
 

 

Since January 2020 Elsevier has created a COVID-19 resource centre with 

free information in English and Mandarin on the novel coronavirus COVID-

19. The COVID-19 resource centre is hosted on Elsevier Connect, the 

company's public news and information website. 

 

Elsevier hereby grants permission to make all its COVID-19-related 

research that is available on the COVID-19 resource centre - including this 

research content - immediately available in PubMed Central and other 

publicly funded repositories, such as the WHO COVID database with rights 

for unrestricted research re-use and analyses in any form or by any means 

with acknowledgement of the original source. These permissions are 

granted for free by Elsevier for as long as the COVID-19 resource centre 

remains active. 

 



1536

152 Pathophysiology of Neonatal Sepsis
James L. Wynn | Hector R. Wong

INTRODUCTION
A successful immune response is critically necessary to eradicate 
infectious challenges and prevent dissemination of the infection 
in the host. However, if inflammation is not limited and becomes 
generalized, it can result in the constellation of signs and symp-
toms of a systemic inflammatory response syndrome (SIRS). If 
the infection is not contained, the spread of the pathogen from 
its local origin through the blood may result in systemic endo-
thelial activation and precipitate sepsis, severe sepsis, and septic 
shock. Progression of sepsis to shock may lead to multiple organ 
dysfunction syndrome (MODS) and ultimately death.

Host immunity is divided into innate and adaptive immune 
systems for purposes of discussion and teaching but there is a 
great deal of interaction between the two systems. Innate immu-
nity is rapid, largely nonspecific, and composed of barriers, 
phagocytic cells, the complement system, and other soluble 
components of inflammation. After breech of a barrier, cellular 
elements of the innate immune response are the first line of 
defense against the development and progression of infection. 
Adaptive immunity, which is antigen specific, is long lived, and 
often takes several days to develop, provides immunologic speci-
ficity and memory. These systems work together to protect the 
host from pathogenic challenge but may also precipitate host 
injury through aberrant responses. The outcome of infection is 
dependent on at least four major factors: (1) the pathogen, (2) 
the pathogen load, (3) the site of infection, and (4) the host 
response. Less is known about the host response in neonates 
compared with adults for a number of reasons, the principal one 
being a highly variable definition of disease.

Our understanding of the pathophysiology of sepsis is largely 
from investigations in adult populations, including both humans 
and animals. There is clear evidence from both preclinical 
models of sepsis and humans that neonates manifest different 
host immune responses as compared with adults.1-4 Even in com-
parison with children, neonates manifest a unique host immune 
response to septic shock.5 Thus neonatal-specific clinical inves-
tigations, particularly in very preterm infants, are required to 
improve both survival and long-term outcomes for these pop-
ulations. A better understanding of the pathophysiology will 
uncover new opportunities for interventional studies ultimately 
aimed at improving outcomes. To this end, in this chapter we 
explore the pathophysiology of sepsis in the neonate, with 
special attention paid to the immunobiology of sepsis.

DEFINITION OF SEPSIS
Adult and pediatric intensivists currently use generally accepted 
definitions for sepsis for goal-based therapeutic interventions.6-9 
These definitions are critical to facilitate epidemiologic studies, 
to accurately determine disease prevalence, to select patients for 
clinical trials, and ultimately to improve the delivery of care. The 

generally accepted pediatric definition for sepsis, established in 
2005, was intended for all children (<18 years old), including 
term neonates (≥37 weeks’ completed gestation).6 Preterm neo-
nates (<37 weeks’ completed gestation) were specifically 
excluded from the pediatric generally accepted definitions, and 
neonatal-perinatal subspecialists were not represented among 
the pediatric consensus experts. To investigate whether the 
pediatric generally accepted definitions for SIRS and sepsis 
applied to term infants, Hofer and colleagues10 retrospectively 
examined 476 term neonates and found that the generally 
accepted definitions applied to only 53% of cases of culture-
positive early-onset sepsis. Neonatal sepsis has been inconsis-
tently defined on the basis of a variety of clinical and laboratory 
criteria, which makes the study of this condition very difficult.11 
Diagnostic challenges and uncertain disease epidemiology neces-
sarily result from a variable definition of disease. The lack of a 
generally accepted definition for neonatal sepsis remains a sig-
nificant hindrance towards improving outcomes and accurately 
describing disease pathophysiology. Thus working definitions 
for the sepsis continuum, specific for preterm and term neo-
nates, are needed to provide a uniform basis for clinicians and 
researchers to study and diagnose severe sepsis. The addition of 
immune biomarker–based staging of disease to clinical sign 
staging is highly likely to increase the accuracy of patient clas-
sification for future multicenter clinical trials that will test novel 
interventions.

EPIDEMIOLOGY AND RISK FACTORS FOR 
DEVELOPMENT OF NEONATAL SEPSIS

Sepsis or serious infection within the first 4 weeks of life kills 
more than 1 million newborns globally every year.12,13 The inci-
dence of neonatal sepsis is variable (from less than 1% to more 
than 35% of live births) on the basis of gestational age and time 
of onset (early-onset sepsis [<72 hours after birth] or late-onset 
sepsis [≥72 hours after birth]).14-20 Preterm neonates have the 
greatest sepsis incidence and mortality rates among all age-
groups21-26 (Figure 152-1).

Risk factors for developing sepsis in neonates, particularly the 
very premature, have been well described.14,15,27-33 Prematurity, 
low birth weight (especially infants weighing less than 1,000 g), 
male sex, a maternal vaginal culture positive for group B strep-
tococcus (GBS), prolonged rupture of membranes, maternal 
intrapartum fever, and chorioamnionitis are strongly associated 
with an increased risk for early-onset sepsis.30 Chorioamnionitis 
is associated with the greatest risk for subsequent clinical or 
culture-proven sepsis.29 Recent studies demonstrate the risk for 
sepsis in newborn infants born to women with clinical chorio-
amnionitis is strongly dependent on gestational age, with minimal 
risk in neonates aged 35 weeks or older and greater risk with 
increasing degrees of prematurity.34-41 The risk for neonatal 
sepsis conferred by maternal GBS colonization29 is significantly 
reduced with adequate intrapartum antibiotic prophylaxis.42 
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ated with sepsis-like syndromes (e.g., echovirus, enterovirus, 
parechovirus, Coxsackie virus, adenovirus, parainfluenza virus, 
rhinovirus, and coronavirus).50,63-65

THE ROLE OF BARRIER DEFENSES IN 
NEONATAL SEPSIS

Physical barriers, including skin and mucosal surfaces, are the 
first point of contact between the host and potential pathogens. 
Thus a successful immune defense in addition to epithelial barrier 
function is critical to prevent the development of local infection. 
Multiple immune elements are present to prevent attachment 
and propagation of pathogens while simultaneously permitting 
the presence of commensal organisms required for homeostasis. 
Vernix enhances skin barrier function in late-preterm and term 
neonates. Vernix is a complex material comprising water (80.5%), 
lipids (10.3%), and proteins (9.1%) produced by fetal sebaceous 
glands during the last trimester66 and is largely absent in preterm 
neonates born before 28 weeks’ gestation. Vernix provides a 
barrier to water loss, improves temperature control, and serves 
as a shield containing antioxidants and innate immune factors 
such as antimicrobial proteins and peptides (APPs).67 The APPs 
on the surface of the newborn’s skin (and replete in the amniotic 
fluid68-70) are capable of killing/inactivating common neonatal 
pathogens, including GBS, E. coli, and Candida species.71 Ery-
thema toxicum is an immune-mediated manifestation that results 
from bacterial colonization of the skin occurring shortly after 
birth.72,73 This common cutaneous immune response is less 
common in preterm infants than in term infants, highlighting the 
impact of developmental age on host immune capabilities.74 In 
contrast to the moist mucosal surfaces of the respiratory and 
gastrointestinal (GI) tracts, the skin is arid, which further reduces 
the chances for microbial invasion.

The outermost layer of the skin, the stratum corneum, pre-
vents microbial invasion, maintains temperature, and reduces 
the risk for dehydration through prevention of transcutaneous 
water loss.75 The immature and incompletely developed stratum 
corneum of preterm newborns takes at least 1 to 2 weeks after 
birth to become fully functional76 and may take up to 8 weeks 
in the extremely preterm neonate, significantly increasing the 
risk for barrier dysfunction.77 Disruption of the cutaneous barrier 
by trauma (e.g., placement of an intravenous catheter or heel 
stick) or chemical burn allows microorganisms to enter the 
subcutaneous tissue, increasing the likelihood of their establish-
ing a local infection (Figure 152-2). The likelihood of a microbial 
breach of the cutaneous barrier rises in the presence of intrave-
nous catheters, which are essential for critical care. Emollients, 
aimed at enhancing the barrier function of preterm newborn 
skin, increase the risk for nosocomial infection and their use is 
not recommended.78

Mucosal barriers contain multiple components that serve  
to prevent infection, including acidic pH, mucus, cilia, proteo-
lytic enzymes, APPs, opsonins such as surfactant proteins, senti-
nel immune cells such as macrophages, dendritic cells, 
polymorphonuclear neutrophils (PMNs), and T cells, as well as 
commensal organisms.79 Like the skin, the GI mucosa is quickly 
colonized after birth and contains a significant repository of 
microorganisms.80-82 GI barrier integrity, paramount for preven-
tion of spread of microorganisms out of the intestinal compart-
ment, is dependent on the interaction between commensal 
organisms and host epithelium. Interleukin (IL)-17, produced by 
type 3 intestinal innate lymphoid cells in the presence of the 
microbiota, drives granulocytosis and may protect the neonatal 
host from infectious challenge.83 A loss of intestinal barrier integ-
rity likely plays a role in the development of necrotizing entero-
colitis (NEC) and late-onset sepsis.84,85 Prolonged antibiotic 
treatment, hypoxia, and remote infection are factors known to 

Despite the efficacy of this intervention, the incidence of inva-
sive GBS disease in African American neonates is still more than 
twice that in white babies,43 and the incidence of Escherichia 
coli sepsis may be rising in very-low-birth-weight (VLBW) neo-
nates.44 Vaginal delivery in the presence of maternal active 
primary herpes simplex virus significantly increases the risk for 
a neonatal herpes simplex virus infection, which has a fulminant 
course and high mortality.45-47 Preexisting maternal immunodefi-
ciency or sepsis also increases the risk for sepsis in the neonate.48 
In addition, care practices after birth, such as intubation, 
mechanical ventilation, and placement of central venous lines, 
increase the risk for the development of sepsis.49

MICROBIOLOGY OF SEPSIS IN NEONATES
A number of pathogens have been associated with sepsis in the 
neonatal period. The predominant cause is bacterial; however, 
certain viral infections are associated with a fulminant course 
and significant mortality.50-52 In a large (n = 104,676), multicenter 
study of VLBW infants (<1500 g), gram-positive organisms 
accounted for 34% of pathogens causing early-onset sepsis and 
61% of those causing late-onset sepsis. In contrast, gram-negative 
organisms were responsible for 58% of early-onset sepsis and 
26% of late-onset sepsis.53 Candida species accounted for 3% of 
cases of early-onset sepsis and 11% of cases of late-onset sepsis. 
Infection by gram-negative organisms, particularly Pseudomo-
nas species, carries a higher risk for fulminant course and death 
than infection by other pathogen groups.14,15,49,54-56 Gram-positive 
causes of sepsis are dominated by GBS and coagulase-negative 
staphylococci (CoNS).15,57 Although the high mortality rate for 
GBS has been well described (especially among infants born 
prematurely), mortality rates associated with CoNS are signifi-
cantly lower.15,16 Fungi may also be associated with fulminant 
neonatal sepsis and predominantly affect VLBW infants.15,58,59 
Independent predictors of in-hospital neonatal mortality after 
late-onset sepsis were Pseudomonas infection (adjusted odds 
ratio [OR], 14.31; 95% confidence interval [CI], 3.87% to 53.0%) 
and fungemia (OR, 5.69; 95% CI, 2.48% to 13.01%).60 The limited 
sensitivity of current methods to identify causative organisms is 
partially due to an inability to take a large sample of blood from 
newborn infants with suspected sepsis.61 Blood culture–negative 
(“clinical”) sepsis is estimated to occur at a nearly 10-fold greater 
rate than blood culture–positive sepsis.62 In some of these 
infants, sepsis may also be due to novel viral pathogens associ-

