14 acquired immune responses including specific IgA in these participants may have played a role 15 in reducing viral loads overall and limiting shedding in EBA. However, because subsequent 16 Omicron subvariants, particularly BA.2.12.1, BA.4 and BA.5, can escape antibody neutralization 17 elicited by both vaccination and prior Omicron infection [34,35], we might not expect to observe 18 19 such a reduction in viral aerosol shedding among seropositive individuals infected with future variants. 20

Our study has several limitations. Although we recruited throughout the pandemic, our sample size is relatively small and enrollment rates were low during the Delta wave. As a result, we are limited in making comparisons such as the correlation between EBA viral RNA load and

culture positivity for specific variants. Although we were able to sample children infected with
Omicron, our sample size is too small to make conclusions about viral aerosol shedding from
children. The EBA collection procedure is not suitable for children under age 6 years. Lastly, we
did not sample participants throughout their entire infection. Because viral loads in aerosol
samples were low, we opted for a sensitive but non-quantitative measure of infectiousness. Thus,
we are unable to assess the impact of variants and Omicron subvariants on the duration of viral
aerosol shedding and infectious virus titers in EBA.

In conclusion, our findings demonstrate that COVID-19 cases can shed infectious SARS-8 CoV-2 aerosols even when fully vaccinated and boosted. Evolutionary selection appears to have 9 favored SARS-CoV-2 variants associated with higher viral aerosol shedding. The combination of 10 immune evasive properties and high viral aerosol shedding were likely responsible for 11 Omicron's rapid spread and replacement of Delta, even as infection- and vaccine-acquired 12 immunity increased. Thus, non-pharmaceutical interventions, especially indoor air hygiene (e.g., 13 ventilation, filtration, and disinfection with germicidal UV) and targeted masking and respirators, 14 will continue to play an important role in limiting SARS-CoV-2 transmission in vaccinated 15 communities to prevent post-acute COVID-19 sequalae[36] and to protect vulnerable 16 populations. 17

18 NOTES

19 Author contributions

20 D.K.M. conceived the project and obtained funding.

21 D.K.M., F.H., B.A., Y.E., J.L., S.S.T., J.G., I.S.M. conceptualized the project and designed the

22 study.

23 I.S.M., A.K.S., M.O., and N.F. recruited study volunteers.

- 1 K.K.C., A.K.S., and M.O. collected exhaled breath samples.
- 2 B.A., Y.E., J.L., K.M.M., M.O., and N.F. collected clinical samples.
- 3 S.S.T., J.G., and M.S. processed and analysed samples.
- 4 S.W. and M.F. performed virus culture.
- 5 K.M. performed antibody tests on sera samples.
- 6 F.H. performed data management and curation.
- 7 J.L. performed data analyses.
- 8 J.L., K.K.C., and T.L.G. drafted the original manuscript.
- 9 All authors participated in reviewing and editing the manuscript.
- 10

11 Acknowledgements

- 12 We thank all the other members and previous staff of the University of Maryland StopCOVID
- 13 Research Group for their efforts in recruiting participants and sample collection and processing:
- 14 Oluwasanmi Oladapo Adenaiye, P. Jacob Bueno de Mesquita, Aaron Kassman, Michael
- 15 Lutchenkov, Dewansh Rastogi, Delwin Suraj, Faith Touré, Rhonda Washington-Lewis, Somayeh
- 16 Youssefi, Mara Cai, Ashok Agrawala. We also thank Dr. Tianzhou Ma from the Department of
- 17 Epidemiology and Biostatistics, University of Maryland School of Public Health, College Park,
- 18 for providing advice on statistical modelling, and Dr. Jamal Fadul and his clinic in College Park,
- 19 Maryland, for assistance in recruiting study participants.
- 20 **Data and Code Availability**
- 21 Deidentified data for the accepted manuscript will be made available on the Open Science
- 22 Framework repository. Custom code used to analyse the data will be made available on a public
- 23 github repository with linkage to the Open Science Framework repository.

