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Abstract

The search for efficient noble metal-free hydrogen-evolving catalysts is the subject of intense 

research activity. A new family of molecular cobalt(II)-polypyridyl catalysts has recently emerged. 

These catalysts prove more robust under reductive conditions than other cobalt-based systems and 

display high activities under fully aqueous conditions. This review discusses the design, 

characterization, and evaluation of these catalysts for electrocatalytic and light-driven hydrogen 

production. Mechanistic considerations are addressed and structure-catalytic activity relationships 

identified in order to guide the future design of more efficient catalytic systems.
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1. Introduction

The conversion of solar energy into chemical energy through light-driven water splitting to 

produce hydrogen (H2) may provide a new method of energy delivery based on the exclusive 

use of renewable resources, water and sunlight. Hydrogen is indeed a carbon free fuel, and 

possesses the highest energy output relative to mass [1]. Fuel cell technology allows this 

energy source to be converted into electricity on demand, with very high energy conversion 

efficiencies and without the production of greenhouse gases. In the context of water 

splitting, photosynthesis has been a great source of inspiration for the molecular chemistry 

community, and the design of molecular systems for hydrogen evolution, inspired by the 

Photosystem I-Hydrogenase couple found in some hydrogen producing photosynthetic 

micro-organisms [2-4], is at the heart of the field of artificial photosynthesis [5-10]. Of 

particular interest is the fact that the activities of the biological systems rely on first-row 

transition metals, leading to intense research activity in the field of bio-inspired noble metal-

free hydrogen evolution catalysis, which may provide an alternative to the use of rare and 

expensive metals such as platinum in state of the art technological applications [11-15].
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While having no biological relevance for water splitting, cobalt has emerged as a major 

player in the field in the last ten years [16, 17]. The potential use of cobalt-based catalysts in 

light-driven hydrogen evolution was identified some time ago [17], yet the cobaloxime 

catalysts (Scheme 1, 1a-c) had to wait until the mid-2000s to experience a renewal in 

interest, thanks to several detailed electrocatalytic studies [18-21]. Numerous efficient 

homogeneous photocatalytic systems, either multicomponent [22-30] or based on 

supramolecular photosensitizer-catalyst assemblies [31-39], have since been reported, 

displaying activity in fully organic or mixed organic-aqueous solutions. However, the 

cobaloxime catalysts suffer from a low stability, particularly in the reduced state, which 

limits their long-term efficiency. This drawback has been partly circumvented by 

substituting the two bidentate dimethylglyoxime ligands (Scheme 1) for the tetradentate 

diimine dioxime ligand, giving complexes that are more stable toward ligand exchange 

reactions [40-44].

The 2010s saw the start of a new chapter in the cobalt-based hydrogen production saga, with 

the first reports on the hydrogen evolution activity of cobalt(II)-polypyridyl complexes. 

These studies took inspiration from the work of Sutin and coworkers in the 1980s on the 

cobalt-trisbipyridine complex (Scheme 1, 2) [45-50]. The polypyridyl catalysts display an 

increased stability under reductive conditions compared to both the parent [Co(bpy)3]2+ 

compound and the cobaloximes, thus allowing a more systematic evaluation of their activity 

in fully aqueous media. This has stimulated the design of new electro- and photocatalytic 

systems based on cobalt(II)-polypyridyl complexes, particularly in the last four years.

In this review article, the design, characterization, and evaluation of molecular cobalt(II)-

polypyridyl catalysts for electrocatalytic and light-driven hydrogen production will be 

discussed. Structure-catalytic activity relationships will be specifically highlighted in order 

to define guidelines for the future design of more efficient catalytic systems. For the sake of 

clarity, classification of the polypyridyl ligands and their corresponding cobalt(II) complexes 

has been made on the basis of their structural features (and therefore does not follow the 

chronological order of publication). They have been divided into two families: the 

bipyridine-based structures (Schemes 2 and 3, ligands L3a to L9, catalysts 3a to 9) and the 

pyridine-based structures (Scheme 4, ligands L10a to L12b, catalysts 10a to 12b), each 

family comprising both tetradentate and pentadentate ligands.

2. Electrochemical and electrocatalytic studies

The electrochemical characterization and assessment of the electrocatalytic performance of a 

catalyst are important steps in catalyst development, benchmarking [51] and understanding. 

These experiments provide important information about the electrochemical potential and 

rate at which catalysis occurs, as well as mechanistic details such as the nature of the 

catalytic process (cobalt-centered vs ligand-assisted). Due to their relatively high stability, 

information about electrocatalytic activity under fully aqueous conditions is almost always 

available. This can then be used to rationalize the photocatalytic hydrogen evolution 

activities measured under such conditions, provided both electro- and photocatalytic 

experiments were performed at the same pH. Additional kinetic and mechanistic information 

can be obtained by performing electrocatalytic studies in organic media, wherein proton 
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delivery to the catalyst can be controlled by the addition of precisely measured amounts of a 

proton source with a given pKa.

In the following we will describe the different systems, starting with those for which an 

exclusively cobalt-centered catalytic mechanism is demonstrated. Catalysts exhibiting a 

ligand-assisted catalytic process will be described in a second part. The electrocatalytic 

performances of these catalysts are summarized in Table 1. It should be noted that to the best 

of our knowledge, no electrocatalytic study has been reported for the parent [Co(bpy)3]2+ 

complex 2.

2.1. Brief overview of hydrogen evolution mechanisms in cobalt-based catalysts

Hydrogen evolution catalyzed by molecular cobalt complexes generally implies the 

formation of a cobalt hydride species by protonation of a Co(I) intermediate [17]. The 

catalytic system may then evolve through two distinct mechanisms. In the heterolytic 

mechanism (Figure 1), the intermediate metal hydride, either Co(III)–H or Co(II)–H, 

decomposes by proton attack and evolves hydrogen via an intermediate dihydrogen metal σ-

complex. During the catalytic cycle, two electrons are thus transferred to the complex, either 

consecutively (Figure 1, ECCE or EECC pathways, with E corresponding to electron 

transfer and C to protonation steps) or alternating with the two protonation steps (Figure 1, 

ECEC pathway). The distinction between these two mechanisms has so far proven very 

difficult to establish, except in a few cases where the second reduction step occurs at a more 

cathodic potential than the first [60, 61]. In the case of the well-studied cobaloximes and 

their diimine dioxime derivatives, DFT calculations favour the heterolytic mechanism 

involving a Co(II)–H as the intermediate species from which hydrogen is evolved [62-65]. In 

the alternative mechanism, two metal-hydride complexes evolve hydrogen through a 

reductive elimination reaction, involving homolysis of the Co–H bonds (homolytic 

pathways, inset Figure 1). Thus, in the course of the catalytic cycle, each metal center 

undergoes a single monoelectronic reduction process, either before protonation or once the 

Co(III)–H species is formed. It is important to note that both pathways can coexist [66], and 

that switching from a heterolytic to a homolytic pathway can simply be a matter of 

experimental conditions, such as the relative concentrations of protons and catalysts or acid 

strength, as recently demonstrated by Costentin and Savéant in the case of an iron-porphyrin 

catalyst [67]. Of note is the fact that strong acids are required for Co(III)–H species to 

evolve hydrogen in a heterolytic manner [68].