Figure 152-1  Sepsis  incidence  and  mortality  in  humans  across 
developmental age-groups. 
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the production of mucus and mucociliary clearance of patho-
gens and debris.95 Premature neonates have relatively more 
goblet cells than do maturer neonates, leading to a decrease in 
mucociliary clearance. Respiratory mucosal function can be 
impaired by surfactant and saliva deficiency, altered mucus pro-
duction, and mechanical ventilation. Ventilation is associated 
with decreased mucociliary clearance, airway irritation, and 
parenchymal lung injury (see Figure 152-2). Intubation is also 
associated with the progressive accumulation of colonizing bac-
teria and bacterial endotoxin in respiratory fluids, with concomi-
tant mobilization of endotoxin-modulating APPs to the airway.96 
Neonates with surfactant deficiency lack APPs such as surfactant 
proteins A and D, which are also absent in commercially avail-
able surfactant preparations.97 There is an age-dependent matura-
tion in the ability of respiratory epithelium to elaborate APPs 
(cathelicidin and β-defensins), such that the respiratory epithe-
lium of preterm newborns mounts a deficient APP response.98 

disrupt or injure the neonatal intestinal barrier (see Figure 152-
2).86-88 Under these circumstances, the gut may become the 
motor of systemic inflammation.89 Mechanistically, Paneth cells 
and intestinal lymphoid cells may release excessive amounts of 
IL-17, which, in turn, plays a critical role in the development of 
SIRS.90 Many interventions aimed at reducing the frequency of 
sepsis in neonates via enhancement of mucosal barrier integrity 
have been evaluated. Neither probiotics nor glutamine supple-
mentation has reduced the incidence of neonatal sepsis.91 In 
contrast, human milk feeding is associated with a reduction in 
the risk for sepsis92 and NEC93,94 and is strongly encouraged, 
especially in preterm infants.

Respiratory mucosa is defended in utero by amniotic fluid and 
pulmonary APPs, surfactant proteins A and D, alveolar macro-
phages, and PMNs, among other immune elements. The surface 
and submucosal gland epithelium of the conducting airways is 
a constitutive primary participant in innate immunity through 

Figure 152-2  Physical barriers. A, Respiratory mucosa. A foreign body (an endotracheal tube, ETT) and/or positive pressure can irritate and 
injure  the  respiratory  epithelium  (ciliated  cells;  gray arrowheads  denote  denuded  areas).  Increased  numbers  of  goblet  cells  (blue cells with 
inclusions) with decreased mucociliary clearance of the airway further increase the likelihood of infection (bacteria represented by purple spheri-
cal chains and blue/pink rods). B, Skin. Disruptions associated with trauma (venipuncture or heel stick), a peripherally inserted central catheter 
(PICC), a peripheral  intravenous  line (PIV), or tape-related abrasions compromise the skin barrier  (bacteria represented by clusters of purple 
spheres and green rods).  C,  Gastrointestinal  mucosa.  Luminal  bacteria  (microbiota)  are  a  valuable  component  of  the  mucosal  barrier.  The 
interaction between intestinal bacteria and intestinal epithelium is necessary for homeostasis and normal function of repair mechanisms. Dis-
ruption of  this  interaction,  through  the use of  antibiotics or  via  stress  to  the organism  (e.g.,  hypoxia or  remote  infection such as sepsis or 
pneumonia), results in loss of homeostasis and degradation of the intestinal boundaries with subsequent microbial translocation. 
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the cell surface and in endosomes, whereas RLRs and NLRs 
detect pathogens only intracellularly. The discovery that TLR4 
was integral for a robust lipopolysaccharide (LPS)-mediated 
inflammatory response after gram-negative sepsis may be why 
TLRs have been more thoroughly investigated in the setting of 
sepsis than other PRRs.100 Each of the 10 known TLRs in humans, 
present on and within multiple cell types, recognizes extracel-
lular and intracellular pathogens via specific PAMPs.101,102 Multi-
ple TLRs may be activated in concert by intact or partial 
microorganisms and in turn activate multiple second-messenger 
pathways simultaneously.102,103

LPS is the prototypic mediator of systemic inflammation and 
generates many of the clinical findings of sepsis and septic 
shock, including MODS and death.104 LPS signals through TLR4 
in conjunction with the adaptor proteins CD14 and myeloid dif-
ferentiation factor 2.105 In adults a reduction in mortality and 
improvement in hemodynamics were demonstrated when the 
level of serum LPS was reduced.106 The level of LPS is elevated 
in blood from infected neonates and those with NEC even in the 
absence of gram-negative bacteremia.84 High levels of circulating 
endotoxin found during sepsis and NEC are associated with 
multiorgan failure, thrombocytopenia, neutropenia, and death.84 
Administration of anti-LPS antibodies to a small number of 

These deficiencies as well as those related to cellular function in 
combination with invasive procedures lead to a reduction in 
respiratory barrier function that increases the risk for sepsis.

MOLECULAR EVENTS DURING  
EARLY INFECTION

PATHOGEN RECOGNITION
Once the local barrier function has been compromised, patho-
gen recognition by local immune sentinel cells is the first step 
towards the development of an immune response (Figure 152-3). 
Elegant sensing mechanisms have evolved to facilitate detection 
of potentially pathogenic microorganisms. Multiple classes of 
pathogen recognition receptors (PRRs) have been discovered 
that serve as detectors of pathogen-associated molecular pat-
terns (PAMPs), including cell wall and membrane components, 
flagellum, nucleic acids, and carbohydrates.99 A litany of PRR 
classes have been discovered, including the Toll-like receptors 
(TLRs), NOD-like receptors (NLRs), retinoic acid–inducible 
protein I like receptors (RLRs), peptidoglycan recognition pro-
teins, β2-integrins, and C-type lectin receptors. The TLRs, β2-
integrins, and C-type lectin receptors detect pathogens both on 

Figure 152-3  Activation of sentinel immune cells. Sentinel cells (e.g., monocytes, macrophages) sense pathogens via pathogen-associated 
molecular patterns (PAMPs) or damage associated molecular patterns (DAMPs) binding to pathogen recognition receptors. Pathogen recogni-
tion receptors include Toll-like receptors, retinoic acid–inducible protein I like receptors, NOD-like receptors, C-type lectin receptors, and β2-
integrins.  PAMPs  include  lipopolysaccharide  (LPS),  lipoteichoic  acid  (LTA),  DNA,  and  RNA.  DAMPs  can  also  be  sensed  through  Toll-like 
receptors and include uric acid (UA), heat shock proteins (Hsp), and high-mobility group box 1 (HMGB-1). Signaling occurs through a series 
of second messengers and results in transcription and translation of cytokines and chemokines that amplify the immune response. IFN, Inter-
feron; IL, interleukin; MCP, monocyte chemoattractant protein; MIP, macrophage inflammatory protein; NLR, NOD-like receptors; RLR, retinoic 
acid–inducible protein  I  like  receptor; TNF,  tumor necrosis  factor; TLR,  Toll-like  receptor.  (From Wynn JL, Wong HR: Pathophysiology and 
treatment of septic shock in neonates. Clin Perinatol 37(2):439–479, 2010.)
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neonates with sepsis (n = 16) with serum endotoxin present 
reduced the time to recovery but not mortality as compared with 
the values in placebo-treated neonates.107 Reduction of serum 
LPS levels by exchange transfusion in infected neonates (n = 10) 
was associated with improved survival.108

Bacterial cell wall components (such as lipoteichoic acid) 
signal primarily through TLR1, TLR2, and TLR6, flagellin signals 
through TLR5, and CpG double-stranded DNA signals through 
TLR9. Common viral PAMPs such as double-stranded RNA or 
single-stranded RNA signal through TLR3, and TLR7 and TLR8, 
respectively. Agonist-TLR binding results in a signaling cascade 
of intracellular second-messenger proteins ultimately leading to 
production of cytokines and chemokines, as well as activation 
of other antimicrobial effector mechanisms.101 Signaling through 
TLRs typically leads to the production of nuclear factor κB 
(NF-κB)-dependent inflammatory cytokines and chemokines, 
whereas signaling through Toll/IL-1 receptor–domain-containing 
adapter inducing interferon (IFN)-β (TRIF) induces production 
of type I IFNs, as well as NF-κB-related inflammatory cytokines. 
In neonates of all gestational ages, up-regulation of TLR2 and 
TLR4 messenger RNA (mRNA) occurs during gram-positive and 
gram-negative infection, respectively.109 Dysregulation or over-
expression of TLR4 is involved in the development of NEC in 
experimental animal models,110 implicating the importance of 
TLRs in the initial immune response to pathogens and their role 
in neonatal sepsis.

NOD-LIKE RECEPTORS, RETINOIC ACID–INDUCIBLE 
PROTEIN I-LIKE RECEPTORS, C-TYPE LECTIN RECEPTORS, 
AND β2-INTEGRINS
Other important intracellular PRRs include NLRs and RLRs. For 
NLRs, multiple cytosolic proteins are able to act as PAMP sensors 
(e.g., NLRP1, NLRP3, and NLRC4) and coalesce with adaptor 
proteins and procaspase 1 to form a multimeric protein complex 
termed the inflammasome.111 The formation of the inflamma-
some results in the conversion of procaspase to active caspase 
1, which cleaves the inactive precursor proteins IL-1β and IL-18 
to their active forms.111 RLRs are cytoplasmic RNA helicases that, 
like TLR3, sense double-stranded RNA of viral origin and induce 
type I IFN production and NF-κB activation.102 To date, the 
impact of RLR and NLR signaling has not been specifically exam-
ined in neonates with sepsis.

In addition to its roles in leukocyte function (adhesion, phago-
cytosis, migration, and activation) and complement binding, com-
plement receptor 3 (CR3, also known as MAC-1 and CD11b-CD18) 
functions as a pathogen sensor on the surface of phagocytes. CR3 
binds LPS, as well as a broad range of other microbial products, in 
cooperation with or independently of CD14, leading to 
up-regulation of inducible nitric oxide (NO) synthase and NO 
production.112 Diminished expression of L-selectin and CR3 on 
stimulated neonatal PMNs impairs activation and accumulation at 
sites of inflammation.99,113,114 Decreased expression of L-selectin 
and CR3 persists for at least the first month of life in term infants, 
possibly contributing to an increased risk for infection.115 The 
expression of CR3 (CD11b) may be reduced further in preterm 
neonates as compared with term neonates.116 In umbilical cord 
blood from neonates of less than 30 weeks’ gestation, PMN CR3 
content was similar to levels found in patients with type 1 leuko-
cyte adhesion deficiency (failure to express CD18).113,114 Thus 
decreased leukocyte CR3 surface expression increases the likeli-
hood of suboptimal pathogen detection and cellular activation, 
particularly in the preterm neonate.

