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Abstract: Zinc intake is recommended for zinc deficiency. In clinical practice, polaprezinc has been
used as a zinc replacement therapy for zinc deficiency. However, the efficacy of polaprezinc has not
been established. To confirm the efficacy on zinc deficiency of polaprezinc and provide additional
information on an appropriate regimen, we conducted a systematic review using individual patient
data (IPD). We searched PubMed, the Japanese database Ichushi, and the database owned by the
marketing authorization holder of polaprezinc. Randomized placebo-controlled trials that reported
the serum zinc concentration were eligible. The mean difference of the change from baseline in serum
zinc concentration was estimated using a fixed-effects model. The linear dose–response relationship
and the subgroup effects were also assessed. Out of 54 unique randomized clinical trials (RCTs),
four studies met the eligibility criteria, and we could access IPD for all of them. All three doses of
polaprezinc (75 mg, 150 mg, and 300 mg) and the placebo group were examined. The dose-combined
overall polaprezinc increased the change from baseline by a mean of 9.08 µg/dL (95% confidence
interval: 5.46, 12.70; heterogeneity: I2 = 0.61%) compared to the placebo. A significant dose–response
relationship was confirmed (p < 0.001). Baseline serum zinc concentration was considered an effect
modifier in polaprezinc 300 mg. All doses of polaprezinc were tolerable, but a dose–response
relationship with adverse events (AEs) was observed in gastrointestinal disorders. The dose of 300 mg
may be useful among patients with baseline serum zinc concentration of less than 70 µg/dL, and
150 mg for 70 µg/dL or more.

Keywords: systematic review; IPD meta-analysis; zinc deficiency; polaprezinc; zinc L-carnosine;
serum zinc concentration
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1. Introduction

Zinc is an essential trace element that plays a key role in many physiological processes in humans.
It also serves as the active component of approximately 300 enzymes [1]. Zinc deficiency is defined as
having insufficient zinc in the body to maintain physiological functions. Zinc deficiency may lead to a
variety of symptoms and diseases, such as type 1 diabetes [2], autoimmune diseases [3–5], growth
retardation [6], taste disturbances [7], and skin disorders [8]. In addition, anorexia, hepatitis C, cirrhosis,
renal failure, sexual dysfunction, and so on have been reported as diseases or conditions associated
with zinc deficiency. The prevalence of zinc deficiency has been estimated at 7.5% to 30% around the
world [9].

If zinc deficiency is suspected, or if there are obvious symptoms of zinc deficiency, supplementation
with zinc is recommended [10,11]. Polaprezinc is an oral chelate compound consisting of zinc and
L-carnosine, which contains 34 mg/150 mg zinc. The protective effect of polaprezinc at 150 mg/day
on gastric mucosa has been shown, and it has been approved for treatment of gastric ulcers in Japan
and Korea [12]. Clinical studies have also suggested its efficacy on pathological conditions related
to zinc deficiency, such as oral mucositis, esophagitis, proctitis, and dermatitis, during and after
radiotherapy [13]. It has been used for zinc replacement therapy in clinical practice [14], but is not
approved for treatment of zinc deficiency worldwide. Polaprezinc is expected to be effective, but the
appropriate regimen of polaprezinc for patients with zinc deficiency is unknown.

In this study, we conducted a systematic review of randomized clinical trials (RCTs) to confirm the
potential efficacy and safety of polaprezinc for treatment of zinc deficiency. In addition, we evaluated
the dose–response relationships and explored the predictive factors to provide additional information
on the appropriate regimen in replacement therapy for zinc deficiency by using individual patient
data (IPD).

2. Materials and Methods

We registered the study protocol (Supplementary Document 1) with the International Prospective
Register of Systematic Reviews (PROSPERO), with the registration number CRD42020156015,
and complied with the Preferred Reporting Items for Individual Patient Data systematic reviews
(PRISMA-IPD) guidelines [15] in reporting our work.