The exact nature of the hydrogen evolution mechanism has not yet been investigated with 

the cobalt(II)-polypyridyl catalysts. As for related amino-polypyridinyl cobalt systems [69], 

a heterolytic mechanism involving a Co(II)–H species is likely, following the conclusions 

gained from studies on cobaloximes and related compounds. In addition, the introduction of 

redox-active moieties such as bipyridine [70] in the polypyridyl coordination sphere of the 

cobalt center has two major consequences: (i) it stabilizes reduced states of the metal center 

and thus shifts the cobalt-centered reduction process to more positive potentials. As a 

consequence, the reduced Co(I) state is less basic and therefore less nucleophilic, and thus 

requires more acidic conditions for cobalt-centered catalysis to occur; (ii) at the same time, it 

introduces new ligand-centered reduction processes generating Co(I)(L·−) species, 
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sometimes referred to as a formal Co(0) state. This process is observed at potentials less 

negative than that which would be required to reduce the cobalt center one step further, i.e. 
to the spectroscopic Co(0) state. Protonation of this Co(I)(L·−) species can then occur, likely 

generating a Co(II)–H species (Figure 1, EECC pathways) competent for hydrogen 

generation.

2.2. Cobalt(II)-polypyridyl catalysts displaying exclusively cobalt-centered catalytic 
processes

The first hydrogen evolving cobalt(II)-polypyridyl electrocatalyst, the octahedral cobalt(II) 

complex 3b, was reported in 2010 by Chang and coworkers [52]. These authors designed 

L3b bearing pyridine moieties to stabilize the metal center in its reduced states, and binding 

in a tetradentate manner, thus leaving two open coordination sites in cis position on which 

substrate binding and catalysis may occur. The cyclic voltammogram of 3b recorded in 

acetonitrile displays a reversible cathodic wave at −0.81 V vs SCE and a quasi-reversible 

oxidation at +0.87 V vs SCE, assigned to the Co(II/I) and the Co(III/II) couples, 

respectively. Addition of trifluoroacetic acid (TFA) triggers the appearance of a catalytic 

wave, near the Co(II/I) couple (the mid-wave of the electrocatalytic wave corresponds to an 

overpotential for hydrogen production of ~400 mV), attributed to the catalytic reduction of 

protons. Controlled potential electrolysis experiments at −1.0 V vs SCE confirm formation 

of hydrogen with 99% faradaic yield [52]. The catalytic wave plateaus at high acid 

concentrations, with catalytic current independent of the scan rate. This indicates that the 

system operates in the ‘pure kinetic’ catalytic regime with negligible consumption of the 

substrate (i.e. protons) [71]. As expected, the plateau current varies linearly with the 

concentration of the catalyst 3b. However, a similar linear variation is found with regards to 

TFA concentration, indicating that the catalytic rate is second order in acid. Although such a 

dependency has been observed relatively frequently for other catalysts, including cobalt-

based ones [56, 72-75], it does not fit with any of the classical mechanisms for hydrogen 

evolution [76]. Nevertheless, a turnover frequency (TOF) of 40 mol H2/mol catalyst/hour at 

60 mM TFA could be determined. The catalyst 3b is not soluble in water in the millimolar 

range, but the authors were able to demonstrate the compatibility of this polypyridyl 

platform with aqueous conditions by working in a 50:50 water acetonitrile mixture. Under 

these conditions, electrocatalytic proton reduction is also triggered by addition of TFA at a 

potential very close to the Co(II/I) reduction wave (−1.0 V vs SCE), with similar current 

densities to those observed in pure acetonitrile. Of note is a second, possibly catalytic 

process observed at a slightly more negative potential (−1.2 V vs SCE), but which has not 

been investigated in detail. We note, however, that this behavior, with consecutive catalytic 

processes, finds equivalence in the electrochemistry of compounds 10 and 11 discussed 

below. Also of note is the fact that L3b contains a bipyridine moiety with potential redox 

activity.

Water solubility was obtained through modification of the ligand [57]. Catalyst 4a is closely 

related to catalyst 3b, but with a methyl substituent instead of a methoxy group, and a triflate 

residual ligand on the cobalt center instead of an acetonitrile molecule. Electron-

withdrawing groups have also been introduced e.g. in L4b, following the observation of the 

beneficial effect of such substituents on the series of catalyst 11a-c (see below) [58]. The 
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cyclic voltammograms of complexes 4a and 4b (0.3 mM) were recorded in pH 4 ascorbic 

acid/ascorbate buffer, the same conditions employed for photocatalytic testing (see section 

3.2). Complex 4a shows electrocatalytic current enhancement at approximately −0.90 V vs 
SHE with no discernible pre-catalytic features. Comparison with 3b indicates that the onset 

potential for the electrocatalytic wave corresponds to the reduction of the complex to the 

Co(I) state. In contrast, 4b displays a small pre-catalytic feature at −0.75 V vs SHE, which 

has been assigned to the Co(II/I) reduction and is likely non-catalytic. In addition, hydrogen 

evolution catalyzed by 4b occurs at potentials more negative than −0.90 V vs SHE (4a), 

which contrasts with the trend observed in the series 11a-c (see below). While no detailed 

mechanistic data are provided in the original paper, it is tempting to propose that the 

introduction of the electron-withdrawing group in L4b results in the inversion of the redox 

potentials of the Co(II/I) and the Co(III)–H/Co(II)–H couples of 4b (the latter triggering 

catalysis) as compared to the situation found for 4a. Also of note is the fact that the catalytic 

current obtained with 4b is significantly lower than that obtained with 4a. Indeed, the 

introduction of electron-withdrawing groups in cobalt polypyridyl complexes often leads to 

diminished activity of the corresponding Co(I) species [54]. Such a trend is confirmed in 

photocatalytic assays.

The same group has also synthesized a pentadentate pyridine-based “Py5Me2” ligand, L11, 

and first demonstrated the impressively high efficiency and robustness of the oxo- and 

disulfide-molybdenum complexes of 11b for hydrogen generation from neutral water [77, 

78]. A series of cobalt complexes 11 was subsequently prepared and evaluated in pH 7 

phosphate buffer solutions. Two electrocatalytic processes are observed at mercury drop or 

mercury pool electrodes. The first is peak-shaped and develops at a potential close to the 

Co(II/I) couple (−1.0 V vs SHE for complex 11b) as independently measured in acetonitrile 

solutions [7]. The second process occurs at a potential 200 mV more cathodic and seems to 

be limited only by mass transport of protons to the electrode surface. Controlled potential 

electrolysis coupled to GC measurements, carried out at a potential below that of the second 

process (−1.30 V vs SHE), established the stability of 11b during hydrogen evolution, with a 

100% faradaic yield and 55000 TONs achieved during a 60 hour experiment. Substitution on 

the central pyridine ring by either electron-withdrawing (L11a) or electron-donating (L11c) 

groups allows for tuning of the potential of both hydrogen evolution processes, highlighting 

the role of molecular design in catalyst optimization [58]. While no mechanistic information 

is available for this second process, which possibly involves a Co(0) state, rotating disk 

electrode (RDE) voltammetry allowed further insights into the first catalytic process in the 

case of complex 11a [59]. From the voltammograms obtained at different rotation rates in 