C-type lectin receptors are PRRs that recognize bacterial, viral, 
fungal, and parasitic carbohydrate moieties. C-type lectin recep-
tors may be expressed on the cell surface (e.g., macrophage 
mannose receptor, mincle receptor, dectin 1, and dectin 2) or 
secreted as soluble proteins (e.g., mannose-binding lectin [MBL], 

(which is also named mannan-binding protein or mannan-
binding lectin) as one of the acute-phase reactants. Once bound 
to its carbohydrate ligand, MBL initiates activation of comple-
ment via the lectin pathway to promote opsonization and phago-
cytic clearance of pathogens. Plasma MBL concentrations are 
low at birth (especially in preterm infants) but rise steadily 
throughout infancy and childhood.117 Low levels of MBL are 
associated with the increased incidence of sepsis in neonates.118-120 
In addition to decreased concentrations at birth, certain genetic 
polymorphisms of MBL (namely, MBL2), have been associated 
with an increased risk for infection in some,121 but not all, 
studies.122-124 M-ficolin activates the complement system in a 
manner similar to MBL and its level is elevated in neonates with 
sepsis.125

THE ROLE OF INFLAMMATION
PRR stimulation results in rapid inflammatory mediator transcrip-
tion and translation directed at cellular activation and clearance 
of pathogenic organisms126 (see Figure 152-3). During sepsis and 
septic shock, multiple proinflammatory cytokines have been 
identified, including IL-1β, IL-6, IL-8 (CXCL8), IL-12, IL-18, IFN-γ, 
and tumor necrosis factor (TNF)-α.127 Compared with adults 
with sepsis, neonates with sepsis produce less IL-1β, TNF-α, IFN-
γ, and IL-12.128-133 The decreased cytokine production is due in 
part to decreased production of important intracellular media-
tors of TLR signaling, including myeloid differentiation factor  
88, IFN regulatory factor 5, and p38, which exhibit gestational 
age–specific decrements.134 Recent studies have demonstrated 
impaired inflammasome activation and mature IL-1β production 
by neonatal mononuclear cells.121,135 In a comprehensive study 
(>140 analytes) of serum from neonates evaluated for late-onset 
sepsis, IL-18 emerged as a predictive biomarker to differentiate 
infected neonates from uninfected neonates.136 IL-18 reduces 
PMN apoptosis,137 drives IFN-γ production,138 and induces pro-
duction of TNF-α, IL-1β, and CXCL8.139 IL-18 primes PMNs for 
degranulation with production of reactive oxygen intermediates 
on subsequent stimulation.140 Dysregulation of many of these 
functions linked to IL-18 are seen in sepsis and septic shock. 
Increased IL-18 levels have been demonstrated in premature 
neonates with brain injury141 and also in an experimental model 
of NEC,142-144 highlighting activation pathways common with 
those in ischemia and inflammation. Excessive levels of IL-1β, 
TNF-α, IL-6, CXCL8, IL-10, and IL-18, such as those seen with 
advanced-stage NEC, severe sepsis, or septic shock, correlate 
with poor survival.84,145-148 Altered cytokine levels (increased 
IL-10 and IL-6 levels and decreased CCL5 levels) may identify 
those neonates at highest risk for the development of sepsis-
associated disseminated intravascular coagulation (DIC).149

Proinflammatory cytokine production leads to activation of 
endothelial cells, including increased expression of cell adhe-
sion molecules that facilitate leukocyte recruitment and diape-
desis (Figure 152-4). Up-regulation of cell adhesion molecules 
(soluble intercellular adhesion molecule, vascular cell adhesion 
molecule, L-selectin, P-selectin, E-selectins, and CD11b-CD18) 
during sepsis facilitates rolling and extravascular migration of 
leukocytes.150-153 Decreased production of L-selectin and expres-
sion of C3 in PMNs and monocytes derived from neonates may 
impair accumulation at sites of inflammation.113,114

Chemokine gradients produced by endothelial cells and local 
macrophages are necessary for effective and specific leukocyte 
attraction and accumulation (see Figure 152-4). Without ade-
quate leukocyte recruitment, there is increased risk for propaga-
tion from a localized to a systemic infection. Although poor 
cellular chemotaxis in the neonate has been observed, it is not 
likely a result of reduced serum concentrations of chemokines 
as baseline levels are similar in preterm and term neonates as 
compared with adults.154 Suboptimal cellular chemotaxis may be 
related to other mechanisms, such as poor complement receptor 
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translocation.162 The role of HMGB-1 and RAGE signaling in 
human neonates with sepsis has not been well characterized but 
has been shown to be involved in the pathophysiology of NEC 
in an experimental model.163 Significantly lower soluble RAGE 
levels were found in human fetuses that mounted robust inflam-
matory responses and HMGB-1 levels correlated significantly 
with the levels of IL-6 and S100β calcium-binding protein in the 
fetal circulation.164

Other specific damage-associated molecular patterns, includ-
ing heat shock proteins and uric acid, may also stimulate TLRs, 
regulate PMN function, and serve as immune adjuvants. Heat 
shock protein production in infected neonates has not been 
evaluated but polymorphisms in heat shock proteins increase 
the risk for acute renal failure in preterm neonates.165 The levels 
of heat shock proteins are significantly elevated in infected 
adults and children.166 Elevated heat shock protein 60 and heat 
shock protein 70 level measured within 24 hours of pediatric 
intensive care unit admission were associated with septic shock 
and there was a strong trend towards increased mortality.167,168 
Uric acid can increase cytokine production, PMN recruitment, 
and dendritic cell stimulation169 and may also serve as an antioxi-
dant.170 The level of uric acid is reduced in the serum of neonates 
with sepsis as compared with control neonates.171

In addition to facilitating leukocyte attraction, proinflam-
matory stimuli result in production of vasoactive substances 
that decrease or increase vascular tone and alter vascular per-
meability (see Figure 152-4). These include platelet-activating 
factor, thromboxane, leukotrienes, NO, histamine, bradykinin, 

up-regulation after stimulation,99 deficiencies in another down-
stream signaling process,155 or inhibition by bacterial products.156 
The levels of a wide variety of chemokines are increased during 
sepsis, including CXCL10 (IP-10), CCL5 (RANTES), CCL2 (mono-
cyte chemoattractant protein 1), CCL3 (macrophage inflamma-
tory protein 1α), and CXCL8.157 The levels of other chemoattractive 
molecules also increase with sepsis, including complement pro-
teins C3a and C5a, APPs, including cathelicidins and defensins, 
and components of invading bacteria themselves.127,136 The 
importance of chemoattractive substances in the pathogenesis 
of severe sepsis is highlighted by studies showing that CXCL8 
can be used as a stratifying factor for survival in children,158 and 
C5a is implicated in sepsis-associated organ dysfunction in 
adults.104 Chemokine investigations in infected neonates revealed 
that CXCL10 is a sensitive early marker of infection,157 and low 
CCL5 levels may predict development of DIC.149

Damage-associated molecular patterns (or alarmins), such as 
intracellular proteins or mediators released by dying or damaged 
cells, may also active PRRs. For example, the damage-associated 
molecular pattern high-mobility group box 1 (HMGB-1) is 
involved in the progression of sepsis to septic shock in 
adults.104,159 Macrophages or endothelial cells stimulated with 
LPS or TNF-α produce HMGB-1, which signals through TLR2, 
TLR4, and receptor for advanced glycation end products 
(RAGE).160 HMGB-1 results in cytokine production, activation of 
coagulation, and PMN recruitment.159,161 HMGB-1 mediates dis-
ruption of epithelial junctions within the gut via the induction 
of reactive nitrogen intermediates, leading to increased bacterial 

Figure 152-4  Cellular recruitment and endothelial activation following pathogen detection. Pathogen-stimulated tissue/blood monocytes, 
dendritic cells, and macrophages release proinflammatory cytokines that activate the surrounding endothelium. Endothelial activation results 
in up-regulation of cell adhesion molecules, production of chemokines and vasoactive substances, activation of complement, and development 
of a procoagulant state. Recruitment of polymorphonuclear neutrophils (PMNs) occurs along the chemokine gradient surrounding the area of 
inflammation. Antiinflammatory cytokines counter the actions of proinflammatory cytokines to prevent excessive cellular activation and recruit-
ment that can result  in tissue damage and systemic inflammation. Endothelium can be damaged when PMNs release reactive oxygen inter-
mediates or from neutrophil extracellular traps. CAM, Cell adhesion molecule; DC, dendritic cell; IFN, Interferon; IL, interleukin; LTE, leukotriene; 
NO, nitric oxide; PGE, prostaglandin E; ROI, reactive oxygen intermediate; TNF, tumor necrosis factor. (From Wynn JL, Wong HR: Pathophysi-
ology and treatment of septic shock in neonates. Clin Perinatol 37(2):439–479, 2010.)
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THE IMPACT OF GENETICS IN SEPSIS-
ASSOCIATED INFLAMMATORY SIGNALING

A twin study which assessed the frequency of infections among 
monoygotic and dizygotic prematurely born twins concluded 
that 49.0% (p = .002) of the variance in susceptibility to late-
onset sepsis was due to genetic factors alone.215 The impact of 
genetics in the host response is also underscored by the increased 
risk for death from infection seen with African American race or 
male sex among low-birth-weight infants.216 An ethnically unique 
single nucleotide polymorphism in the TLR4 promoter region 
was significantly associated with gram-negative bacterial infec-
tions in preterm infants.217 Several recent studies in newborn 
infants have demonstrated an association between small varia-
tions in DNA, specifically single nucleotide polymorphisms, and 
infection development and outcomes.122,218-222

Because TLRs play an essential role in recognition and 
response to pathogens, alterations in their expression, structure, 
signaling pathways, and function can have consequences for 
host defense. Polymorphisms or mutations in TLRs are associ-
ated with increased risk for infection in adults223-226 and chil-
dren210,227,228 but are less well characterized in neonates. After 
confounders had been controlled for, the presence of a TLR4 
single nucleotide polymorphism was associated with a three-fold 
increase in the risk for gram-negative infections in VLBW 
infants.222 Polymorphisms in the TLR2, TLR5, IL10, and PLA2G2A 
(which encodes PLA2) genes were associated with the develop-
ment of neonatal sepsis.218

Modifications in expression or function of costimulatory mol-
ecules necessary for TLR activation are also associated with an 
increased risk for infection. For example, the levels of LPS-
binding protein (LBP; which binds intravascular LPS) and the  
LPS coreceptor CD14 are both increased during neonatal 
sepsis.211,229,230 Furthermore, genetic variations in these proteins 
have been associated with increased risk for sepsis in adults.231-233 
Genetic polymorphisms in myeloid differentiation factor 2, a 
small protein involved in LPS signaling through TLR4, increase 
the risk for organ dysfunction and sepsis in adults234 but the 
significance in neonates is unknown. Polymorphisms in post-TLR 
activation intracellular signaling molecules, including myeloid 
differentiation factor 88,235 IL-1 receptor–associated kinase 4,236 
and NF-κB essential modulator,237 are associated with invasive 
bacterial infection in older populations. Additional genetic poly-
morphisms in intracellular second-messenger inflammatory sig-
naling systems with impact on neonatal sepsis risk and 
progression are likely to be uncovered with the implementation 
of biobanking and mining of stored samples.

Mutations have been identified in NLRs that are involved in 
the pathogenesis of Crohn’s disease (NOD2)238 and neonatal-
onset multisystem inflammatory disease (NLRP3).239 RLR muta-
tions have been identified but have unknown clinical 
significance.240 No mutations in specific domains of NLRs have 
been found in neonates with sepsis or NEC.220,231-233,241-252 The 
importance of NLRs in Listeria monocytogenes infections in 
neonates is unknown.