2.1. Search Strategy

We searched PubMed (1946 to October 2019) and the Japanese database Ichushi (1959 to October
2019). The search strategy included only terms describing the intervention and the trial design.
In PubMed, the following search strategy was used: (“polaprezinc” [All Fields]) AND clinical trial
[ptyp]). An equivalent search strategy was used in the Japanese database Ichushi. No restrictions on
language were imposed. To avoid publication bias, the database owned by the marketing authorization
holder of polaprezinc (Promac®)—Zeria pharmaceutical Co., Ltd. (2512-1, Oshikiri, Konan-machi,
Ohsato-gun, Saitama, Japan)—was also accessed. The search strategy used for the database owned
by the marketing authorization holder included studies pre-registered with any public clinical trial
registration agencies (e.g., the Japan Pharmaceutical Information Center (JAPIC)).

2.2. Inclusion and Exclusion Criteria

All studies were included if they fulfilled the following criteria: (1) RCTs; (2) included patients with
hypozincemia; (3) compared a single-agent polaprezinc versus a single-agent placebo; and (4) collected
the serum zinc concentration. The exclusion criterion was as follows: (1) treatment period of less than
8 weeks.
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2.3. Risk-of-Bias Assessment

We used Version 2 of the Cochrane risk-of-bias tool for randomized trials (RoB2) [16] for risk-of-bias
assessment. All included studies were evaluated according to the following domains: bias arising from
the randomization process, bias due to deviations from intended interventions, bias due to missing
outcome data, bias in measurement of the outcome, bias in selection of the reported result and overall
bias. No exclusions were made based on quality.

2.4. Data Extraction

We were able to access the IPD of all included studies, although we originally assumed a hybrid
meta-analysis of aggregate data and IPD. Details of the study identification are shown in Section 3.1.

We extracted individual patient-level variables. The extracted explanatory variables included
allocated treatment, demographic characteristics (sex, age, presence/absence of comorbidities, baseline
serum zinc concentration), and adherence to treatment. The extracted outcomes included serum zinc
concentrations, AEs, and adverse drug reactions (ADRs). The uniformed data acceptable time window
for each visit was applied to the serum zinc concentrations across studies. To uniform definitions across
studies, AEs/ADRs were re-coded using the Medical Dictionary for Regulatory Activities (MedDRA)
term system (Version 21.1).

2.5. Statistical Analysis

The primary efficacy outcome was the change from baseline in serum zinc concentration at 8 weeks.
Secondary efficacy outcomes were the normal proportion defined by the serum zinc concentration
of 80 µg/dL or more at 8 weeks and the response proportion defined by the change of serum zinc
concentration of 15 µg/dL or more at 8 weeks. Safety outcomes were the incidence of AEs/ADRs and
serum concentrations of copper and iron. The diagnosis of zinc deficiency is usually made upon a
serum zinc concentration < 70 µg/dL [10]. However, definitions with thresholds of < 80 µg/dL have
also been reported [17,18]. Thus, we performed analysis for the following two analysis populations:
(1) patients with baseline serum zinc concentration of less than 70 µg/dL (primary analysis population)
and (2) patients with baseline serum zinc concentration of less than 80 µg/dL (secondary analysis
population). All efficacy analyses were performed for the dose-combined overall polaprezinc and for
each dose of polaprezinc (75 mg, 150 mg, and 300 mg).

For each efficacy outcome, we performed a one-stage fixed-effect IPD meta-analysis to obtain
treatment effects with 95% confidence intervals (CIs) and subgroup effects. For continuous outcomes,
the mean difference was estimated using linear models, adjusting study and baseline serum zinc
concentration as fixed-effect covariates. For binomial outcomes, the risk difference was estimated
with linear probability models by the modified least-squares method, adjusting study as a fixed-effect
covariate [19,20]. Heterogeneity of treatment effects between trials was tested with the interaction term
between treatment and study as a fixed effect. The magnitude of heterogeneity was assessed using the
I2 statistic, estimated by the interaction term between study and treatment as a random effect.

To evaluate the dose–response relationship, the contrast for linearity was tested with a one-stage
fixed effect model, including all treatment groups simultaneously. To evaluate pre-specified intervention
effect modifiers (sex, age, comorbidity, and baseline serum zinc concentration), the covariate–treatment
interaction terms were included and tested separately at alpha level 20%. In addition, treatment effects
within each subgroup were analyzed.