0.1 M pH 7 phosphate buffer, a Levich plot was constructed from the current density at −0.9 

V vs SHE, and its linearity indicates catalysis operating under diffusion control. Despite the 

fact that no bulk electrolysis experiment has been performed at the exact potential of this 

first wave, the catalytic nature of the process was demonstrated by comparing the current 

density measured at −0.9 V vs SHE to that of the Co(III/II) process observed at +0.4 V vs 
SHE. This ratio (almost 16) was much higher than the values of 1 to 8 reported for a series 

of cobalt complexes at a similar overpotential of 500 mV in pH 2.2 aqueous buffer [79]. The 

cobalt-centered mechanism of proton reduction by catalysts 11 was also investigated in 

acetonitrile in the presence of acetic acid [55]. Compound 11b displayed two well-defined 
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reversible redox events at +0.815 V and −0.830 V vs SHE, assigned to the Co(III/II) and 

Co(II/I) events, respectively. Surprisingly, the addition of acetic acid caused a decrease in the 

current at the Co(II/I) couple and the appearance of a catalytic wave at a slightly more 

negative potential (−1.10 V vs SHE). This behavior could be explained through anation of 

the complex by the conjugate base produced during catalysis, the acetate anion. Indeed, 

addition of tetrabutylammonium acetate (n-Bu4N(OAc)) to a solution of 11b in acetonitrile 

caused the appearance of a new couple at −1.18 V vs SHE, with complete disappearance of 

the original wave after the addition of one equivalent. Furthermore, titration of a 1:1 mixture 

of n-Bu4N(OAc):AcOH into a solution of 11b showed the development of a catalytic peak at 

the potential of the Co(II/I) couple of the acetate-bound species, the peak current vs acid 

concentration demonstrating first order kinetics at all concentrations, while addition of 

excess n-Bu4N(OAc) to a solution of the acetate complex with acetic acid inhibits catalysis. 

Addition of acids of various strength to 11b, and also to the CF3 (11a) and NMe2-substituted 

(11c) compounds showed that in all cases, current enhancement at the Co(II/I) couple, as 

well as evidence for anation by the conjugate base, were present in the cyclic 

voltammograms.

Interestingly, no anation was observed by Scandola and coworkers for the cobalt complex 

with the “Py5” ligand L12b, with a structure very similar to L11b, varying only in the 

substitution on the methylene linkers [56]. They investigated the electrocatalytic activity of 

12b in acetonitrile in the presence of increasing amounts of TFA, the conjugate of which is 

expected to be a weaker ligand than acetate. A catalytic wave developed at potential slightly 

more positive than that of the Co(II/I) redox couple (−1.31 V vs SCE) and has been assigned 

to hydrogen production. It should be noted, however, that no bulk electrolysis experiment 

coupled to GC measurements is reported in order to confirm the formation of hydrogen. The 

authors tentatively proposed a mechanism based on the formation of a Co(III)–H 

intermediate followed by reduction to Co(II)–H. At high acid concentration, however, the 

observation of catalytic current from very positive potentials (onset at −0.50 V vs SCE) 

suggests detachment and protonation of one of the pyridine groups on the pentadentate 

ligand, since reduction of the more positively charged protonated complex is expected to 

occur at a less cathodic potential. Such a mechanism has already been suggested by Wang 

and coworkers for a related complex [80].

Ligands L10a-c are structurally related to ligands L11a-c, from which a single pyridine 

moiety has been removed, and thus allowed for direct comparison of the activity of 

pentadentate “Py5” versus tetradentate “Py4” ligand complexes [57]. Cyclic voltammograms 

recorded using a glassy carbon electrode at pH 7 show a plateau-shaped catalytic process 

with onset potentials ranging from −0.8 V (10c) to −1.0 V (10a-b) vs SHE, preceding direct 

proton reduction at the glassy carbon electrode. Controlled potential electrolysis (100% 

faradaic efficiency) carried out at −1.2 V vs SHE confirmed the catalytic nature of these pre-

waves with moderate TONCo of 60 and 44 achieved after 3 hours for 10a and 10b, 

respectively. Surprisingly, 10c proved almost entirely inactive for hydrogen evolution during 

electrolysis, to account for which the authors have suggested competing pathways in its 

reductive chemistry.
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2.3. Cobalt(II)-polypyridyl catalysts displaying ligand-assisted catalytic processes

Ligand-centered redox processes have been characterized in two series of complexes, 7 and 

8a-b, which bear redox-active moieties in the ligand backbone.

Ligand L7 accommodates Co(II) in a square planar environment in 7, with two axial 

chloride ligands completing the coordination sphere [53]. The cyclic voltammogram of 7 in 

DMF reveals a reversible oxidation process (Co(III/II), +0.43 V vs SHE) and three reversible 

reductive systems at −0.53, −0.78 and −1.13 V vs SHE. The first reduction process is 

assigned to the Co(II/I) couple. The second and third waves, occurring at potentials close to 

those observed in a voltammogram of the free ligand L7, are likely to be ligand-centered. 

The electrochemistry of 7 is significantly altered in aqueous electrolytes. Aquation of the 

two axial chloride ligands readily occurs, and the Co(III/II) system is coupled to 

deprotonation of water ligands in a proton coupled electron transfer (PCET) process. The 

first cobalt-centered reduction is still observed as a quasi-reversible process occurring at 

−0.4 V vs SHE at all pH values. A pH-dependent catalytic wave assigned to hydrogen 

evolution is observed at more cathodic potentials, thus it is likely triggered by a ligand-

centered reduction process. These results show that ligand-assisted catalytic processes can 

occur at quite positive potentials in aqueous conditions, and are thus particularly relevant 

under light-driven conditions.

A similar situation is found with the complexes (8a-b) of two pentadentate ligands, L8a-b, 

based on two bipyridine and one pyridine unit [54]. Cyclic voltammetry of the complex 8a, 

recorded in acetonitrile, displays three cathodic processes at −1.20 V, −1.79 and −1.94 V vs 
Fc+/Fc, assigned to the Co(II/I) event and the successive reduction of the two bipyridine 

units in L8a. The Co(III/II) couple appears as a broad event centered at +0.235 V vs Fc+/Fc. 

The CF3-substituted complex 8b shows the expected positive shift of the metal-centered 

Co(III/II) and Co(II/I) redox couples, by 75 and 61 mV, respectively. More unexpectedly, the 

ligand based reductions also moved to more positive potentials, by around 80 mV. In both 

cases, addition of acetic acid triggers the appearance of electrocatalytic waves corresponding 

to the reduction of protons into hydrogen, with faradaic yields greater than 90%, as 

confirmed by bulk electrolysis experiments. Two distinct systems, at potentials matching the 

redox events assigned to ligand-centered reductions, are observed. In the case of 8a, these 

peaks are concentration dependent up to 90 mM acetic acid and plateau afterwards, with the 

second peak giving even higher current densities. For 8b, the first event shows relatively low 

current enhancement and levels off quite quickly with the acid concentration. The second 

event, however, shows much greater current enhancement, although not as high as in the 

case of 8a. The authors also recorded cyclic voltammograms in aqueous electrolyte (0.3 M 

ascorbate buffer, pH 4) on glassy carbon electrodes. Under these conditions, only the 

Co(II/I) system is observed, the ligand-centered redox processes occurring at potentials 

where direct proton reduction is readily achieved at the glassy carbon electrode.