1 Funding and declaration of interests

2	This work was supported by the Prometheus-UMD, sponsored by the Defense Advanced
3	Research Projects Agency (DARPA) BTO under the auspices of Col. Matthew Hepburn through
4	agreement N66001-18-2-4015, the National Institute of Allergy and Infectious Diseases Centers
5	of Excellence for Influenza Research and Surveillance (CEIRS) Contract Number
6	HHSN272201400008C, and the Centers for Disease Control and Prevention Contract Number
7	200-2020-09528. The findings and conclusions in this report are those of the authors and do not
8	necessarily represent the official position or policy of these funding agencies and no official
9	endorsement should be inferred.
10	
11	This work was also supported by a grant from the Bill & Melinda Gates Foundation, and a
12	generous gift from The Flu Lab (https://theflulab.org). The funders had no role in study design,
13	data collection, analysis, decision to publish, or preparation of the manuscript.
14	
15	S.W. and M.F. received payments to their institution from National Institute of Allergy and
16	Infectious Diseases (NIAID), Biomedical Advanced Research and Development Authority
17	(BARDA), Defense Advanced Research Projects Agency (DARPA), Gates Foundation, Aikido
18	Pharma, Emergent, Astrazeneca, Novavax, Regeneron, and the CDC, outside the submitted
19	work. M. F. received royalties/licenses from Aikido Pharma for antiviral drug patent licensing,
20	consulting fees from Aikido Pharma, Observatory Group, for consulting for COVID-19, and
21	participation on Scientific Advisory Board for Aikido Pharma, outside the submitted work. K.M.
22	reports roles as Board Member and President (unpaid) of Association of Occupational and
23	Environmental Clinics (AOEC), Member (unpaid) of University of Conn, Storrs NIOSH Center

for New England Workplace (CPH-NEW) External Advisory Board; and Editor-in-Chief (paid)
of Workplace Health & Safety Journal via American Association of Occupational Health Nurses
(AAOHN). D.M. reports support for attending meetings and/or travel from The Flu Lab (gift
from charitable foundation); receipt of Upper room GUV fixture from Aeromed Inc and Far UVC GUV fixtures from FarUV Inc. None of the other authors have potential conflicting interests.