For safety outcomes, incidence proportions of AEs and ADRs were calculated. In addition, serum
concentrations of copper and iron were summarized.

All analyses were pre-specified in a statistical analysis plan finalized prior to conducting the
meta-analysis (Supplementary Document 2). The software SAS 9.4 was used for all statistical analyses
except for the description of the forest plot, for which R was used.
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3. Results

3.1. Study Characteristics

The search identified 27, 25, and 7 studies in PubMed, the Japanese database Ichushi, and the
sponsor-owned database, respectively. After removing duplicates, there were 54 unique studies.
Of these, 40 studies were excluded based on screening of the title and abstract. Full texts of 14 studies
were assessed to determine inclusion and exclusion, and 10 studies were excluded. The major reason
for exclusion was that the comparator was not a placebo. Ultimately, 4 studies met the eligibility
criteria, and all of them had accessible IPD, as seen in Figure 1. Two of them were published in 2009
and 2013 [21,22]; the other two studies were unpublished, and were found in the sponsor-owned
database [23,24]. All studies were conducted in Japan by Zeria Pharmaceutical Co., Ltd. to evaluate
efficacy on taste-disorder-related zinc deficiency. The mean age of subjects was between 43.3 and
45.3 years; the mean baseline zinc concentration was between 71.0 and 77.8 µg/dL. The length of the
treatment period was 12 weeks in all studies. There was a slight difference in the interventions across
studies. All studies included a polaprezinc 150 mg group. A polaprezinc 300 mg group was included
in two studies, and a polaprezinc 75 mg group was included in one study, as shown in Table 1.
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Figure 1. Preferred Reporting Items for Individual Patient Data (PRISMA) flow diagram for this
individual patient data (IPD) systematic review.
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Table 1. Characteristics of the included studies.

Author, Year Sample Size Studied Population Treatments Male (%) Age
(Means ± SD, Year)

Baseline Zinc
(Means ± SD, µg/dL)

Duration of
Treatment (Week)

Sakagami et al., 2009 [21] 107
Outpatients with

zinc-related taste disorder,
aged 20–80 years

Polaprezinc 75 mg/day (n = 27)
Polaprezinc 150 mg/day (n = 25)
Polaprezinc 300 mg/day (n = 28)

Placebo (n = 27)

47.4 45.1 ± 16.2 71.0 ± 12.7 12

Ikeda et al., 2013 [22] 219
Outpatients with

zinc-related taste disorder,
aged 20–75 years

Polaprezinc 150 mg (n = 108)
Placebo (n = 111) 39.7 45.2 ± 12.9 72.7 ± 12.6 12

JapicCTI-060232 *
(unpublished) [23] 149

Outpatients with
zinc-related taste disorder,

aged 20–80 years

Polaprezinc 150 mg (n = 47)
Polaprezinc 300 mg (n = 51)

Placebo (n = 51)
45. 43.3 ± 13.8 77.8 ± 11.8 12

JapicCTI-121907 *
(unpublished) [24] 269

Outpatients with
zinc-related taste disorder,

aged 20–75 years

Polaprezinc 150 mg (n = 134)
Placebo (n = 135) 50.2 45.3 ± 12.3 76.1 ± 14.1 12

*: the Japan Pharmaceutical Information Center (JAPIC) registration number.
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From the included studies, we extracted the patients with zinc deficiency as defined above.
The number of patients for primary and secondary analysis populations are presented in Table 2.

Table 2. Number of patents in analysis populations.

Treatments Original Sample Size Primary Analysis Population † Secondary Analysis Population ‡

Overall Polaprezinc 420 97 322
Polaprezinc 75 mg 27 9 21
Polaprezinc 150 mg 314 69 241
Polaprezinc 300 mg 324 19 60

Placebo 79 87 255

Total 744 184 577
†: patients with serum zinc concentrations of less than 70 µg/dL; ‡: patients with serum zinc concentration of less
than 80 µg/dL.

The risk-of-bias assessment conducted on the included studies is presented in Figure S1.
The following sources were used to help inform the risk-of-bias assessment: journal article, study
protocol, statistical analysis plan, clinical study report, and study registry records in the database
owned by the marketing authorization holder. All studies were done under good clinical practice
(GCP) conditions and had a low risk of bias in all domains.