No cobalt-centered catalytic process is observed for the complexes 8a-b, which contrasts 

with the related pentadentate catalysts 11a-b, which lack any redox-active ligand. This is 

likely due to the fact that the introduction of bipyridine moieties in the ligand stabilizes the 

cobalt center in the reduced state through increased π-back-bonding. This both shifts the 
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Co(II/I) redox couple to more positive potentials and reduces the nucleophilicity of the Co(I) 

state. Hence a stronger acid is required for catalysis to be observed. It is likely that a 

catalytic process could be observed with complexes 8a-b if TFA was used as a proton 

source, i.e. under conditions similar to those used for assaying the catalytic activity of 3b, 

the ligand of which also contains a bipyridine unit, although only binding in a tetradentate 

manner. Comparing the activity of 3b and 8a under similar conditions would also be very 

interesting in order to verify if the presence of two open or labile coordination sites in cis 
position is beneficial for catalysis.

Despite the large number of electrochemical and electrocatalytic studies available for 

cobalt(II)-polypyridine complexes, it appears difficult to derive structure-function 

relationships for this class of compounds, principally because of the large range of 

experimental conditions used. In particular, data recorded in aqueous solutions are 

sometimes not exploitable, because the solutions are not properly buffered or because direct 

hydrogen evolution at the surface of the electrode readily competes with the catalytic 

process [54].

3. Photocatalytic studies

The light-driven activities of several cobalt(II)-polypyridyl catalysts and of the parent 

[Co(bpy)3]2+ (2) have been evaluated under homogeneous conditions, using a 

photosensitizer able to harvest light and initiate photoinduced electron transfer, together with 

a sacrificial electron donor able to regenerate the photosensitizer to its initial state, thus 

rendering the system catalytic. The structures of the main photosensitizers employed in 

combination with catalysts 2-12 are presented in Scheme 5, and the photocatalytic 

performances of these systems are reported in Table 2. Note that unless specifically stated, 

the formation of cobalt colloids or nanoparticles has been excluded on the basis of the 

mercury poisoning test or dynamic light scattering measurements in the photocatalytic 

studies described below.

3.1. Photocatalytic systems based on the parent [Co(bpy)3]2+ complex

Until the late 1970s, most of the work in the area of photocatalytic hydrogen evolving 

systems relied on the use of [Ru(bpy)3]2+ (PS1, Scheme 5) as the photosensitizer in 

combination with platinum colloids as the heterogeneous hydrogen evolving catalyst [88, 

89]. In these systems, cobalt complexes were initially employed as alternative electron relays 

to methyl-viologen [90-92]. However, blank experiments revealed that hydrogen could also 

be evolved in the absence of any Pt catalyst [92, 93]. Importantly, these early reports 

established that in the case of homogeneous cobalt-based hydrogen photoproduction, no 

electron mediator is required, in contrast to systems based on platinum colloids. In this 

context, cobalt-bipyridine systems have been extensively studied by Sutin and coworkers 

[45-50]. Visible light-induced hydrogen evolution was demonstrated as early as 1981, when 

Co(II) ions and bipyridine were mixed in water at the optimum pH of 5, together with PS1 
and ascorbate in large excess as the sacrificial electron donor [45]. Formation of 

dihydrobipyridine as a consequence of the reduction of bipyridine was noticed as a side 

reaction. When bipyridine (L2a) was replaced by 4,4′-dimethylbipyridine (L2b) in the 
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catalytic system, a higher quantum yield for hydrogen production was obtained (13% with 

L2b vs 2% with L2a) [45]. This work has been further improved by using ruthenium tris-

dimethylphenanthroline [Ru(dmphen)3]2+(PS2, Scheme 5) as the photosensitizer, 

triethanolamine (TEOA) as the sacrificial electron donor and [Co(bpy)3]2+(2) as the catalyst 

precursor in a 1:1 mixture of acetonitrile and water at pH 8 [48]; under these conditions, a 

maximum quantum yield of 29% was obtained.

More recently, the chloride salt of 2 was investigated by the group of Bernhard in 

combination with substituted heteroleptic cyclometallated iridium complexes of the 

[Ir(ppy)2(bpy)]+ family (PS3, Scheme 5), prepared by a combinatorial chemistry approach 

[81]. In water acetonitrile mixtures, and in the presence of LiCl and TEOA as the sacrificial 

electron donor, 16 turnovers based on 2 (TONCo) were achieved by the photocatalytic 

system, with no significant dependence on the choice of iridium-based photosensitizer (±2 

TONs), while the Ru-based PS1 only allowed for 2 turnovers. Use of PS2 instead of PS1 
improved the efficiency by a factor of 6, as already observed by Sutin and co-workers [48]. 

Following this study, 2 has been employed as a reference catalytic system for the evaluation 

of novel iridium-based photosensitizer structures [82, 94-96], such as charge-neutral 

amidinate [95] or tricyclometallated derivatives [96]. The reader should note that in all the 

aforementioned studies, 2 is employed in relatively high excess compared to the iridium-

based PS (PS:Cat ratio of 1:20 to 1:50; see table 2), thus accounting for the low TONCo 

reported in Table 2.

In 2011, Wang, Sun and coworkers reported fully noble metal-free hydrogen evolving 

photocatalytic systems [83]. Commercially available organic dyes from the xanthene family 

(PS6-8) have been successfully combined with 2 and triethylamine (TEA) as the sacrificial 

electron donor in an acetonitrile water mixture at pH 10. Under these conditions, the 

hydrogen evolution efficiency proved to be considerably higher (up to 631 TONCo) than that 

of similar systems based either on PS1 or on neutral cobaloximes (1b,c) as catalysts. 

Electrostatic attraction between the negatively charged organic dyes and the cationic catalyst 

has been indicated by UV-vis spectroscopy and proposed as an explanation for the superior 

performance of these photocatalytic systems.

Finally, a supramolecular strategy, developed by Sakai and coworkers exploited the 

spontaneous self-assembly of bipyridine-appended cyclometallated iridium photosensitizers 

in the presence of Co(II) ions, thus generating a [Co(bpy)3]2+ center in situ, bearing one, two 

or three appended photosensitizing units [97]. In the presence of TEOA, these assemblies 

mediated light-driven hydrogen production in acetonitrile water mixtures with up to 20 

TONCo. Multi-component systems tested under the same experimental conditions proved to 

be half as efficient, demonstrating the importance of the supramolecular design.

3.2. Photocatalytic systems based on cobalt(II)-polypyridyl catalysts

Since the first report in 2010 by Chang and coworkers on the cobalt(II)-polypyridyl 

electrocatalyst 3b [52], a great deal of effort has been devoted to the design of original 

polypyridyl ligands and the evaluation of their cobalt complexes in light-driven hydrogen 

evolution. In contrast with the cobaloximes, no supramolecular or covalent photosensitizer-
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catalyst assembly has to date been reported for cobalt(II)-polypyridyl catalysts, to the best of 

our knowledge.