INFLAMMATORY RESPONSE PROTEINS

COMPLEMENT
Complement is an important component of early innate immu-
nity that facilitates killing of bacteria through opsonization and 
direct microbicidal activity. Complement components also 
possess chemotactic or anaphylactic activity that increases  
leukocyte aggregation and local vascular permeability. Further-
more, complement reciprocally activates a number of other 
important processes, such as coagulation, proinflammatory  

and prostaglandins.172,173 These substances are produced pre-
dominantly by host endothelium and mast cells. Activated 
PMNs produce phospholipase A2 (PLA2), the level of which is 
increased in the serum of neonates with sepsis174 and leads to 
generation of vasoactive substances, including prostaglandins 
and leukotriene. Thromboxane produced by activated platelets 
and endothelin 1 produced by activated endothelium175 are 
potent vasoconstrictors that participate in the development of 
pulmonary hypertension.176-179 Overproduction of cytokines 
and vasoactive substances is associated with circulatory altera-
tions and organ failure seen in severe sepsis and septic shock 
(Figure 152-5).6,180-183

THE ANTIINFLAMMATORY RESPONSE
If the pathogen is not contained locally and inflammatory homeo-
stasis is not restored, SIRS may develop, and lead to MODS  
and death (see Figure 152-5).184 The traditional paradigm for 
understanding the host response to sepsis consists of an intense 
proinflammatory response, or SIRS, temporally followed by a 
compensatory antiinflammatory response syndrome. This para-
digm has been challenged by the failure of multiple antiinflam-
matory strategies to improve sepsis outcomes in adults.185 New 
data in adults and children demonstrate simultaneous proinflam-
matory/antiinflammatory responses where the magnitude of 
either response may determine outcome.186,187 Near simultane-
ous increases in antiinflammatory cytokine production (trans-
forming growth factor β, IL-4, IL-10, IL-11, and IL-13) occur in 
neonates during infection, countering the actions of proinflam-
matory cytokines.127,188,189 These mediators blunt the activation 
and recruitment of phagocytic cells, reduce fever, modify coagu-
lation factor expression, and decrease production of reactive 
oxygen and nitrogen intermediates, NO, and other vasoactive 
mediators.190-195

Soluble cytokine and receptor antagonists produced during 
sepsis also modulate proinflammatory mediator action. Elevation 
of the levels of TNF receptor 2 (which regulates the concentra-
tion of TNF-α), soluble IL-6 receptor, soluble IL-2, and IL-1 recep-
tor antagonist have been documented in neonatal sepsis with 
resolution after effective treatment.189,196,197 The role of these 
regulatory cytokine inhibitors in the immune response to neo-
natal sepsis and septic shock has been incompletely character-
ized. Soluble RAGE competes with cell-bound RAGE for the 
binding of HMGB-1 and other RAGE ligands.198 Soluble RAGE has 
antiinflammatory effects and its level is elevated in adults during 
sepsis.199 Furthermore, soluble RAGE improved survival and 
reduced inflammation when given to infected adult rodents.200 
Serum soluble triggering receptor expressed on myeloid cells 1 
may reduce inflammatory signaling for triggering receptor 
expressed on myeloid cells 1, and predict mortality in preterm 
neonates.201

MicroRNAs may regulate inflammation at the level of gene 
expression via several putative mechanisms.202 Several pilot 
studies in rodents and humans have demonstrated regulatory 
functions for microRNA in neonates.203-208 The impact of regula-
tory microRNAs and their effects on the host inflammatory 
response in neonates with sepsis are unclear.

Endogenous cortisol is induced by proinflammatory cytokines 
and attenuates the intensity of SIRS associated with severe sepsis 
and septic shock.209 The use of cortisol in adults with sepsis has 
been controversial.210,211 Cortisol production in newborn infants 
is significantly increased early in shock.212 However, very preterm 
neonates may have relative adrenal insufficiency that may con-
tribute to hemodynamic instability and hypotension. Cortisol 
replacement may be critical in these infants and deserves further 
study.213 It is important to note, however, that in children with 
septic shock, adjunctive corticosteroid therapy is associated 
with repression of gene programs corresponding to the adaptive 
immune system.214
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Complement-mediated activation of leukocytes during sepsis 
occurs via up-regulated cell surface receptors (complement 
receptor 1 [CD35] and CR3).257,258 C3b and C5a facilitate opso-
nization (primarily C3b), redistribute blood flow, and increase 
inflammation, platelet aggregation, and release of reactive 
oxygen intermediates (primarily C5a).259,260 C5a-mediated local 
leukocyte activation also results in increased cytokine produc-
tion with subsequent up-regulation of adhesion molecules  
on vascular endothelium and increased cell recruitment to the 
site of infection.261 Data in adults link elevated C5a levels 
with multiple facets of sepsis-associated disease, such as DIC, 
cardiac dysfunction, increased proinflammatory cytokine levels, 
SIRS, apoptosis of adrenal medullary cells leading to adrenal 

cytokine production, and leukocyte activation.104 Contrary to 
its name, the alternative pathway is the primary mechanism 
of amplification of complement activation after C3 convertase 
assembly (which cleaves C3 to C3a and C3b). Dysregulation of 
complement activation may contribute to adverse effects in indi-
viduals with severe sepsis or septic shock. Neonates, particularly 
the very premature, exhibit decreased basal levels of comple-
ment proteins and function for both the alternative pathway  
and the classical pathway.253,254 Moreover, as compared with 
adults, neonates exhibit gestational age–related degrees of 
depressed complement-mediated opsonic capabilities.255 As 
such, complement-mediated opsonization is poor in premature 
neonates and limited in term neonates.255,256

Figure 152-5  Pathophysiology of neonatal sepsis and septic shock. AEMs, Antimicrobial effector mechanisms; CV, cardiovascular; DAMPs, 
damage-associated  molecular  patterns;  DIC,  disseminated  intravascular  coagulation;  PRRs,  pattern  recognition  receptors;  SIRS,  systemic 
inflammatory  response  syndrome.  (From  Wynn  JL,  Wong  HR:  Pathophysiology  and  treatment  of  septic  shock  in  neonates.  Clin Perinatol 
37(2):439–479, 2010.)
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nization and pathogen clearance may help explain the lack of 
efficacy of intravenous immunoglobulin to prevent sepsis or 
death from sepsis in neonates.279-285

ANTIMICROBIAL PROTEINS AND PEPTIDES
APPs are the most phylogenetically ancient means of innate 
immune defense against microbial invasion. Present in nearly 
every organism, including bacteria, plants, insects, nonmamma-
lian vertebrates, and mammals, these small, often cationic pep-
tides are capable of killing microbes of multiple types, including 
viruses, bacteria, parasites, and fungi, largely by disruption of  
the pathogen membrane.286 Constitutive expression of APPs 
occurs in humans on barrier areas with consistent microbial 
exposure such as skin and mucosa. After microbial stimulation, 
both release of preformed APPs and inducible expression are 
thought to contribute to early host defense.287 Importantly, there 
is no evidence for the development of microbial resistance to 
APPs that target fundamental components of the microbial cell 
wall. Some APPs can bind and neutralize microbial components 
such as endotoxin, precluding engagement with TLRs and other 
PRRs, and diminish inflammation. Many APPs can potentially 
reduce the intensity of the inflammatory response associated 
with the presence of bacterial toxins.288-290 Because endotoxemia 
is an important contributor to neonatal MODS and death with 
sepsis and NEC,84 LPS-binding/blocking strategies, including 
use of synthetic APPs, may have a significant positive impact on 
outcomes.288,291

Bactericidal/permeability-increasing protein (BPI) is a 55-kDa 
protein present in the respiratory tract, PMN primary granules, 
and plasma. BPI exerts selective cytotoxic, antiendotoxic, and 
opsonic activity against gram-negative bacteria.288 Plasma BPI 
concentrations were higher in critically ill children with sepsis 
syndrome or organ system failure than in critically ill children 
without sepsis syndrome or organ system failure, and BPI levels 
positively correlated with the pediatric risk for death score.265 
PMNs from term neonates are deficient in BPI, potentially con-
tributing to the increased risk for infection.292 Whereas term 
neonates demonstrate up-regulation of plasma BPI during infec-
tion, premature neonates showed a decreased ability to mobilize 
BPI on stimulation,293 which may contribute to their risk for 
infection with gram-negative bacteria. Polymorphisms in BPI 
increase the risk for gram-negative sepsis in children, but the 
impact of these polymorphisms in neonates is unknown.294 Com-
pared with PMNs from adults, PMNs from term neonates produce 
similar quantities of defensins but reduced quantities of BPI and 
elastase.292,295,296 Recombinant BPI (rBPI21) treatment was associ-
ated with improved functional outcome, reduced amputation, 
but no difference in mortality in a multicenter study of children 
with severe systemic meningococcal disease.297

Lactoferrin is the major whey protein in mammalian milk (in 
particularly high concentrations in colostrum) and is important 
in innate immune host defenses. Lactoferrin is present in tears 
and saliva and has antimicrobial activity both via binding iron 
and by direct membrane disruption activity via a portion of its 
amino-terminal lactoferricin.298 Lactoferrin is also an alarmin 
(e.g., HMGB-1 or IL-33), capable of activating leukocytes, binding 
endotoxin, and modifying the host response by acting as a tran-
scription factor that regulates mRNA decay.299,300 Bovine lactofer-
rin has been shown to reduce the incidence of bacterial and 
fungal sepsis301,302 and NEC in preterm infants.303

Lysozyme is present in tears, tracheal aspirates, skin, and  
PMN primary and secondary granules and contributes to degra-
dation of peptidoglycan in bacterial cell walls. Secretory PLA2 
can destroy gram-positive bacteria through hydrolysis of their 
membrane lipids.174 PMN elastase is a serine protease released 
by activated PMNs with microbicidal function and is believed  
to play a role in the inflammatory damage seen with PMN  
recruitment, particularly in the lung.116,136 Cathelicidin and the 

insufficiency, and PMN dysfunction.104 Septic shock in adult 
humans was associated with extensive complement activation, 
C-reactive protein–dependent loss of C5a receptor on neutro-
phils, and the appearance of circulating C5a receptor in serum, 
which correlated with a poor outcome.262 Deficiencies in C5a 
receptor found in term neonates as compared with adults may 
limit the ability to respond to C5a and therefore increase the 
likelihood of infection.240 The expression of C5a receptor on 
preterm PMNs is unknown. The extent to which C5a or other 
complement proteins play a role in the development of disease 
in septic neonates remains to be determined.