1 **References**

- Davies NG, Abbott S, Barnard RC, et al. Estimated transmissibility and impact of SARS-CoV-2 lineage
 B.1.1.7 in England. Science **2021**; 372:eabg3055.
- Earnest R, Uddin R, Matluk N, et al. Comparative transmissibility of SARS-CoV-2 variants Delta and
 Alpha in New England, USA. Cell Reports Medicine **2022**; 3:100583.
- Ito K, Piantham C, Nishiura H. Relative Instantaneous Reproduction Number of Omicron SARS-CoV-2
 variant with respect to the Delta variant in Denmark. J Med Virol **2021**;
- World Health Organization (WHO). Tracking SARS-CoV-2 variants. Available at: https://www.who.int/activities/tracking-SARS-CoV-2-variants. Accessed 5 May 2022.
- Greenhalgh T, Jimenez JL, Prather KA, Tufekci Z, Fisman D, Schooley R. Ten scientific reasons in support of airborne transmission of SARS-CoV-2. Lancet **2021**; 397:1603–1605.
- Adenaiye OO, Lai J, Bueno de Mesquita PJ, et al. Infectious SARS-CoV-2 in Exhaled Aerosols and
 Efficacy of Masks During Early Mild Infection. Clin Infect Dis 2021; :ciab797.
- James J. McDevitt, Petros Koutrakis, Stephen T. Ferguson, et al. Development and Performance
 Evaluation of an Exhaled-Breath Bioaerosol Collector for Influenza Virus. Aerosol Science and
 Technology 2013; 47:444–451.
- Vaida F, Liu L. Fast Implementation for Normal Mixed Effects Models With Censored Response. J
 Comput Graph Stat 2009; 18:797–817.
- Coleman KK, Tay DJW, Sen Tan K, et al. Viral Load of SARS-CoV-2 in Respiratory Aerosols Emitted by
 COVID-19 Patients while Breathing, Talking, and Singing. Clin Infect Dis 2021; :ciab691.
- McDevitt JJ, Koutrakis P, Ferguson ST, et al. Development and Performance Evaluation of an
 Exhaled-Breath Bioaerosol Collector for Influenza Virus. Aerosol Sci Technol **2013**; 47:444–451.
- 11. Yan J, Grantham M, Pantelic J, et al. Infectious virus in exhaled breath of symptomatic seasonal
 influenza cases from a college community. Proc Natl Acad Sci USA 2018; 115:1081–1086.
- 12. Chen C, Nadeau S, Yared M, et al. CoV-Spectrum: analysis of globally shared SARS-CoV-2 data to
 identify and characterize new variants. Bioinformatics **2022**; 38:1735–1737.
- Milton DK, Fabian MP, Cowling BJ, Grantham ML, McDevitt JJ. Influenza virus aerosols in human
 exhaled breath: particle size, culturability, and effect of surgical masks. PLoS Pathog 2013;
 9:e1003205.
- 14. Lindsley WG, Blachere FM, Thewlis RE, et al. Measurements of airborne influenza virus in aerosol
 particles from human coughs. PLoS ONE 2010; 5:e15100.
- Lindsley WG, Blachere FM, Beezhold DH, et al. Viable influenza A virus in airborne particles expelled
 during coughs versus exhalations. Influenza Other Respir Viruses **2016**; 10:404–413.

- Johnson GR, Morawska L. The mechanism of breath aerosol formation. J Aerosol Med Pulm Drug
 Deliv 2009; 22:229–237.
- 17. Fabian P, Brain J, Houseman EA, Gern J, Milton DK. Origin of exhaled breath particles from healthy
 and human rhinovirus-infected subjects. J Aerosol Med Pulm Drug Deliv 2011; 24:137–147.
- 18. Almstrand A-C, Bake B, Ljungström E, et al. Effect of airway opening on production of exhaled
 particles. J Appl Physiol 2010; 108:584–588.
- 7 19. Baylor ER, Peters V, Baylor MB. Water-to-air transfer of virus. Science 1977; 197:763–764.
- Blanchard DC, Syzdek L. Mechanism for the water-to-air transfer and concentration of bacteria.
 Science 1970; 170:626–628.
- 21. Walls PLL, Bird JC. Enriching particles on a bubble through drainage: Measuring and modeling the
 concentration of microbial particles in a bubble film at rupture. Elementa: Science of the
 Anthropocene 2017; 5:34.
- Michaud JM, Thompson LR, Kaul D, et al. Taxon-specific aerosolization of bacteria and viruses in an
 experimental ocean-atmosphere mesocosm. Nature Communications 2018; 9:2017.
- Cocherie T, Bastide M, Sakhi S, et al. Decreased Sensitivity of Rapid Antigen Test Is Associated with a
 Lower Viral Load of Omicron than Delta SARS-CoV-2 Variant. Microbiology Spectrum 2022;
 0:e01922-22.
- Puhach O, Adea K, Hulo N, et al. Infectious viral load in unvaccinated and vaccinated individuals
 infected with ancestral, Delta or Omicron SARS-CoV-2. Nat Med **2022**; Available at:
 https://www.nature.com/articles/s41591-022-01816-0.
- 25. Gregson FKA, Watson NA, Orton CM, et al. Comparing aerosol concentrations and particle size
 distributions generated by singing, speaking and breathing. Aerosol Science and Technology 2021;
 55:681–691.
- 26. Hui KPY, Ho JCW, Cheung M-C, et al. SARS-CoV-2 Omicron variant replication in human bronchus
 and lung ex vivo. Nature 2022; 603:715–720.
- 27. Lyngse FP, Kirkeby CT, Denwood M, et al. Transmission of SARS-CoV-2 Omicron VOC subvariants
 BA.1 and BA.2: Evidence from Danish Households. 2022; :2022.01.28.22270044. Available at: https://www.medrxiv.org/content/10.1101/2022.01.28.22270044v1. Accessed 8 April 2022.
- 28. Yu J, Collier AY, Rowe M, et al. Neutralization of the SARS-CoV-2 Omicron BA.1 and BA.2 Variants.
 New England Journal of Medicine 2022; 0:null.
- Pedersen RM, Bang LL, Madsen LW, et al. Early Release Serum Neutralization of SARS-CoV-2
 Omicron BA.1 and BA.2 after BNT162b2 Booster Vaccination Volume 28, Number 6—June 2022 Emerging Infectious Diseases journal CDC. Available at:
- 34 https://wwwnc.cdc.gov/eid/article/28/6/22-0503_article. Accessed 31 March 2022.