In 2012, Lau and coworkers reported the hydrogen evolution activity of the bis-aqua catalyst 

5a in combination with either PS3 or the fluorinated derivative PS4, in presence of TEOA as 

sacrificial electron donor and p-cyanoanilinium tetrafluoroborate as proton source [84]. 

Under optimized conditions (PS4:Cat ratio of 1:20), 58 TONCo have been measured in a 

95:5 acetonitrile water mixture. After 20 hours, addition of extra photosensitizer could 

reinitiate catalysis. In contrast, catalyst 2 and the related [Co(bpy)2(OH2)2]2+ display much 

lower TONs, and catalysis could not be reinitiated by addition of PS. It should be noted that 

this study is the only one of the polypyridyl series reported under organic conditions and 

producing a clear comparison with the parent catalyst 2. In addition, catalyst 5a was recently 

reevaluated by Long, Chang, Castellano and coworkers under fully aqueous conditions (PS1, 

ascorbic acid as sacrificial electron donor at pH 5.5) and performed up to 200 TONCo which 

ranks it among the less active polypyridyl catalysts of the tested series (from 150 to 1850 

TONCo for catalysts 3a-6 and 10a-11c tested under identical conditions; see section 3.3 

below for more detailed comparison) [57].

Hydrogen evolving photocatalytic activity of cobalt(II)-polypyridyl catalysts in fully 

aqueous medium was first reported in early 2013 with catalysts 11a-c [59] and 3a [85]. 

Long, Chang and coworkers have demonstrated that the family of complexes 11a-c, 

previously described as highly efficient electrocatalysts in neutral water [58], were also 

active under visible light-driven conditions in the presence of PS1 and ascorbate in aqueous 

phosphate buffer at pH 7. Catalyst 11a exhibited the highest performance in the series, in 

good agreement with its low overpotential for electrocatalytic hydrogen evolution [58]. The 

authors established that photosensitizer decomposition was the primary reason for the cease 

of activity after 8 hours of photolysis. Hydrogen evolution was also demonstrated in 

combination with a semiconductor nanowire photosensitizer, which is, however, out of the 

scope of this review [59]. At the same time, Hamm, Alberto and coworkers have prepared 

and tested the dibromo complex 3a in combination with the rhenium-based photosensitizer 

PS5 in ascorbate buffer at pH 4.1 [85]. Up to 9000 TONCo were obtained, however at very 

low concentration of catalyst (0.1 μM) and extremely high PS:Cat ratio (5000:1). The long-

term stability of the system has been studied using a higher concentration of catalyst (0.5 

mM) producing 0.52 mmol hydrogen (104 TONCo) over 120 hours. At the end of the 

photocatalysis experiments, LC-MS analysis showed the presence of both catalyst and PS5 
(≥ 90%), demonstrating their stability. Two new pentadentate ligands and their cobalt 

catalysts have also been reported by the same authors [86]. The first, L9, displays a 

“Bpy2Py” coordination sphere whereas the second ligand, L12a, relies on a “Py5” scaffold 

closely related to L11b [58, 59]. From a series of first-row transition metal complexes 

(Mn(II), Fe(II), Co(II), Ni(II), Cu(II), Zn(II)) evaluated as water reduction catalysts, the 

cobalt complexes alone displayed some hydrogen evolution activity. TONCo as high as 1380 

for 9 and 1180 for 11a were recorded, using 100 equivalents of PS5 in aqueous solution of 

ascorbate (pH 4.1). Loss of catalytic activity under these conditions was assigned to 

competitive back electron transfer from the reduced photosensitizer PS− to dehydroascorbic 

acid (DHA), formed by oxidation of ascorbic acid [85, 86]. Such self-inhibition by the 
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oxidized form of the sacrificial electron donor, accumulated during the course of the 

catalysis, has been also identified in other studies as a limitation of the ascorbate-based 

systems [56, 57]. This drawback has been recently elegantly circumvented by using the 

reversible ascorbate system as an electron relay between the photosensitizer (PS1 or PS5) 

and a tertiary phosphine-based irreversible electron donor (tris(2-carboxyethyl)phosphine, 

TCEP) [87]. Higher hydrogen evolution rates and total amounts of hydrogen could thus be 

obtained. This work from Alberto and coworkers opens new perspectives for the 

optimization of light-driven hydrogen evolution under fully aqueous medium.

Two other examples of “Bpy2Py”-type ligands, L8a-b, were later reported by Chang, Long, 

Castellano and coworkers [54]. In good agreement with the electrocatalytic studies, catalyst 

8b, bearing electron-withdrawing CF3 groups, displayed a lower light-driven activity than 8a 
(1630 TONCo with Φ 3.6% versus 1390 TONCo with Φ 2.7%, respectively). The authors 

demonstrated that under the reported experimental conditions, photocatalytic activity was 

solely limited by photosensitizer stability.

In 2014, Thummel and coworkers tested complex 7, a hydrogen evolving electrocatalyst 

active under neutral aqueous conditions, in combination with the classical PS1-ascorbate 

system, and up to 333 TONCo were measured during the course of a three hour experiment 

under LED irradiation [53]. Meanwhile, Scandola and coworkers have evaluated catalyst 

12b in presence of PS1 in aqueous ascorbate buffered solution (pH 4) [56]. Under visible 

light irradiation, 187 TONCo were achieved in one hour. The authors have shown that 

TONCo values were insensitive to catalyst concentration, in contrast with what is usually 

observed for the other reported polypyridyl cobalt-based systems.

Finally, Long, Chang, Castellano and coworkers have undertaken the benchmarking of 10 

distinct catalysts (3-6, 10-11) under identical conditions (2×10−5 M catalyst, 3.3×10−4 M 

PS1 in 0.3 M aqueous ascorbate buffer; irradiation at 452 nm) in order to provide 

comprehensive findings and guidelines for the design of optimized systems [57]. A 

systematic adjustment of the pH has been made for each individual catalyst in order to take 

into account the variations in relative basicity of the Co(I) intermediate likely to be 

protonated during the cobalt-based catalytic cycle (see section 2.1 for mechanistic details). 

In this study, new ligands (L4a,b and L10a-c) were synthesized to more accurately evaluate 

parameters such as electronic effects of substituents (L4 series) and the tetradentate versus 

pentadentate nature of the ligands (L10 series). The results from this study are highlighted in 

the next section.

3.3. Structure-photocatalytic activity relationships

Specific catalyst structure-photocatalytic activity relationships arise from the reported 

studies on cobalt(II)-polypyridyl photocatalytic systems. Although a straightforward 

comparison of the activities reported in Table 2 cannot be made for all the systems due to 

differences in the experimental conditions employed, a strong influence of the ligand 

structure and coordination sphere of the cobalt center is observed. A series of structural 

relationships identified in the cobalt-polypyridyl catalyst series are listed below and their 

influence on the photocatalytic activity tentatively assigned; as more than one relationship 
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often exists between the catalysts considered, the discussion necessarily overlaps at some 

points.