Complement regulatory proteins modify the effects of com-
plement and prevent potential damage due to overactivation. In 
particular, CD59 blocks C9 polymerization and target lysis, CD55 
destabilizes CD35 and C3 and C5 convertases, and CD35 acceler-
ates the deactivation of C3b.263 Dysregulation of complement 
activation can lead to a vicious activation cycle that results in 
excessive cellular stimulation, cytokine production, endothelial 
cell activation, and local tissue damage promulgating SIRS and 
septic shock (see Figure 152-5).264

ACUTE-PHASE REACTANTS
In addition to the initial inflammatory response including com-
plement activation, molecular detection of PAMPs promotes 
IL-1β and IL-6 production, which in turn increases the produc-
tion of multiple other innate proteins that possess valuable 
immune function and serve to reduce pathogen load.265 Acute-
phase reactant proteins, produced predominantly in the liver, 
include C-reactive protein (opsonin), serum amyloid A (cellular 
recruitment), lactoferrin (reduces the level of available iron/
antimicrobial peptide lactoferricin), procalcitonin (unknown 
function), haptoglobin, fibronectin (opsonic function), pen-
traxin 3 (binds C1q and activates the classical complement 
pathway), MBL, and LPS-binding protein.127,211,229,265-270 Acute-
phase reactant proteins have been studied in neonates with 
sepsis primarily to assess them for diagnostic utility rather than 
immunologic function. In particular, elevated plasma concentra-
tions of C-reactive protein and LPS-binding protein are often 
associated with early-onset sepsis.229,271 The levels of IL-10 and 
C-reactive protein were significantly higher in preterm infants 
who did not survive sepsis, pneumonia, or NEC.272 A lack of 
sustained increase in the production of C-reactive protein and 
serum amyloid A during sepsis has also been associated with a 
fulminant course.273

PASSIVE IMMUNOGLOBULIN
The fetus receives antibodies from the mother via active placen-
tal transfer, with a significant increase beginning around 20 
weeks’ gestation. As a result of a shorter period of gestation, 
preterm neonates have lower IgG subclass levels as compared 
with term neonates, particularly IgG1 and IgG2 subclasses.274 
Preterm neonates (24 to 32 weeks’ gestation) with low IgG 
levels (serum total IgG levels below 400 mg/dL at birth) were  
at increased risk for development of late-onset sepsis but not 
death compared to those with levels above 400 mg/dL. How-
ever, IgG titers and opsonic activity to CoNS were not predic-
tive of late-onset CoNS sepsis.275 Reliance on other means of 
innate immune defense likely provides the premature neonate 
with alternative microbial control mechanisms. Despite the pres-
ence of maternally derived immunoglobulin and acute-phase 
reactant proteins, neonates exhibit impaired opsonizing activity 
compared with adults, which likely increases the risk for pro-
gression of infection.276 Complement plays a critical role in 
immunoglobulin-mediated opsonization and effector cell phago-
cytosis.277 Although immunoglobulin has many putative benefi-
cial immunologic functions, most of these have not been 
demonstrated or examined in preterm infants.278 The depen-
dence on complement for effective immunoglobulin-based opso-
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thrombocytopenia in neonates,322 which is attributed to reduced 
megakaryopoiesis in the setting of consumption with clot forma-
tion.323 Decreased platelet function in preterm neonates with 
sepsis further increases the risk for bleeding.324 In extremely 
low-birth-weight infants, platelets are hyporeactive for the first 
few days after birth, complicating the ability of the immune 
system to contain a microbiologic threat and increasing the risk 
for hemorrhage.325 Clotting can lead to propagation of inflamma-
tion via thrombin-induced production of platelet-activating 
factor. PMNs activated by platelet-activating factor or platelet 
TLR4 may then contribute to further endothelial injury and dys-
function, leading to the development of a vicious clotting-
inflammation-clotting cycle. Activated platelets may be consumed 
in clot formation and/or may also be removed from the circula-
tion by the liver,326 potentially resulting in thrombocytopenia, 
particularly during gram-negative and fungal infections.196,322,327

Systemic activation of coagulation is associated with con-
sumption of clotting factors and increased risk for bleeding, 
prolonged proinflammatory responses, and DIC.128,149,328 This 
finding is consistent with the elevated serum levels of IL-652 and 
high frequency of DIC seen with disseminated herpes simplex 
virus infection.329 In adult mice, protease-activated receptor 1 
plays a major role in orchestrating the interplay between coagu-
lation and inflammation.330 Protease-activated receptor 1 may 
modify the endothelial response during neonatal sepsis and thus 
is a target for therapeutic intervention.

ROLE OF VASCULAR ENDOTHELIUM
Recent studies have shown the critical importance of vascular 
endothelial activation in the early recognition and containment 
of microbial invasion. In transgenic mice, it was shown that 
pulmonary endothelial cells sense blood-borne bacteria and their 
products,156 whereas alveolar macrophages patrol the air 
spaces.331 These data illustrate the role of endothelium and help 
to explain in part the occurrence of acute respiratory distress 
syndrome (ARDS) and persistent pulmonary hypertension of the 
newborn associated with severe sepsis in the absence of a 
primary pulmonary infectious focus. Expression of TLRs allows 
endothelium to become activated in the presence of microbial 
components, leading to production of cytokines, chemokines, 
and adhesion molecules (e.g., vascular cell adhesion molecule, 
intercellular cell adhesion molecule, L-selectin, P-selectin, and 
E-selectin). These substances are all necessary to attract immune 
cells (primarily PMNs) to the site of infection and to facilitate 
pathogen containment.150-153,156 Vasoactive substances released 
from activated leukocytes, platelets, and endothelial cells include 
platelet-activating factor, thromboxanes, leukotrienes, NO, his-
tamine, bradykinin, and prostaglandins.172,173 The balance of NO 
and endothelin 1, a vasoconstrictor, may be disrupted with endo-
thelial damage, favoring the constrictive effects of endothelin 1 
and leading to ischemia and injury.175 This phenomenon may 
explain in part why NO inhibitors increased mortality in adults 
with septic shock.301 Stimulated endothelium can be a double-
edged sword, however, because excessive activation can lead to 
systemic overproduction of cytokines and vasoactive substances 
(including NO). Endothelial cell apoptosis, detachment from  
the lamina, and alterations in vascular tone combine to pro-
mote capillary leak, leading to hypovolemia, shock, and organ 
failure156,302,303 (see Figure 152-5). Release of myeloperoxidase 
from PMNs may also injure surrounding endothelium.332 Acti-
vated or damaged endothelium establishes a prothrombotic envi-
ronment that can result in local microvascular occlusion314 or 
progress to DIC.333

The glucocorticoid receptor is the target for cortisol, the 
primary endogenous glucocorticoid in humans, produced in the 
zona fasciculata of the adrenal glands. Endothelial glucocorticoid 

defensins are other APPs that possess antimicrobial properties.304 
Cathelicidin is present in the amniotic fluid, vernix, skin, saliva, 
respiratory tract, and leukocytes. α-Defensins are cysteine-rich 
4-kDa peptides found in amniotic fluid, vernix, spleen, cornea, 
thymus, Paneth cells, and leukocytes. β-Defensins are found in 
the skin, GI tract, urinary system, reproductive organs (placenta, 
uterus, testes, kidney), respiratory tract, breast milk, mammary 
gland, and thymus.

In addition to microbicidal action, APPs have a wide range  
of immunomodulatory effects on multiple cell types from  
both the innate immune system and the adaptive immune 
system.287,305,306 These immunomodulatory effects include altered 
cytokine and chemokine production, improved cellular chemo-
taxis and recruitment, improved cell function (maturation, acti-
vation, phagocytosis, reactive oxygen intermediate production), 
enhancement of wound healing (neovascularization, mitogene-
sis), and decreased apoptosis.

The cytosolic granules of PMN are rich in APPs, including 
α-defensins, lactoferrin, lysozyme, cathelicidin, soluble PLA2, 
and BPI. Gestational age–related decreases in the umbilical cord 
blood concentration of several APPs (cathelicidin, BPI, calpro-
tectin, soluble PLA2, α-defensins) in comparison with maternal 
serum levels have been drescibed.307 Plasma APP deficiencies 
may contribute to the increased risk for infection associated with 
prematurity, and their absence may increase the risk for endo-
toxemia. Compared with term neonates, preterm neonates 
showed lower human β-defensin 2 levels in umbilical cord 
blood.308 Up-regulation of APPs (defensins) occurs in blood of 
infected adults309 and children (defensins, lactoferrin).310 The 
effect of sepsis on the production of plasma APPs in neonates 
has not been investigated in detail.

COAGULATION
The development of a procoagulant state in the surrounding 
microvasculature allows the trapping of invading pathogens and 
prevents further dissemination (see Figure 152-5). In general, the 
intrinsic pathway amplifies coagulation after initiation by the 
extrinsic pathway.311 Reduced levels of vitamin K–dependent 
factors (factors II, VII, IX, and X), reduced thrombin generation, 
reduced consumption of platelets with formation of micro-
thrombi, and reduced levels of counterregulatory elements 
(inhibitors) increase the risk for bleeding in infants and chil-
dren.312 During sepsis, a microvascular procoagulant state devel-
ops via stimulation of phagocytes, platelets, and endothelium, 
resulting in expression of tissue factor.313,314 Tissue factor–
mediated activation of the coagulation cascade results in activa-
tion of thrombin-antithrombin complex, plasminogen activator 
inhibitor type 1, and plasmin–α2-antiplasmin complex,315 as well 
as inactivation of protein S and depletion of the anticoagulant 
proteins antithrombin III and protein C.316-318 Decreased acti-
vated protein C levels were associated with increased risk for 
death from sepsis in preterm neonates.319 A randomized con-
trolled trial of activated protein C revealed no change in mortal-
ity among pediatric patients with sepsis, but term infants younger 
than 60 days old experienced increased bleeding.320

The coagulation cascade is intimately tied to inflammation and 
complement activation.104 Cytokine production increases expres-
sion of endothelial tissue plasminogen activator inhibitor type 1. 
Plasminogen activator inhibitor type 1 inhibits fibrinolysis by 
inhibiting the conversion of plasminogen to plasmin, which in 
turn is important for the breakdown of fibrin. Deposition of 
fibrin in small vessels leads to inadequate tissue perfusion and 
organ failure.321 Increased plasminogen activator inhibitor type 
1 levels are associated with increased IL-6, nitrite, and nitrate 
levels (metabolites of NO production), the development of organ 
failure, and increased mortality.321 Sepsis is associated with 
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excessive local inflammation and tissue damage.350 High early 
levels of circulating free PMN-derived DNA produced by NETs 
are associated with MODS and death.351 NETs contain destructive 
proteases capable of killing bacteria even after the PMN has 
died.352 Formation of NETs is reduced in PMNs from preterm 
neonates and nearly absent in term neonates353 but may occur 
with sustained cellular stimulation.354 NET formation may result 
in collateral damage to surrounding tissues when the target 
microbe is too large to be effectively phagocytosed (e.g., fungal 
hyphae).355 The contribution of NET production to detrimental 
outcomes in infected neonates is unknown but excessive NET 
formation with collateral tissue injury may contribute to the poor 
outcomes seen in preterm neonates with fungal infections.356

Rapid depletion of bone marrow PMN reserves during infec-
tion, particularly in neonates,357 can lead to neutropenia, with 
consequent impaired antimicrobial defenses and significantly 
increased risk for death.358 In a multivariate analysis, neutropenia 
and metabolic acidosis were associated with fatal neonatal 
sepsis.359 Neutropenia is particularly common in gram-negative 
sepsis in neonates.360 Release of immature PMN forms (bands), 
which exhibit greater dysfunction than mature PMNs,361 may 
further predispose to adverse outcomes. Murine neonates with 
experimental sepsis exhibit delayed emergency myelopoiesis (a 
process by which the host repopulates peripheral myeloid cells 
lost early during sepsis), that is independent of TRIF and myeloid 
differentiation factor 88.362 Interventions aimed at addressing 
reduced PMN numbers in neonates have included provision of 
mature PMNs363 and prophylaxis or treatment with colony-
stimulating factors (granulocyte colony-stimulating factor and 
granulocyte-macrophage colony-stimulating factor). Despite 
strong biologic plausibility, these interventions have been unsuc-
cessful at reducing the neonatal infectious burden.364-366 In a 
metaanalysis, treatment with colony-stimulating factor therapy 
(granulocyte colony-stimulating factor, granulocyte-macrophage 
colony-stimulating factor) in a subgroup (n = 97) of neutropenic 
neonates (absolute neutrophil count less than 1700/µL) with 
culture-positive sepsis (largely gram-negative and GBS) signifi-
cantly reduced the risk for death (relative risk, 0.34; 95% CI, 0.12 
to 0.92).365 Therefore, stimulation of granulopoiesis may be ben-
eficial under these specific circumstances, although further 
studies focused on this subpopulation and outcomes are needed.

Irreversible aggregation and accumulation of newborn PMNs 
in the vascular space after stimulation leads to decreased diape-
desis, rapid depletion of bone marrow reserves, vascular crowd-
ing,367 and increased likelihood of microvascular occlusion.368 
Neonatal PMN deformation compared with adult PMN deforma-
tion is reduced at the baseline, which increases the risk for 
occlusion.367 Furthermore, low blood pressure/flow states seen 
during septic shock further exacerbate existing microvascular 
ischemia.295 In combination, these deficiencies increase the pro-
pensity for systemic spread of infection, and set the stage for 
microvascular occlusion.