3.2. Serum Zinc Concentration

The treatment effects of change from baseline in serum zinc concentration for primary analysis
population are presented in Figures 2 and 3. The dose-combined overall polaprezinc increased the
change from baseline in serum zinc concentration by a mean of 9.08 µg/dL (95% CI: 5.46, 12.70;
p < 0.001) with I2 = 0.61% (p = 0.46), as seen in Figure 2. A significant dose–response relationship was
confirmed (p < 0.001), as seen in Figure 3. The mean differences were 2.60 µg/dL (95% CI: −5.93, 11.12;
p = 0.52), 9.07 µg/dL (95% CI: 5.74, 12.41; p < 0.001), and 23.05 µg/dL (95% CI: 11.03, 35.06; p = 0.001)
for polaprezinc 75 mg, 150 mg, and 300 mg, respectively.

The treatment effects of the normal proportion of the primary analysis population are presented
in Figures S2 and S3. The dose-combined overall polaprezinc increased the normal proportion, defined
as serum zinc concentration over 80 µg/dL, by 19.5% (95% CI: 10.0, 29.0; p < 0.001) with I2 = 3.32%
(p = 0.04), as seen in Figure S2. For polaprezinc 75 mg/day, the risk difference was not estimable because
there was no patient judged as “normal” in both groups. For 150 mg and 300 mg, the risk differences
were 16.4% (95% CI: 6.4, 26.5; p = 0.002) and 63.1% (95% CI: 38.2, 87.9; p < 0.001), respectively, as seen in
Figure S3. The dose–response relationship was confirmed (p < 0.001). For response proportion, similar
results were obtained, as seen in Figures S4 and S5.

For the secondary analysis population, the findings were generally similar to the primary
population (Figures S6–S11). The only exception was that the treatment effects on binomial outcomes
were estimable for polaprezinc 75 mg.

3.3. Interaction Effect and Subgroup Analysis

We assessed the differential effects of treatments in subgroups defined by each covariate factor.
The covariate–treatment interactions of change from baseline were evaluated using multivariate
models, as shown in Table S1. For polaprezinc at 300 mg/day, there was a −21.82 µg/dL (95% CI:
−50.42, 6.78; p = 0.13) decrease in the treatment effect for every 10.0 µg/dL increase in baseline zinc
concentration for the primary analysis population. Similarly, a −11.42 µg/dL (95% CI: −19.62, −3.22;
p = 0.007) decrease was noted for the secondary analysis population. For the other doses of polaprezinc
(overall polaprezinc, 75 mg/day and 150 mg/day), a covariate–treatment interaction was not clear.

The treatment effects within each covariate factor among broadly defined deficient patients
(the secondary analysis population) are presented in Figure 4. There was effect modification for
baseline zinc concentration in a comparison between polaprezinc 300 mg and placebo. For the other
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covariates (sex, age, and comorbidities), effect modifications were not clear, as shown in Table S1 and
Figure S12. For the other efficacy outcomes, similar results were obtained.
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3.4. Safety

The safety profile was similar in the primary and secondary analysis populations. As the secondary
analysis population was about three times larger than the primary analysis population, the results for
that population are presented herein.

The incidence proportions of ADRs were as follows: 14.6% (37/253) for overall polaprezinc, 12.5%
(2/16) for polaprezinc 75 mg, 11.1% (21/190) for polaprezinc 150 mg, 29.8% (14/47) for polaprezinc
300 mg, and 14.6% (29/198) for placebo. ADRs related to gastrointestinal disorders were the most
frequently observed and implied a dose–response relationship: 0.0% (0/16) for polaprezinc 75 mg,
2.1% (4/190) for polaprezinc 150 mg, 14.9% (7/47) for polaprezinc 300 mg, and 3.0% (6/198) for placebo.
ADRs leading to discontinuation of allocated treatment included abdominal discomfort (one patient in
the polaprezinc 300 mg group [23]), abdominal distension (one patient in the placebo group [23]), and
eczema (one patient in the polaprezinc 150 mg group [22]). No serious ADR was confirmed. All ADRs
observed for primary and secondary analysis populations are listed in Tables S2 and S3.
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We assessed serum copper and iron concentrations for up to 12 weeks. There was a slight
difference between the placebo and polaprezinc groups, but no sign of copper or iron deficiency was
found over the 12 weeks, as shown in Table S4.