Tris-bipyridine vs polypyridyl—Going from the simple bipyridine ligand L2a to 

polypyridine structures with higher denticities is proposed to confer higher stability to the 

cobalt complex in its reduced states by virtue of the chelate effect, and as a consequence 

improve the efficiency of the catalytic system. The parent complex 2 is known to be active 

upon the loss of one bipyridine ligand [49], whereas penta- and tetradentate ligands allow 

one and two coordination sites, respectively, to remain vacant on the cobalt center for 

catalysis to occur via formation of a cobalt hydride species (see section 2.1). There is only 

one example in the literature where 2 and a cobalt(II)-polypyridyl catalyst are compared 

under similar conditions: Lau and coworkers have shown that the tetradentate quaterpyridine 

catalyst 5a displays much higher TONs than 2 and the related [Co(bpy)2(OH2)2]2+; 

moreover, whereas catalysis could be reinitiated by addition of photosensitizer in case of 5a, 

full decomposition of the catalyst was observed with 2 and [Co(bpy)2(OH2)2]2+ [84]. This 

result can be correlated with the formation of dihydrobipyridine by reduction of the 

bipyridine ligand observed in the early works from Sutin and coworkers [45]. It should be 

noted, however, that the relative arrangement of the two aqua ligands differs between these 

complexes, trans in 5a versus presumably cis in [Co(bpy)2(OH2)2]2+, which could also 

influence the reactivity (see below). In contrast, the stability of catalyst 3a has been assessed 

by LC-MS analysis of the photocatalytic system, and it was established that 96.5% of 3a is 

still present after 120 hours of irradiation [85]. Similarly, HPLC control experiments 

established that 90% of 4a remained intact at the end of the photocatalytic test (~2 hours) 

[57]. Thus, no reduction of the bipyridine moieties occurred on the tetradentate bpy-based 

ligands L3a and L4a.

Bipyridine-based vs pyridine-based ligands—Two main consequences stem from the 

presence of a bipyridine moiety in the ligand structure as compared with single pyridine 

moieties: (i) more sterically constrained geometries around the cobalt center are obtained 

and (ii) ligand-centered redox processes can occur (see section 2.3). The former effect has 

been put forward by Hamm, Alberto and coworkers to explain the higher activity of 9 
compared to 12a [86]. Complex 9 indeed displays a much more strongly distorted octahedral 

structure compared to that of 12a, and was shown to catalyze hydrogen evolution at faster 

rate. However, these two series of complexes also differ due to more subtle effects linked to 

the orientation of the pyridyl rings of the ligand within the complexes: while π-π overlap 

between the pyridyl rings in the 11-12 series is possible, in the series 8-9, the positioning of 

the four rings in the equatorial plane prevents it. The photocatalytic activity of pentadentate 

catalysts 8a-b, bearing a redox-active bipyridine, clearly outperformed catalysts 11, relying 

on a “Py5” structure [54]. The superiority of bipyridine-based structures is, however, less 

marked in the tetradentate series, where “BpyPy2” ligands L3a-L4b have been compared to 

“Py4” ligands L10a-c under similar conditions [57]. Catalyst 4a displayed the highest 

activity with 1850 TONs achieved in 14 hours, however it is closely followed by 10a (1550 

TONs). Electronic and steric effects of the substituents also come into play when 

considering the other complexes of the two series, 3a’ (950 TONs), 3b (1025 TONs), 4b 
(400 TONs), 10b (250 TONs) and 10c (225 TONs). The contribution of ligand-centered 
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redox processes to hydrogen evolution activity is thus difficult to properly demonstrate 

under light-driven conditions.

Pentadentate vs tetradentate ligands—During the course of their benchmarking of 

cobalt(II) catalysts, Long, Chang, Castellano and coworkers have designed three new 

tetradentate ligands L10a-c, based on the parent pentadentate structure L11b, but with one 

fewer pyridine moiety [57]. These two series of ligands thus allow for an accurate 

comparison of the influence of the ligand denticity on the hydrogen evolution activity of the 

corresponding cobalt catalysts. It was established that tetradentate ligands led to 

significantly more active catalysts (1550 TONCo for 10a versus 300 TONCo for 11b under 

the same experimental conditions), but this effect cannot be generalized since more sterically 

hindered catalysts 10b and 10c display activities 6 to 8 times lower than 10a, reflecting the 

trend observed in the course of electrochemical studies [57]. The structures of catalysts 3a 
[85] and 9 [86] also only differ by the denticity of their ligands, tetradentate for L3a versus 

pentadentate for L9. Under similar photocatalytic conditions (5 μM in catalyst, 100:1 

PS5:Cat ratio, ascorbate buffer pH 4.1), 3a proved to be slightly superior, with ~2000 TONs 

achieved vs 1380 TONs for 9. From this analysis, it is not possible to demonstrate a clear 

advantage of tetradentate ligands over pentadentate ligands. It should also be mentioned that 

a closely related pentadentate system [80] undergoes decoordination of one pyridine arm in 

the course of catalysis (described in more detail later in the discussion), thus leading to a 

pseudo-tetradentate system.

Cis vs trans open coordination sites—Catalysts bearing tetradentate bipyridine-based 

ligands (3-7 in Scheme 2) can be distinguished by the cis/trans stereochemistry of the two 

labile positions on the cobalt complex. The cis stereochemistry in complexes 3a-4b is 

controlled by ligands bearing one bipyridine moiety plus two appended pyridines, whereas 

trans complexes 5a-7 rely on two diimine moieties (bipyridine or phenanthroline) in their 

coordination sphere. In order to establish the influence of the cis/trans geometry on the light-

driven hydrogen evolution activity, the groups of Castellano, Long and Chang have 

benchmarked catalysts 3a-6 (initially described either in their groups or in other research 

groups) under identical experimental conditions. This allowed them to establish that 

catalysts with cis open coordination sites significantly outperform those with trans sites (up 

to 1850 TONCo for 4a versus 200 and 150 TONCo for 5a and 6, respectively) [57].

Nature of the labile monodentate ligand(s) on the cobalt center—Subtle 

variations of the monodentate ligand(s) that complete the coordination sphere of the catalyst 

are observed. They can be monoanions, such as Cl−, Br−, OTf−, or solvent molecules 

(CH3CN; H2O), thus leading to either neutral, monocationic or dicationic cobalt catalysts. 

The nature of these ligands is generally dictated by the choice of the cobalt salts used for the 

metallation reaction and also by some solubility issues in water. Although ligand L3a has, 

for instance, been employed by two independent groups, with different labile ligands on the 

cobalt center, the dicationic hexacoordinated bis-acetonitrile complex 3a’ [57] and the 

monocationic pentacoordinated bromo complex 3a [85], a direct comparison of their relative 

efficiencies is precluded as very different conditions for their evaluation have been used 

(PS1 for 3a’ versus PS5 for 3a, in different PS:Cat ratios). Chloride substitution by water 
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has been electrochemically observed for 7 under aqueous conditions. Anation by the acetate 

anion occurred during the course of the electrocatalytic study on catalysts 11a-b, shifting the 

redox potential of the Co(II/I) couple toward more cathodic potentials. If such a 

monodentate ligand remains coordinated in the Co(I) state, it may also influence the 

protonation steps. These labile positions are thus highly sensitive to their environment.