- Hui KP, Ng K-C, Ho JC, et al. Replication of SARS-CoV-2 Omicron BA.2 Variant in *Ex Vivo* Cultures of
 the Human Upper and Lower Respiratory Tract. Rochester, NY: Social Science Research Network,
- 3 2022. Available at: https://papers.ssrn.com/abstract=4123178. Accessed 14 June 2022.
- 31. Sterlin D, Mathian A, Miyara M, et al. IgA dominates the early neutralizing antibody response to
 SARS-CoV-2. Science Translational Medicine 2021; 13:eabd2223.
- Sheikh-Mohamed S, Isho B, Chao GYC, et al. Systemic and mucosal IgA responses are variably
 induced in response to SARS-CoV-2 mRNA vaccination and are associated with protection against
 subsequent infection. Mucosal Immunol 2022; :1–10.
- 9 33. Gaebler C, Wang Z, Lorenzi JCC, et al. Evolution of antibody immunity to SARS-CoV-2. Nature 2021;
 591:639–644.
- 11 34. Yao L, Zhu K-L, Jiang X-L, et al. Omicron subvariants escape antibodies elicited by vaccination and
- 12 BA.2.2 infection. The Lancet Infectious Diseases **2022**; 0. Available at:
- https://www.thelancet.com/journals/laninf/article/PIIS1473-3099(22)00410-8/fulltext. Accessed
 23 June 2022.
- 15 35. Cao Y, Yisimayi A, Jian F, et al. BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron
 infection. Nature 2022; :1–3.
- 17 36. Al-Aly Z, Bowe B, Xie Y. Long COVID after breakthrough SARS-CoV-2 infection. Nat Med **2022**; :1–7.