OTHER INNATE CELLULAR CONTRIBUTIONS
Many other cells besides PMNs are involved in the development 
of an immune response to infection. Monocytes, macrophages, 
and dendritic cells amplify cellular recruitment through produc-
tion of inflammatory mediators, activation of endothelium, 
phagocytosis and killing of pathogens, and antigen presentation 
to T and B cells of the adaptive immune system. The primary 
functions of monocytes are the synthesis of crucial inflammatory 
proteins369 and antigen presentation to naïve CD4+ T cells.370

The patterns of cytokine production can promote the differ-
entiation of naïve CD4+ T cells into distinct subtypes of T cells 
that serve important roles in the clearance of pathogens. For 
example, T-helper 1 (TH1) cells are produced from naïve CD4+ 
T cells after exposure to IFN-γ and IL-12, and support cell-
mediated immunity against intracellular pathogens through pro-
duction of IFN-γ, TNF-α, and lymphotoxin. T-helper 2(TH2) cells 

receptor is a critical negative regulator of inducible NO synthase 
expression and NF-κB activation,334 demonstrating a protective 
role of the endothelium during sepsis. Studies have revealed a 
potential role of plasma angiopoietin during pediatric septic 
shock.335 The level of angiopoietin 1, which protects against 
vascular leak, was reduced, whereas the level of angiopoietin 2, 
which promotes vascular permeability, was elevated, highlight-
ing a novel potential therapeutic opportunity to reduce end-
organ injury. The roles for endothelial glucocorticoid receptor 
and angiopoietin 1 in neonatal sepsis are unknown.

The role of endothelium activation during sepsis and septic 
shock in neonates, particularly in premature neonates, has been 
less well investigated. Toxins from GBS have been shown to 
damage pulmonary endothelium336 and likely participate in pul-
monary complications associated with GBS pneumonia such as 
ARDS and the development of persistent pulmonary hyperten-
sion of the newborn.337 The levels of the adhesion molecules 
E-selectin and P-selectin, expressed and secreted by activated 
endothelium, are increased in the serum of neonates with 
sepsis136 and likely reflect significant endothelial activation. 
Endothelial TLR4 activation impaired intestinal perfusion in an 
experimental model of NEC, via endothelial NO synthase–
nitrite–NO signaling.338

INNATE IMMUNE CELLULAR 
CONTRIBUTIONS

The PMN is the primary effector of innate immune cellular 
defense. Endothelial cells produce activating cytokines and che-
mokine gradients that recruit circulating PMNs to the site of 
infection. Expression of cell adhesion molecules by PMNs and 
endothelium allows cells to roll and extravasate into surrounding 
tissues. Activated PMNs phagocytose and kill pathogens via 
oxygen-dependent and oxygen-independent mechanisms. IL-1β 
is produced by activated PMNs largely via an NLRP3-ASC-
caspase 1–dependent* mechanism that amplifies the recruitment 
of additional PMNs from the bone marrow to the site of 
infection.339

Activated PMNs may release reactive nitrogen species, reac-
tive oxygen species, and proteolytic enzymes via activation of 
membrane-associated NADPH oxidase. These reactive intermedi-
ates and enzymes can lead to destruction of nonphagocytosed 
bacteria but can also cause local tissue destruction, including 
neonatal endothelial and lung injury, as well as surfactant inac-
tivation,116,340 and thus play a role in progression from sepsis 
to MODS.

Neonatal PMNs exhibit quantitative and qualitative deficits as 
compared with adult PMNs.295,341 Respiratory burst activity is 
suppressed in PMNs during neonatal sepsis and may contribute 
to poor microbicidal activity.342-344 Compared with adult PMNs, 
neonatal PMNs exhibit delayed apoptosis,345,346 as well as sus-
tained capacity for activation (CD11b up-regulation) and cyto-
toxic function (reactive oxygen intermediate production) that 
contributes to tissue damage.347 Reduced apoptosis with pro-
longed survival of PMNs may result in improved bacterial clear-
ance but may also paradoxically increase the risk for sustained 
PMN-mediated tissue damage. Increased serum PMN elastase, 
urokinase plasminogen activator, and urokinase plasminogen 
activator receptor levels are found at the time of presentation in 
infected neonates.136

With PMN death, DNA (chromatin), histones, and APPs are 
expelled into the environment and serve to trap bacteria (neu-
trophil extracellular traps [NETs]).348 The formation of NETs can 
occur after activation of platelet TLR4349 and may lead to 

*ASC, Apoptosis-associated speck-like protein containing a carboxy-
terminal CARD.
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Eosinophils phagocytose antigen-antibody complexes and 
release cytokines, chemokines, cytotoxic molecules, APPs, and 
other substances (prostaglandins, thromboxanes, leukotrienes) 
when stimulated.387 Eosinophilia is commonly observed in neo-
nates with sepsis due to Candida sp.388 and bacteria,389 and is 
seen in infants with NEC.387 In infants of less than 26 weeks’ 
gestation, eosinophilia (absolute eosinophil count more than 
1000/mm3) may predict bacterial sepsis.389 Eosinophilia in pre-
mature infants is not associated with production of IgE.390 Studies 
have demonstrated an integral role for eosinophils in adult intes-
tinal integrity and revealed a novel innate bactericidal nonphago-
cytic function via extracellular catapulting of mitochondrial DNA 
nets with associated bound toxic proteins.391 The precise role of 
eosinophils in the neonatal immune response to sepsis and in 
maintenance of intestinal integrity has yet to be determined.

Mast cells play a role in the response to pathogen invasion as 
a part of the innate cellular immune system via production of 
histamines (which promote vasodilation and up-regulation of 
P-selectin), cytokines, PMN recruitment, bacterial phagocytosis, 
and antigen presentation.392,393 Mast cell involvement was dem-
onstrated in infants with erythema toxicum, where mast cell 
recruitment, degranulation, and expression of APPs occurs.394 
Adult rodents deficient in mast cells exhibit impaired PMN 
influx,395 impaired clearance of enteric organisms, and decreased 
sepsis survival.396 Mast cell production of histamine likely con-
tributes to the vasodilation associated with sepsis and septic 
shock. Like eosinophils and PMNs, mast cells are capable of 
killing bacteria via generation of extracellular traps in adults.397 
This means of immune protection has not been investigated in 
neonates. Mast cells may also alter adaptive immune function by 
patterning the TH2 immunophenotype seen in the neonate and 
therefore contribute to the increased risk for infection. Imma-
ture dendritic cells exposed to histamine during maturation 
(with LPS) exhibit altered T-cell polarizing activity with predomi-
nance towards the TH2 phenotype via increased production of 
IL-10 and decreased production of IL-2.398 Furthermore, mast 
cells from neonates were shown to secrete significantly more 
histamine after stimulation as compared with adults,399 which 
may contribute to the development of shock.400

The role of natural killer (NK) cells in neonatal bacterial sepsis 
is incompletely defined. NK cell numbers increase with increas-
ing gestational age,401 Furthermore, a reduced percentage of NK 
cells present at birth may be a risk factor for late-onset sepsis in 
preterm infants.402 It is noteworthy that the numbers of circulat-
ing NK cells are not significantly different in neonates with or 
without infection370,403; however, the numbers of circulating NK 
cells are decreased in newborn infants with shock.404 The mecha-
nisms used by NK cells to destroy bacteria include secretion of 
APPs (defensins), direct contact and lysis, antibody-dependent 
cellular cytotoxicity, and IFN-γ production.405 In neonates with 
bacterial sepsis, NK cells are activated, as evidenced by 
up-regulation of CD69.2,406 Despite activation, NK cell cytotoxic-
ity is deficient in infants with sepsis and recurrent infections.370,405 
Although neonatal macrophages exhibit impaired baseline acti-
vation in response to IFN-γ,341 NK cell–mediated production of 
IFN-γ can enhance their phagocytic capability. Further studies 
are necessary to more clearly define the role of NK cells in neo-
natal bacterial sepsis.

CD71+Ter119+ (erythroid) cells may contribute to the in-
creased susceptibility of the neonate to infection by reducing 
the inflammatory response associated with bacterial colonization 
of the gut. For example, ex vivo TNF-α production by stimulated 
adult effector cells was reduced in the presence of murine neo-
natal splenic CD71+ erythroid cells via an arginase 2–dependnent 
mechanism.407 The CD71+ erythroid population represents a 
large portion of murine fetal liver, neonatal spleen/bone marrow, 
and adult bone marrow.408-410 Furthermore, the murine neonatal 
spleen contains large numbers of colony-forming progenitor 
cells for 2 to 3 weeks after birth.411 Of note and in stark contrast 

arise in the presence of IL-2 and IL-4, produce IL-4, IL-5, and 
IL-13, down-regulate TH1 responses, and support humoral immu-
nity, as well as defense against extracellular parasites. A third 
subset of TH cells, T-helper 17 cells, are generated in the pres-
ence of transforming growth factor β, IL-6, IL-21, and IL-23. 
These cells produce IL-17 and IL-22, which are important for 
defense against extracellular bacteria and fungi. Neonatal mono-
nuclear cells exhibit a bias away from TH1 cell–polarizing activity 
because of increased IL-6 and low TNF-α production.371 This may 
be beneficial because of mobilization of antiinfective proteins/
peptides that serve to protect the newborn during microbial 
colonization266 and development of immune tolerance.341 The 
adverse consequence is a reduced ability to respond to infection 
with microorganisms; particularly intracellular pathogens such 
as Listeria sp.372 and mycobacteria.373 Preterm infants (<30 
weeks) may have greater attenuation of TNF-α and IL-6 secretion 
compared with term infants and adults.277

There is decreased monocytic recruitment to areas of inflam-
mation during sepsis because of decreased chemotactic ability.374 
Although the levels of peripheral monocytes decrease early 
during sepsis (between 60 nd 120 hours), secondary to extrava-
sation and differentiation into macrophages, sepsis-related eleva-
tion of macrophage colony-stimulating factor375 results in a late 
increase in the number of peripheral monocytes (>120 hours).376 
In addition to altered cytokine production and suboptimal 
recruitment, monocyte phagocytic function is reduced during 
sepsis.377 Antigen presentation to naïve CD4+ T cells is an impor-
tant immune function performed by monocytes. The decreased 
antigen-presenting function in monocytes from newborn infants 
is in part due to decreased MHC class 2 molecule expression378 
and decreased expression of costimulatory molecules, including 
CD86 and CD40.379

Monocytes leave the bloodstream, enter the tissues, and dif-
ferentiate into macrophages and dendritic cells. Monocytes and 
macrophages are closely related to PMNs (common myeloid 
progenitor) and can kill pathogens by similar means. Circulating 
monocytes differentiate into macrophages after exposure to  
maturing cytokines, and exit the bloodstream into tissues. Im-
portant substances produced by stimulated monocytes/macro-
phages include complement components, cytokines (both 
proinflammatory and antiinflammatory), coagulation factors, and 
extracellular matrix proteins.369 Located just below epithelial 
borders, macrophages encounter pathogens immediately after 
entry. Macrophages are avidly phagocytic and generate APPs to 
reduce bacterial burden, such as lactoferrin, defensins, transfer-
rin, and lysozyme. In addition, macrophages play an important 
role in the amplification of the immune response through the 
production of cytokines and chemokines, as well as in antigen 
presentation to naïve CD4+ T cells. Macrophages are poorly 
responsive to several TLR agonists.380

Dendritic cells are antigen-presenting cells that function as a 
liaison between the innate immune system and the adaptive 
immune system through induction of antigen-specific T cell–
mediated immunity. Dendritic cells from newborn infants exhibit 
a reduced antigen-presenting function when compared with 
adult cells379 and require increased stimulation for activation.381 
Evaluations of neonatal dendritic cell function suggest a ten-
dency towards poor up-regulation of costimulatory molecules 
(CD80/CD86) and activation markers (CD83), poor stimulation 
of T-cell proliferation, and a tendency towards the induction of 
immune tolerance.382 Although preterm and term infants and 
adults have similar numbers of “plasmacytoid” dendritic cells in 
their blood, the capacity to produce IFN-α on TLR9 challenge 
was significantly decreased in preterm neonates and may increase 
susceptibility to viral infections.383 Dendritic cells in umbilical 
cord blood can effectively induce cytotoxic lymphocyte 
responses.384 Depletion of dendritic cells has been reported in 
adult animals385 and adult patients386 with sepsis; their role in the 
immune response to neonatal sepsis is not well characterized.
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PMN and γδ T cells.432 These data show that neonatal T cells are 
activated and are capable of playing a role in the host response 
to bacterial sepsis in vivo.