During the course of photocatalysis, formation of a cobalt hydride intermediate (see section 

2.1) is expected to occur with displacement of one monodentate ligand; at the end of the 

hydrogen evolution catalytic cycle, the cobalt center will be recovered either in a solvated 

form or coordinated by a new monodentate ligand, depending on the anion present in the 

medium. The situation could be a little bit trickier for catalysts based on pentadentate 

ligands. It has been established on a closely related pentadentate aminopyridinic system that 

formation of Co(III)–H occurs via decoordination of one pyridine arm of the ligand, rather 

than by removal of the chloride monodentate ligand from the cobalt center [80]. Indeed, four 

catalysts differing only by the nature of the monodentate ligand (Cl−, NO3
−, OTf−, H2O) 

displayed very different activities, the chloride derivative being the most active and the 

nitrate five times less active. Furthermore, activity was enhanced in 0.3 M NaCl solution, 

and decoordination of one pyridine arm was established by NMR under acidic conditions. 

This highly counter-intuitive result emphasizes the necessity to correctly establish the 

cobalt-center hydrogen evolution mechanism in order to optimize the photocatalytic activity 

of such systems. The influence of the so-called labile positions on the cobalt center deserves 

to be more systematically studied in the future.

Ligand substituent electronic effects—The first pentadentate family of ligands L11a-
c studied by Chang and coworkers consisted of three structures differing only in the central 

pyridine para-substituent: electron-withdrawing -CF3 group in L11a, -H in L11b and 

electron-donating -NMe2 group in L11c. In excellent agreement with the electrocatalytic 

studies, catalyst 11a proved to be the most efficient of the series, producing twice the 

amount of hydrogen of 11c after 8 hours of visible light irradiation (LED 452 nm) [59]. On 

the basis of these results, the same authors designed two new sets of ligands 4a,b [57] and 

8a,b [54], 4b and 8b bearing CF3 substituents on the pyridine moieties. However, the latter 

displayed lower activities than the parent H-substituted 3a and 8a under both electro- and 

photocatalytic conditions [54, 57]. Of note is the fact that these two series of complexes 

possess redox-active bipyridine moieties, in contrast to 11a-c, with a ligand-assisted 

catalytic process being clearly established for 8a-b (see section 2.3). Substitution of CF3 on 

the bipyridine rather than on the pyridine moiety would therefore be interesting to 

investigate, in order to electronically modulate the ligand-assisted process.

Another type of substituent effect is addressed in the 3a’,b-4a series of catalysts, the ligand 

structures of which vary only in the substitution on the central quaternary carbon (Me, OH 

or OMe). The recent comparative study by Long, Chang, Castellano and coworkers 

established that the presence of the methyl substituent confers a greatly enhanced catalytic 

activity in comparison with the OH or OMe derivatives (1850 TONCo for 4a vs 950 TONCo 

for 3a’ and 1025 TONCo for 3b) [57]. However, such a variation in activity is difficult to 

rationalize on the basis of simple electronic effects. Modification of the substitution of a 
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bridging carbon is also encountered in the series 10a-c. The increase in steric hindrance, 

observed in going from 10a (bridging CH2) to 10c (bridging C(Me)2), drastically influences 

the light-driven activity of these catalysts, with 10a being one of the more efficient in the 

field while 10b and 10c display low activities [57]. This effect is also observed in the 

electrocatalytic studies.

3.4. Mechanistic considerations

One important development with the cobalt(II)-polypyridyl catalysts has been the ability to 

perform photocatalytic tests under fully aqueous conditions, thanks to the increased stability 

of the cobalt coordination sphere towards both hydrolysis and reductive conditions. This has 

allowed the commonly used amine sacrificial electron donors (TEA, TEOA), which require 

working at basic pH, to be avoided. The ascorbic acid/ascorbate couple, active at the optimal 

pH of 4-5, can be employed instead, allowing conditions for the photocatalytic tests to better 

match those favoring hydrogen evolution. It should be noted, however, that the pH of the 

medium is only precisely defined in fully aqueous conditions; strong uncertainty exists for 

both the pH value and pKa of the sacrificial electron donor when pure organic or mixed 

organic/aqueous solutions are employed.

The photosensitizer-based mechanisms are presented in Figure 2. In contrast with 

electrocatalysis performed under the control of a potentiostat, the reductive power of the 

medium cannot be adjusted on demand under light-driven conditions, but is fixed by the 

redox levels of the photosensitizer. In addition, the concentration of reducing equivalents is 

controlled by sequential monoelectronic processes induced by photon absorption and thus 

limited by the photon flux. The reductive species for the Co(II) center can be either PS* via 
an oxidative quenching pathway (Figure 2, right) or PS− via a reductive quenching 

mechanism (Figure 2, left). Mechanistic studies are therefore mostly focused on the 

elucidation of the photosensitizer-based processes, through the use of time-resolved 

spectroscopic measurements that allow observation of signatures associated with the 

intermediate forms of the photosensitizer.

When [Co(bpy)3]2+ (2) is used as the catalyst in a photochemical hydrogen evolving system, 

it can be reduced to [Co(I)(bpy)3]+ either by PS* (PS1* or PS2*) via the oxidative 

quenching process or by PS−, generated from the reductive quenching of PS* by D [50]. The 

work of Sutin and coworkers established that the reductive quenching process takes place 

when ascorbate is used as sacrificial electron donor [45, 46, 50], whereas the oxidative 

quenching mechanism is at work with TEOA [48, 50]. Generation of cobalt(I) complexes 

from 2 under irradiation is evidenced by the blue color of the solution, and dissociation of 

bipyridine ligands from [Co(I)(bpy)3]+ has been observed under catalytically relevant 

conditions [49]. In fact, the hydride complex [Co(bpy)2(OH2)H]2+, independently prepared 

by pulse radiolysis of aqueous CoSO4-bipyridine mixtures in the presence of radical 

scavengers [47], is likely the key catalytic intermediate during hydrogen photogeneration 

from aqueous solutions [48, 50]. It should also be noted that the major cobalt(II) complexes 

formed in solution are the mono and bis-bipyridine [Co(bpy)n]2+ (n = 1 and 2) species if the 

catalytic mixture is prepared by mixing a Co(II) salt with the diimine ligand (L2a or L2b; 

Co(II):L = 5:1, see Table 2) [45].

Queyriaux et al. Page 15

Coord Chem Rev. Author manuscript; available in PMC 2017 December 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Reductive quenching of PS1* by ascorbate is also recognized as the predominant process in 

most of the photocatalytic systems based on polypyridyl catalysts [57]. PS1* is, for instance, 

not quenched by catalyst 8a at the concentrations used in the photocatalytic experiments, 

whereas a reductive quenching constant of 2.6×107 M−1·s−1 has been measured with 

ascorbate at pH 4 [54]. Oxidative quenching of PS1* by catalyst 4a has been calculated to 

be thermodynamically disfavored from the potentials of the two redox couples [57]. In 

contrast, both oxidative and reductive processes are allowed for the photocatalytic system 

based on 12b, PS1 and ascorbate; bimolecular rate constants of 3.1×108 M−1·s−1 and 

1.0×107 M−1·s−1 for 12b and ascorbate, respectively, have been obtained from steady-state 

quenching experiments [56]. However, despite a difference of one order of magnitude 

between these two constants, the reductive quenching process is dominant under the 

employed photocatalytic conditions (0.1 M in ascorbate versus 10-100 μM in 12b). 