1 Table

		Enrolled June 2020 - April 2021 ^a	Enrolled September 2021 - March 2022	All participants	~
Number of parti	cipants	61	32	93	
Number of exhal	led breath samples	100	50	150	
	Ancestral strains and other	57 (93)	0 (0)	57 (61)	
Variant, N (%)	Alpha	4 (7)	0 (0)	4 (4)	
	Delta	0 (0)	3 (9)	3 (3)	
	Omicron BA.1	0 (0)	8 (25)	8 (9)	
	Omicron BA.1.1	0 (0)	14 (44)	14 (15)	
	Omicron BA.2	0 (0)	7 (22)	7 (8)	
Female, N (%)		23 (38)	13 (41)	36 (39)	
Age, mean ± SD		23.6 ± 9	27.2 ± 15.3	24.8 ± 11.6	
A NT	<18	1 (2)	3 (9)	4 (4)	
Age group, N	18-45	57 (93)	24 (75)	81 (87)	
(%)	>45	3 (5)	5 (16)	8 (9)	
Race/Ethnicity,	White	48 (79)	19 (59)	67 (72)	
N(%)	Black/African	7 (12)	5 (16)	12 (13)	
	American				
	Hispanic	8 (13)	5 (16)	13 (14)	
BMI, mean ± SD		25.2 ± 4.5	24.7 ± 5.4	25 ± 4.8	
Chronic respirat	tory illness, N (%) ^b	13 (21)	6 (19)	19 (20)	
	Boosted	0 (0)	20 (63)	20 (22)	
Vaccination	Fully vaccinated, not boosted	0 (0)	12 (37)	12 (13)	
status, IN (70)	Partially vaccinated	3 (5)	0 (0)	3 (3)	
	Not vaccinated	58 (95)	0 (0)	58 (62)	
Anti-spike RBD	antibody (IgG), N (%)	6 (10) ^d	32 (100)	38 (41)	
Anti-nucleocapsi	id antibody (IgG), N (%)	N/A ^e	5 (16)	5 (5)	
Ever symptomat	ic, N (%)	58 (95)	32 (100)	90 (97)	
C	Days post symptom onset ^f , mean ± SD (range)	5 ± 3 (0-13)	3 ± 2 (1-7)	4 ± 2 (0-13)	
	Coughs per 30 min, mean ± SD (range)	1 ± 4 (0-24)	8 ± 15 (0- 69)	4 ± 10 (0-69)	
Symptomatic participants	Median upper respiratory symptoms ^g (IQR)	2 (1 - 3.8)	3.5 (2 - 6)	3 (1 - 4)	
	Median lower respiratory symptoms (IQR)	0 (0 - 1.8)	1 (0.2 - 2)	1 (0 - 2)	
	Median systemic symptoms (IQR)	1 (0 - 3)	2 (1 - 6)	2 (0 - 4)	

Table 1. Demographics for SARS-CoV-2 cases enrolled June 6, 2020 – March 11, 2022

Median gastrointestinal symptoms (IQR)	0 (0 - 1)	1 (0 - 2)	0 (0 - 1)
Temperature (C), mean ± SD	37.2 ± 0.3	37 ± 0.3	37.1 ± 0.3
Oxygen saturation (SpO2), mean ± SD	97.8 ± 1	97.9 ± 0.8	97.8 ± 1

1 BMI = Body mass index; RBD = Receptor Binding Domain; IgG = Immunoglobulin class G;

2 IQR = Interquartile range

- a. Previously reported cases (57) and four others lacking blood samples [6].
- 4 b. Chronic respiratory illness = volunteers with any chronic obstructive pulmonary disease,

5 asthma, other lung diseases.

- 6 c. Boosted = received one vaccine booster dose ≥ 8 days prior to study enrollment; Fully
- 7 vaccinated, not boosted = received only two doses of BNT162B2, mRNA-1273, or NVX-
- 8 CoV2373, or one dose of Ad26.COV2 \geq 14 days prior to study enrollment; Partially
- 9 vaccinated = received only one dose of BNT162B2 or mRNA-1273.
- 10 d. Serologic status data for four participants were missing due to a lack of blood samples.
- 11 e. Anti-nucleocapsid antibodies were not measured for these participants.
- 12 f. Days since symptom onset at the time of each sample collection visit.
- 13 g. Symptoms at the time of each sample collection visit. Sixteen symptoms were rated from 0 to
- 14 3 with a maximum possible composite score of 15 for upper respiratory, 9 for lower
- respiratory, 12 for systemic symptoms and 12 for gastrointestinal symptoms.