4. Discussion

This prospectively planned IPD systematic review provided evidence that polaprezinc increases
serum zinc concentration significantly in patients with zinc deficiency, and that there is a significant
dose–response relationship. There are several forms of supplemental zinc on the market, such as zinc
acetate, zinc gluconate, and zinc sulfate. However, whether differences exist among these forms of
zinc in terms of absorption, bioavailability, or tolerability is unclear. It is well known that there is an
association between zinc intake and serum zinc concentration [25,26]; however, there is insufficient
evidence to define the proper use of certain zinc forms. This review is unique in providing information
on the proper use of polaprezinc using IPD meta-analysis.

We pooled four RCTs and confirmed that dose-combined overall polaprezinc resulted in a
significant increase from baseline in serum zinc concentration. Studies included in this review were
similar in design, target population, interventions, and treatment period due to our strict eligibility
criteria. Therefore, as expected, the heterogeneity in treatment effects was very small (I2 = 0.61%;
p = 0.46), as seen in Figure 2. In an earlier systematic review, which evaluated the relationship between
zinc intake and serum/plasma zinc concentration in children, a large heterogeneity was observed
between the studies (I2 = 97.6%; p = 0.0001) [26]. The authors of that review considered that the
heterogeneity was due to study population characteristics, doses and dosages of zinc, study duration,
and a lack of standardization of dietary/laboratory assessment methods. We attempted to accurately
describe the biological relationship between polaprezinc dose and serum zinc concentration under
strict experimental conditions; therefore, this small heterogeneity was desirable for our purpose.

A dose–response relationship was confirmed for all efficacy outcomes. There was a 23.05 µg/dL
(95% CI: 11.03, 35.06) increase in the treatment effect of the serum zinc concentration upon polaprezinc
300 mg administration in the primary analysis population. This effect size was reasonable compared to
existing approved zinc preparations for zinc deficiency. Zinc acetate 50 mg, which contains 50 mg
of zinc, had a treatment effect of a 22.4 µg/dL increase in a randomized placebo-controlled trial with
the same parameters (same eligibility criteria for severity of zinc deficiency, duration of treatment,
comparator, and endpoint) [27]. Zinc acetate 50 mg has proven efficacy in the treatment of Wilson’s
disease and hypozincemia. This implies that polaprezinc 300 mg may be potentially effective in these
conditions as well.

This review showed an association between baseline serum zinc concentrations and treatment
effects with 300 mg polaprezinc. The effect size of 300 mg polaprezinc in the change from baseline
among the patients with baseline zinc concentrations higher than 70 µg/dL was smaller than other
effects, and was comparable to that of 150 mg polaprezinc, as seen in Figure 4. It is known that
free zinc concentrations in the cell are regulated by some zinc transporters and metallothioneins
(small metal-binding cysteine-rich proteins with a high affinity for zinc) [28,29]. Zinc concentration
elevation in the cell induces synthesis of metallothioneins, and the synthesized metallothioneins bind
the zinc in the cell until the zinc concentration drops to a certain point [28,29]. It has been reported that
the amount of metallothionein-bound zinc increases only when the plasma zinc concentration exceeds a
critical value (70.9 µg/dL) [18,30]. Considering this biological rationale for the attenuation of serum zinc
increase, even if the dose is increased above 300 mg in patients with serum zinc concentrations greater
than 70 µg/dL, an increase in serum zinc concentration proportional to the dose increase cannot be
expected due to the metallothionein-bound zinc elevation. Therefore, among patients with serum zinc
concentrations higher than 70 µg/dL, the usefulness of polaprezinc 300 mg is debatable and polaprezinc
150 mg may be sufficient. On the other hand, among patients with serum zinc concentrations of less
than 70 µg/dL, polaprezinc 300 mg has advantages compared to polaprezinc 150 mg.
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In terms of safety, we observed acceptable tolerability of polaprezinc. Zinc toxicity can occur in
both acute and chronic forms. Acute adverse effects of zinc intake include epigastric pain, nausea,
vomiting, loss of appetite, abdominal cramps, diarrhea, and headaches [11]. Zinc intake is also
associated with chronic effects such as low copper status, altered iron function, some functional
impairment in immunological response, and decreasing levels of serum lipoprotein and cholesterol
concentrations [11]. In the current review, no unexpected safety concerns were observed. Note that
the incidence of gastrointestinal disorders was suggested to increase in a dose–response manner.
Reductions in copper-containing enzyme, a marker of copper status, have been reported with even
moderately high zinc intakes of approximately 60 mg/day for up to 10 weeks [11]. A potential trade-off