Formation of reduced [Ru(bpy)3]+ has moreover been confirmed by laser flash photolysis 

experiments, and subsequent electron transfer to 12b occurred with a bimolecular rate 

constant estimated to be 5.7×109 M−1·s−1 [56]. Such high values, close to the diffusion limit, 

have also been measured for closely related systems based on aminopyridyl ligands [98, 99]. 

Fast electron transfer from PS− to the catalyst is required to optimize the photocatalytic 

performances of a system by limiting decomposition of the reduced photosensitizer PS−.

Nevertheless, these photophysical studies generally only address the first electron transfer 

process occurring in the catalytic cycle, that is the initial reduction of a Co(II) complex to a 

Co(I) state (Figure 1). A second photoinduced electron transfer is required to produce 

hydrogen, either to reduce a Co(III)–H species (ECEC pathway, Figure 1), for a second 

reduction of the Co(I) intermediate (EECC pathways, Figure 1) or, alternatively, to 

regenerate the initial Co(II) state of the catalyst (ECCE pathway, Figure 1). Very little is 

known about the cobalt-centered mechanism taking place under light-driven conditions. The 

hydrogen evolution rate is, in many examples [59, 85, 100], reported to be first-order with 

catalyst concentration for experiments performed at relatively low catalytic concentrations, 

which reflects the fact that the rate determining step is the electron transfer from the 

photosensitizer to the catalyst, the hydrogen evolution rate being generally proportional to 

the photon flux. At the same time, such a dependency likely excludes homolytic 

mechanisms that are strongly disfavored at low catalyst concentration. Such conditions, 

however, are not relevant from a practical point of view since very low amounts of hydrogen 

are produced (see Table 2), and substantial production of hydrogen is generally obtained at 

higher catalyst concentrations (see Table 2 and, for instance, reference [85]). The Co(III)–H 

based ECCE pathway (Figure 1) requires strong acids to operate and is thus very unlikely to 

take place under the reported photocatalytic conditions; pathways involving a Co(II)–H 

species are therefore favored. Thermodynamics indicates that the reductive strength of 

[Ru(bpy)3]+(−1.26 V vs NHE) is high enough to further reduce the Co(I) state of catalysts 

such as 8a,b [54], thus allowing the ligand-assisted EECC pathway, characterized in the 

electrocatalytic studies, to also operate under photocatalytic conditions. Of note are the 

studies from Long, Chang and coworkers where both electrocatalytic and photocatalytic 

experiments were undertaken in pH 7 aqueous phosphate buffer for catalysts 11a-c [58, 59] 

and in pH 4 ascorbate buffer for 4a,b. In both cases, the redox potential of [Ru(bpy)3]+ is 

more cathodic than the onset potential of the electrocatalytic wave which demonstrates the 
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ability of PS1 to drive hydrogen production under visible light irradiation. In general 

however, comparison of the electrocatalytic and photocatalytic studies is precluded as they 

are performed under too dissimilar experimental conditions. It has also been recently 

highlighted that electrocatalytic and photocatalytic processes may proceed through distinct 

mechanisms, especially if the former involves two successive electron transfers [101]. In a 

very recent study published during the course of preparing this review, Hamm and 

coworkers addressed this mechanistic issue by performing spectroscopic studies combined 

with in-situ time-resolved hydrogen detection [102]; a three-component system based on 

PS5, 3a and TEOA was shown to evolve hydrogen via the heterolytic ECEC pathway 

(Figure 1), an identical mechanism to that previously established for cobaloximes.

4. Conclusion and outlook

The electro- and photocatalytic systems based on hydrogen evolving molecular cobalt(II)–

polypyridyl catalysts are distinguished from the previous cobaloxime and [Co(bpy)3]2+ 

based catalysts by the robustness of the polypyridyl coordination sphere toward either 

reduction, hydrolysis or ligand exchange under reductive conditions. Thanks to this property, 

light-driven hydrogen evolution has been successfully achieved under fully aqueous 

conditions using ascorbate as the sacrificial electron donor. Obviously, working under 

aqueous acidic conditions is beneficial for the cobalt-centered mechanisms and represents an 

important development in the field. It should nevertheless be emphasized that combined 

experimental-theoretical mechanistic studies are still needed to fully understand the catalytic 

mechanism, with a special focus on the beneficial role played by redox-active centers often 

present in the ligand structure, such as the bipyridine moiety.

Thanks to the wide variety of polypyridyl ligands evaluated during the last four years, 

structure-activity relationships were tentatively established in order to shed light on some 

specific trends for the future design of better performing catalytic systems. First, the 

relatively high sensitivity of the light-driven hydrogen evolving activity to very subtle 

variations on the ligand backbone should be noted from these studies. Although catalysts 

based on tetradentate ligands were reported to be superior to pentadentate ones, no obvious 

advantage could be established here, as substitution on the ligand backbone also strongly 

influences the activity, without clear rationale. Only the presence of two cis open 

coordination sites in the tetradentate series can be recognized as beneficial for the catalytic 

activity. We nonetheless would like to draw the reader’s attention to the fact that a 

straightforward comparison of the reported numerical values such as TONs can be 

misleading in comparing different catalysts. TON values are indeed highly dependent on the 

photocatalytic experimental conditions that, in most cases, drastically vary from one study to 

another. High TONCo can be reached at low catalyst concentration but to the detriment of the 

long term stability and of the quantity of hydrogen produced. As a consequence, quantum 

yield together with long-term stability should be the two parameters to more systematically 

consider in the future.

These studies clearly open new perspectives in the field of light-driven hydrogen evolution 

by molecular cobalt catalysts. Up to now, the prototype ruthenium trisbipyridine was the 

main photosensitizer used in aqueous media, but new light-harvesting units can now be 
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considered to improve both the activity and the sustainability of these photocatalytic 

systems. In addition, the phosphine (sacrificial electron donor) ascorbate (electron relay) 

combination developed by Alberto and coworkers [87] should be systematically evaluated to 

overcome the limitations imposed by the dehydroascorbate deactivation pathway.
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Figure 1. 
Heterolytic and homolytic (inset) mechanisms for hydrogen evolution catalyzed by a 

molecular cobalt(II) complex.
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Figure 2. 
Photosensitizer-based processes involved in light-driven hydrogen evolution catalyzed by 

cobalt(II)-polypyridyl complexes.
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Scheme 1. 
Parent cobaloximes and [Co(bpy)3]2+ catalysts.
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Scheme 2. 
Tetradentate bipyridine-based ligands and their corresponding cobalt(II) complexes.
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Scheme 3. 
Pentadentate bipyridine-based ligands and their corresponding cobalt(II) complexes.
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Scheme 4. 
Pyridine-based ligands and their corresponding cobalt(II) complexes.
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Scheme 5. 
Main photosensitizers employed in combination with [Co(bpy)3]2+ (2) and cobalt(II)-

polypyridyl catalysts.
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