1 Figure Legends

Figure 1. Viral RNA load and culture results from SARS-CoV-2 Delta and Omicron (BA.1, 2 **BA.1.1, and BA.2**) cases. Violin plots present the viral RNA copies on the log 10 scale of 3 culture negative and positive samples from SARS-CoV-2 Delta and Omicron cases by sample 4 type from September 14, 2021 to March 11, 2022, with one sample of each type per case. Each 5 point represents a case. a, Mid-turbinate swab (MTS), saliva, and phone swabs. b, Coarse (>5 6 μ m in diameter) and *Fine* (\leq 5 μ m in diameter) exhaled breath aerosol (EBA) from 30-minute 7 sampling events. The *n* at the bottom of the plots indicates the number of cases. Cases with no 8 detectable viral RNA were assigned a copy number value of one. 9 Figure 2. Viral RNA copies (log 10 scale) in exhaled breath aerosol (EBA) samples for 10 SARS-CoV-2 variants over time. a, c, e, Scatter plots depict the change of viral RNA copies on 11 the log 10 scale from June 6, 2020 to March 11, 2022. Each point represents a sample collected 12 for an individual on a specific date. b, d, f, Boxplots present the comparison of viral RNA copies 13 on the log 10 scale by SARS-CoV-2 variants. The Kruskal-Wallis p-value indicates the global 14 comparison among the four variants. The asterisks indicate the pairwise comparison between two 15 variants. Only those with a p-value less than 0.05 are shown (*: $p \le 0.05$; **: $p \le 0.01$; ***: $p \ge 0.01$; **: $p \ge 0.01$; **: 16 <= 0.001; ****: p <= 0.0001). The *n* indicates the number of samples included in each boxplot. 17 **a**, **b**, Fine EBA ($\leq 5 \mu m$ in diameter); **c**, **d**, Coarse EBA ($>5 \mu m$ in diameter); **e**, **f**, Total EBA 18 19 (fine and coarse combined). Ancestral/other means SARS-CoV-2 ancestral strains and other variants not associated with increased transmissibility. Omicron includes BA.1, BA.1.1, and 20 BA.2 subvariants. 21

Figure 3. Correlation between viral RNA copies in fine ($\leq 5 \mu m$ in diameter) exhaled breath 1 aerosol (EBA) and mid-turbinate swab (MTS) samples as well as saliva. The locally 2 weighted smoothing (LOESS) curves and spearman correlation coefficients (rho) demonstrate 3 4 the correlation of the RNA copies on the log 10 scale between *fine* EBA and MTS (a and b) as well as *fine* EBA and saliva (**c** and **d**) from June 6, 2020 to March 11, 2022. The shaded areas 5 represent the 95% confidence interval of the smooth curves. Each point represents samples 6 collected from an individual on a specific day. Rho (ρ) means spearman correlation coefficient. **a** 7 and **c** depict the correlations among Pre-Omicron (ancestral/other, Alpha, and Delta) infections. 8 **b** and **d** depict the correlations among Omicron (including BA.1, BA.1.1, BA.2) infections. 9 Ancestral/other means SARS-CoV-2 ancestral strains and other variants not associated with 10 increased transmissibility. 11 Figure 4. Predictors for SARS-CoV-2 RNA loads in *fine* exhaled breath aerosol. a-b, 12 Predictors for viral RNA loads in *fine* exhaled breath aerosol among 29 participants with 13 Omicron (BA.1, BA.1.1, BA.2) infections enrolled from December 16, 2021 to March 11, 2022. 14 c-d, Predictors of viral RNA loads in *fine* exhaled breath aerosol over the course of the pandemic 15 from June 6, 2020 to March 11, 2022. Unadjusted models show the effect of one predictor at a 16 time; adjusted models include the multiple predictors shown so that the effect of each predictor is 17 adjusted for the effect of other predictors. Linear mixed-effect models with censored responses 18 analyses accounted for samples below the limit of detection and repeated measures from the 19 20 same subject. Potential confounding by age and sex were controlled by including them in all adjusted models. 21 22 Effect estimates and their 95% confidence intervals are shown as the ratio of RNA copy number

of samples: variant to variants other than Alpha/Delta/Omicron, Omicron BA.2 to Omicron BA.1

3

Figure 4 305x356 mm (x DPI)