relationship in dose was suggested for efficacy and safety.
This review had four main limitations. First, patients included in this meta-analysis appeared not to

represent zinc-deficient patients in two aspects: disease background and age category (adult/children).
All patients included in the current review had taste disorders. It is well known that zinc deficiency
has been described in various diseases and varies in its cause [10]. Appropriate doses and clinically
meaningful effects may vary among patients with zinc deficiencies with different backgrounds.
In addition, the recommended amount of daily zinc intake varies by age [11]. In fact, many of
the zinc preparations for zinc deficiency differ in approved doses for adults and children. As the
appropriate dose of polaprezinc should vary for adults and children, it is difficult to extrapolate the
results of this review to children. Second, the change from baseline in serum zinc concentration may
not show sufficient surrogacy for zinc deficiency [31,32]. It has been reported that a low serum zinc
concentration is related to clinical signs of zinc deficiency, and can be used as a biomarker of zinc
status with progressively lower serum zinc concentrations. However, an increase in zinc concentration
does not necessarily reflect an increase in cellular zinc status in high serum zinc concentrations, due
to tight homeostatic control mechanisms [31]. In addition, serum zinc concentrations are affected
by biological factors such as infection/inflammation, stress and hormones [33]. Various factors and
conditions should be considered in interpretation of the association between zinc concentrations and
zinc deficiency [31,34]. Third, this review provides no evidence that polaprezinc improves pathological
conditions related to zinc deficiency. Further research is warranted regarding the degree to which
zinc supplementation is effective in each pathological condition related to zinc deficiency. Finally, all
prognostic factors may not have been fully adjusted. Indeed, all included studies were randomized
in design; therefore, unmeasured and measured confounders must be balanced within each study.
However, it is somewhat possible to compromise within-trial randomization in the process of extracting
patients, especially in a small study.

On the other hand, our review had several strengths. We performed data synthesis using IPD,
which contributed to increasing internal validity and reliability. The target population of our review
was patients with zinc deficiency. We were able to extract the population of interest by applying
uniformed eligibility criteria to patient-level baseline serum zinc concentrations. When analyzing, we
applied the models adjusting patient-level baseline serum zinc concentration to an efficacy outcome,
the definition of which was standardized across studies. This means that we could estimate the
treatment effect accurately by diminishing study-to-study heterogeneity. Furthermore, when evaluating
subgroup effects, we were able obtain the pooled effects for specific subgroups and assess patient-level
interaction (not study-level interaction derived from meta-regression). Generally, undertaking an
IPD meta-analysis requires a lot of time, money, and collaborative work, but it certainly has many
advantages. Indeed, sharing the IPD of clinical studies is being promoted. It is hoped that IPD will
lead to better evidence of the contribution of zinc intake to alleviating zinc deficiency.

5. Conclusions

In conclusion, this IPD systematic review confirmed that polaprezinc significantly increased
the serum zinc concentration for patients with zinc deficiency, and that there was a significant
dose–response relationship. In addition, we found that the dose–response relationship was attenuated
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in patients with a baseline serum zinc concentration of 70 µg/dL or higher, and that incidence of
gastrointestinal disorders increased dose-dependently. When using polaprezinc as a zinc replacement
therapy for zinc deficiency, it may be necessary to determine the appropriate dose in consideration of
the patient’s condition.
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