Neonatal lymphocyte function is skewed towards TH2 
responses, setting the stage for immune tolerance (TH2) rather 
than immune priming for infection (TH1).417 Newborn infants 
must overcome that immune modulation in order to mount 
effective responses to specific infectious challenges and respond 
to vaccination. Examples of the impact of this immunopolariza-
tion include decreased IFN-γ production by CD4+ and CD8+ T 
cells as compared with production in children and adults.433,434 
The likely significance of decreased IFN-γ production is a reduc-
tion in activation of other immune cells, such as macrophages.

Reports of lymphocyte function in infected newborns are very 
limited. Expansion of lymphocytes after antigenic stimulation is 
important for development of sustained immunity. Decreased 
lymphocyte proliferative responses have been shown during the 
first 8 weeks of life in VLBW neonates,421 and may predispose the 
premature neonate to development of late-onset sepsis. For 
example, T-lymphocyte function was depressed in infected 
newborn infants, and especially in those with multiorgan failure, 
versus healthy term or growing preterm infants.435 Similarly, pro-
duction of lymphocyte-associated cytokines after stimulation of 
umbilical cord blood peripheral blood mono nuclear cells with 
GBS was significantly deficient in preterm and term infants com-
pared with adults.277 Cytomegalovirus infection in utero leads to 
the expansion and differentiation of mature cytomegalovirus-
specific CD8+ T cells, which have characteristics similar to adult 
CD8+ T cells.436 These cells showed potent perforin-dependent 
cytolytic activity and produce antiviral cytokines, highlighting 
the potential for adult-like immunocompetence of neonatal T 
cells under specific circumstances.

An important location for effective lymphocytic function 
during systemic bacterial infection is the spleen. The marginal 
zone of the spleen facilitates the clearance of bacteria, particu-
larly encapsulated organisms, from the bloodstream. These func-
tions are accomplished via the interaction of multiple leukocytes, 
including macrophages, dendritic cells, B cells, and T cells, 
within follicles of the spleen. The neonatal splenic marginal zone 
is immature, owing to a lack of antecedent antigen exposure and 
is virtually devoid of CD21+ B cells.412 As a result of this func-
tional asplenia, there is decreased clearance of pathogens from 
the blood and potential for a more fulminant course with 
bacteremia.437,438

B cells are critically important in the adult host response  
to sepsis. Data suggest antibody-independent and antibody-
dependent roles for B cells in the outcome of sepsis.416 Studies 
deciphering the role of B cells in neonatal sepsis are very limited, 
and thus the role B cells play in the neonatal host response is 
unclear. After GBS meningitis, the level of IgM was increased, 
suggesting B cells from neonates can respond to pathogenic 
challenge.439 Premature neonates with perinatal infection or 
nosocomial infection may show signs of humoral immunoparaly-
sis, manifested by decreased IgM/IgG production ex vivo as 
compared with production in their healthy age-matched coun-
terparts.440 Sepsis in early life did not reduce serum antibody 
titers in preterm infants after heptavalent pneumococcal conju-
gate vaccine exposure but was associated with a reduced opso-
nization titer to a single serotype, suggesting the capacity to 
respond to vaccination or other immune challenge may be 
altered.441

In the setting of reduced classic adaptive immune function 
seen in early life as compared with the function in adults, 
innate lymphoid populations (which lack B cell receptor and T 
cell receptor) may play a significant role in protecting the 
neonate from infectious challenge.442-448 Examples of innate lym-
phoid cells include γδ T cells, intestinal lymphoid cells, invariant 
NK T cells, mucosa-associated invariant T cells, and B1 cells. 

to the lymphoid and reticuloendothelial system roles of the 
spleen in the healthy adult, the spleen is normally a major site 
of erythropoiesis during fetal and neonatal life, to support rapid 
fetal and postnatal growth in the setting of significantly reduced 
erythroid reservoirs as compared with the adult reservoirs.410,412,413 
A lack of effect on neonatal murine survival to polymicrobial 
sepsis after adoptive transfer or diminution of CD71+ erythroid 
splenocytes suggests that the impact of these cells on neonatal 
infection risk and progression may be limited.414

CONTRIBUTIONS OF THE ADAPTIVE 
IMMUNE SYSTEM

The contribution of the adaptive immune system in the neonatal 
host response to sepsis is uncertain. The 5- to 7-day interval 
required for development of an adaptive immune response—
namely, the selection and amplification of specific clones of 
lymphocytes (B cells and T cells) that results in immunologic 
memory—argues against a central role for adaptive immunity in 
the protective response to early neonatal bacterial sepsis. As a 
result, the neonate is thought to largely depend on innate immu-
nity for protection from infection during the first days of life. In 
adults, absence or dysfunction of the adaptive immune system 
has a profound impact on survival in preclinical models.415 B cells 
(and in particular B-cell cytokine production) and not T cells 
were shown to be important in the early host response to experi-
mental sepsis.416 Studies using neonatal mice lacking an adaptive 
immune system showed no difference in polymicrobial sepsis 
survival as compared with survival of wild-type mice with an 
intact adaptive immune system.3 Furthermore, there are many 
quantitative and qualitative differences in lymphocytes from neo-
nates compared with lymphocytes from adults,417 each with a 
respective proposed clinical impact.87 As these findings illus-
trate, the contribution of adaptive immunity for protection and 
response against sepsis, and in particular which components are 
protective, is unclear in the most immature and requires further 
investigation.

Peripheral blood examination has yielded inconsistent changes 
in the percentage, number, and type of circulating lymphocytes 
during sepsis.403,418-423 Moreover, changes related to the timing of 
sepsis onset (early-onset or late-onset sepsis) and prematurity 
have been incompletely characterized. T regulatory cells are 
abundant and potent at birth, facilitating inhibition of TH1 cell 
immunity,424 and perhaps mediating a state of immunologic toler-
ance.425 Although the numbers of splenic T regulatory cells are 
increased in murine neonates and adults with sepsis, depletion 
of T regulatory cells had no effect on survival of murine adults.2,426 
Alterations in the number or function of T regulatory cells in 
human neonatal sepsis have not been reported.

Examination of peripheral blood to identify markers of sepsis 
has yielded a number of lymphocyte cell-surface molecules 
whose levels increase during sepsis. Activation of neonatal T 
cells is evidenced by increased CD45RO expression (present on 
T cells after antigenic stimulation) at the time of sepsis diagno-
sis,419,427,428 and with congenital infection,429 although changes 
in number may take several days to occur after stimulation.430 
Other markers of lymphocyte activation may be found at differ-
ent time points during the course of infection. For example, 
expression of the activation marker CD69 is increased on T 
cells (CD4+) early in the infectious process, whereas CD25 and 
CD45RO expression persists for several days.406 Increased 
expression of CD4+ T-cell carcinoembryonic antigen–related 
cell adhesion molecule 1 (CD66a) in preterm infants with late-
onset sepsis may contribute to sepsis-associated immune sup-
pression.431 HLA-DR expression is increased on multiple cell 
types during neonatal sepsis.406 In contrast to adults, a large 
portion of neonatal T cells produce CXCL8, which activates 
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of genes for innate immune and metabolic pathways with 
decreased levels of adaptive immune transcripts.467 Using 
a proteomics approach, Ng and colleagues468 identified pro-
apolipoprotein CII and a desarginine variant of serum amyloid A 
as promising biomarkers for late-onset sepsis and NEC in preterm 
infants.468 It is very likely that implementation of unbiased “omic” 
approaches will reveal critical age-appropriate pathways and 
opportunities for therapeutic interventions aimed at improving 
neonatal sepsis outcomes.

SEPSIS-ASSOCIATED ORGAN FAILURE
Sepsis that leads to shock and organ failure carries the worst 
prognosis. SIRS contributes to the development of organ failure 
in neonates (see Figure 152-5).52,148,181,469 Persistent decreases in 
capillary perfusion are associated with MODS and death in 
adults.470 Lethargy, shock, and birth weight less than 1500 g 
were independent predictors of sepsis-related death.471 In neo-
nates, impairment of the cardiovascular system, manifested by 
poor perfusion or hypotension, is invariably associated with 
septic shock. Sustained poor organ perfusion in neonatal sepsis 
and septic shock due to cardiovascular dysfunction is associated 
with MODS affecting the kidney,472,473 liver,474 gut,475 and central 
nervous system476 (see Figure 152-5). The mechanism of organ 
failure may be decreased oxygen utilization associated with mito-
chondrial dysfunction rather than poor oxygen delivery to 
tissue.477,478 On the basis of available evidence, it has been specu-
lated that the prolonged SIRS associated with severe sepsis and 
shock leads to organ failure via a cessation of energy-consuming 
processes.479,480 Development of severe NEC is also associated 
with severe sepsis, shock, MODS, and death.84,481 The need for 
intubation or initiation of vasoactive medications, and hypogly-
cemia, thrombocytopenia, increased prothrombin time, or 
excessive bleeding as presenting laboratory signs of sepsis are 
risk factors for sepsis-related death.359,475,482 Independent predic-
tors of in-hospital late-onset sepsis death during the birth hospi-
talization were the presence of congenital anomalies (OR, 4.12; 
95% CI, 1.60 to 10.60), neuromuscular comorbidities (OR, 3.34; 
95% CI, 1.66 to 6.73), and secondary pulmonary hypertension 
with/without cor pulmonale (OR, 23.48; 95% CI, 5.96 to 92.49),60 
underscoring the impact of organ-level comorbidities that 
increase neonatal sepsis mortality.

CARDIOVASCULAR SYSTEM
The most common organ dysfunction associated with sepsis is 
cardiovascular dysfunction. Cardiovascular dysfunction associ-
ated with sepsis may lead to shock that is a composite of hypo-
volemic, cardiogenic, and distributive shock. Distributive shock 
is related to endothelial NO production that leads to excessive 
vasodilation. Cardiogenic shock may be related to mitochondrial 
death (induced by reactive nitrogen and reactive oxygen inter-
mediates) with subsequent myocardial dysfunction. Abnormali-
ties in peripheral vasoregulation and myocardial dysfunction 
may play a larger role in hemodynamic derangements in pediat-
ric patients, especially infants and neonates.

In children, a non-hyperdynamic state with reduced cardiac 
output and increased systemic vascular resistance is most com-
monly observed in the setting of sepsis.483-487 The hemodynamic 
presentation in neonates is much more variable484 and is compli-
cated by an unclear association between a normal blood pres-
sure and adequate systemic blood flow.488,489 Microcirculatory 
flow is impaired in term neonates even with mild to moderate 
severity of infection.490 Preterm neonates with sepsis have rela-
tively high left and right cardiac outputs and low systemic vas-
cular resistances. However, a decrease in right or left ventricular 
output of more than 50% has been associated with increased 
mortality in neonatal sepsis.491 An elevated left ventricular output 

Mechanistic investigations that fully explore the role of these 
newly discovered populations in the neonatal host response to 
sepsis are likely to uncover novel therapeutic opportunities.

IMPACT OF SYSTEMS  
BIOLOGY APPROACHES

Systems biology and the use of “omic” approaches have the 
potential to produce significant insights into the pathogenesis of 
sepsis. Genomic and proteomic approaches have yielded impor-
tant data associated with septic shock in older populations.449-457 
The use of these modern techniques in the study of neonatal 
inflammation and response to pathogen challenge has only just 
begun.136,198,458,459 The ability to profile genome-wide expression 
has significantly enhanced our understanding of the complexity 
of the host immune response to sepsis in children.5,449,450,453,460 
For example, genome-wide expression profiling revealed zinc 
homeostasis as an important feature of pediatric sepsis.450,453,461 
Prophylactic zinc supplementation reduced bacterial load and 
mortality in a murine model of peritoneal sepsis.462 However, 
oral zinc supplementation did not alter mortality in neonates 
with probable sepsis.463

In a study of pediatric patients who met the criteria for septic 
shock,6 a unique whole-blood transcriptomic response was 
found in neonates as compared with infants, toddlers, and 
school-age children. Neonates manifested the largest number of 
uniquely regulated genes, representing both innate and adaptive 
immune system pathways, and showed a predominance of 
down-regulated transcripts representing the adaptive immune 
system.5 The number of up-regulated genes increased in propor-
tion with developmental age. Investigation of the murine circu-
lating leukocyte transcriptome revealed significant differences in 
the host immune response to sepsis across the age spectrum 
(neonate, young adult, elderly), despite similar increases in 
mortality among the neonates and elderly mice as compared 
with young adult mice.1 These data underscore the impact of 
developmental age on the host immune response and suggest 
that therapeutics, which may have efficacy in older populations, 
may be ineffective in or possibly detrimental to neonates.

Because the transition to extrauterine life is associated with 
dramatic changes in physiology, the whole-blood transcriptome 
is likely to be quite different between both uninfected infants 
and in the host response to sepsis by timing after birth. Indeed, 
an unsupervised analysis of the whole-blood genome-wide tran-
scriptome on prospectively collected peripheral blood samples 
from infants evaluated for sepsis revealed the major node of 
separation between groups (infected or uninfected) was the 
timing of evaluation relative to birth (early, lass than 3 days or 
late, more than 3 days).464 Principal component analyses revealed 
significant differences between patients with early or late sepsis 
despite the presence of similar key immunologic pathway aber-
rations in both groups. This study highlights both the uninfected 
state and the host responses to sepsis are significantly affected 
by timing relative to birth.

A study of VLBW infants with blood culture–proven late-onset 
sepsis (59% CoNS) identified a 554-gene signature associated 
with sepsis, with increased expression of the TNF-α network, 
including matrix metalloproteinase 8 and CD177 among the 
most commonly up-regulated genes.465 Elevated matrix metallo-
proteinase 8 mRNA expression and activity in septic shock cor-
related with decreased survival and increased organ failure in 
pediatric patients. Matrix metalloproteinase 8 is a direct activator 
of NF-κB.466 Inhibition (genetic or pharmacologic) of matrix 
metalloproteinase 8 leads to improved survival and a blunted 
inflammatory profile in a murine model of sepsis. Most recently, 
a 52-gene network was uncovered and validated that accurately 
identified infected infants, who exhibited increased expression 
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phosphorylation, ubiquitination, SUMOylation) may occur after 
sepsis.126,517 These DNA alterations may modify transcription 
factor access of gene-specific promoter regions, ultimately 
leading to short-term and long-term changes in gene expression 
and immune function. The DNA methylation pattern in the pro-
moter region of the CALCA gene varied in different types of 
bacterial sepsis in preterm infants, suggesting its potential use 
as an epigenetic biomarker.518

Trained immunity, the term coined to describe an adaptive 
innate immune response, may also be a positive or negative 
consequence of sepsis in early life.519 Mechanisms that underlie 
trained immunity are beginning to emerge, and include DNA 
methylation and modification of energy utilization pathways.520,521 
Nonspecific vaccine benefits and resistance to subsequent 
pathogen challenge after innate immune priming or previous 
infection are likely manifestations of trained immunity in neo-
nates.3,513,522 The cell types, extent, and duration of trained 
immunity-based modifications in neonates with sepsis have not 
been studied. Myeloid suppressor cells manifest immunosup-
pressive activity with sepsis523 and were recently described in 
neonates. Myeloid suppressor cells are present at high frequency 
at birth and decline in number with postnatal age. They inhibit 
T-cell proliferative responses and IFN-γ production.524 Reactiva-
tion of viral infection that may contribute to morbidity and 
mortality has been demonstrated in infected adults.525 The 
impact of this phenomenon in neonates is unknown.

PULMONARY SYSTEM
Acute hypoxic respiratory failure, ARDS, and acute lung injury 
are common pulmonary complications associated with severe 
sepsis. Destruction of the alveolar capillary membrane leads to 
refractory hypoxemia. After direct or indirect insults to the lung, 
alveolar macrophages produce chemokines that mitigate PMN 
influx to lung parenchyma. Activated PMNs release reactive 
oxygen and reactive nitrogen intermediates that damage endo-
thelial and epithelial barriers, leading to leakage of protein-rich 
edema fluid into the air spaces. Other pulmonary complications 
with severe sepsis may include secondary surfactant defi-
ciency,526 primary or secondary pneumonia,527 and reactive pul-
monary hypertension.528,529 Infants with sepsis and persistent 
pulmonary hypertension of the newborn may require inhaled 
NO in addition to optimized ventilation strategies such as high-
frequency oscillatory ventilation.530 If oxygenation or tissue per-
fusion remains severely compromised despite optimal medical 
management, extracorporeal membrane oxygenation should be 
considered in neonates weighing more than 2 kg without 
contraindications.531,532

CENTRAL NERVOUS SYSTEM
The detrimental neurodevelopmental long-term impact of sepsis 
has been demonstrated in multiple studies and has been 
reviewed in detail.533-537 Central nervous system injury is pre-
dominantly white-matter injury (loss of pre-oligodendrocytes), 
manifested by focal cystic periventricular leukomalacia, diffuse 
necrosis, or a combination of these entities.538,539 Central nervous 
system injury is, in part, mediated by inflammation with or 
without direct pathogen invasion.141,540,541 The impact of sepsis 
on central nervous system injury is intensified with lower ges-
tational ages, highlighting the detrimental effects of sepsis on 
the developing brain.539 The importance of evaluating the 
preterm infant for disseminated infection that may include men-
ingitis cannot be overemphasized. A complete evaluation, includ-
ing cultures of blood, urine and cerebrospinal fluid, is 
uncommon,356 although one third of the cases of culture-positive 
meningitis in VLBW infants are associated with negative concur-
rent blood cultures.542 Clinically apparent seizures may occur 
in 25% of VLBW preterm infants with meningitis.542 Low-voltage 
background pattern, sleep-wake cycling, and seizure activity on 

but normal ejection fraction in preterm neonates with septic 
shock suggests that septic shock in preterm neonates is predomi-
nantly due to vasoregulatory failure. Neonatal sepsis may or may 
not be associated with left ventricular diastolic dysfunction; 
however, cardiac injury as manifested by elevated levels of 
cardiac troponin T may complicate the clinical picture.492,493 
Abnormal peripheral vasoregulation with or without myocardial 
dysfunction is the primary mechanism for the hypotension 
accompanying septic shock in the neonate.494 Therefore, infected 
neonates may present with hypotension and adequate perfusion 
(warm shock) or inadequate perfusion (cold shock). Myocardial 
dysfunction can lead to ventricular wall stretch that in turn 
elevates B-type natriuretic peptide levels. B-type natriuretic 
peptide levels are elevated in children with septic shock,495 and 
increased levels have utility as prognostic indicators of death.496 
Plasma NO level is elevated in neonates with sepsis and shock 
compared wit those with shock alone.182 Elevated serum lactate 
level (>3 mmol/L) distinguished nonsurvivors from survivors in 
a pediatric study that included neonates.497

IMMUNE SYSTEM
After severe sepsis or septic shock, there is an increased risk for 
subsequent infection and death in children and adults. This phe-
nomenon is termed immunoparalysis and is associated with 
reduced MHC class 2 expression and TNF-α production by mono-
nuclear cells after endotoxin stimulation. In addition to altered 
monocytic responses, there is significant loss of lymphoid CD4+ 
T and B cells via caspase-dependent apoptotic pathways.415,498 
Whether by clonal selection, apoptosis, or elevated endogenous 
glucocorticoid levels,499-501 lymphocyte loss may lead to a state of 
immune compromise after the acute phase of sepsis.412,499,501-505 
New data suggests that IL-7 may play an important role in promot-
ing T-cell activation and prevention of apoptosis.506 The impor-
tance of immunoparalysis has been convincingly demonstrated 
in infected adults507-510 and children.511 However, the clinical 
impact in the preterm neonate in whom adaptive immune func-
tion is less well developed is uncertain.512,513

In examinations of peripheral blood and postmortem spleens 
from infected adults, there is significant loss of B and CD4+ T 
lymphocytes and dendritic cells,386,498 resulting in decreased 
antigen presentation, antibody production, and macrophage 
activation.514 Circulating peripheral absolute lymphocyte counts 
can drop significantly in adults with sepsis but this phenomena 
is also seen in critically ill adults who are not infected.477 Sus-
tained lymphopenia significantly increases the risk for secondary 
infection, MODS, and death in children.505 Extensive loss of 
lymphocytes (both B and T lymphocytes) has been described in 
postmortem specimens from the thymus and spleen in infected 
preterm and term infants.412,499,501-504 The number and the size of 
the follicles in the spleen decreased significantly and the total 
number of cells decreased by more than three times; similar 
changes were found in lymph nodes.478 However, these histo-
pathologic splenic findings are in contradiction to earlier reports 
where no differences were described in infected and uninfected 
infants.412 Splenomegaly may occur in infants with late-onset 
sepsis and may be due to splenic congestion in the absence of 
hyperplasia of white pulp.502

The mechanisms responsible for immune alterations after 
sepsis are beginning to emerge. The intensity of the inflamma-
tory response may be modified by neural-based mechanisms.515 
T cell–secreted acetylcholine acts on macrophages to reduce 
production of TNF, IL-1, IL-18, HMGB-1, and other cytokines.516 
The role of vagal tone in the neonatal host response to sepsis is 
unclear.

Discovery and characterization of the impact of epigenetic-
mediated immune system functional alterations after sepsis is an 
area of intense research. DNA methylation and posttranslational 
modification of histone proteins (methylation, acetylation, 
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prevented HMGB-1 level elevation, and was associated with 
longer survival times.559 Increased plasma nitrite and nitrate con-
centrations are associated with the development of multiple 
organ failure in pediatric patients with sepsis560,561 but have not 
been investigated in neonates.

FUTURE CONSIDERATIONS
The incidence of neonatal sepsis remains high and outcomes 
remain poor despite considerable technologic advances in the 
field of neonatology. Much remains to be learned about the 
impact of developmental age on the host response to sepsis and 
what facets are critically important. Important considerations for 
future investigations include the development and implementa-
tion of a generally accepted definition for neonatal sepsis, the 
use of homogeneous systems (only neonatal components) for 
human ex vivo studies, and transgenic approaches in preclinical 
models, alongside observational studies in humans to ensure 
meaningful findings.
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