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Ancient hydrothermal seafloor deposits in Eridania
basin on Mars
Joseph R. Michalski1, Eldar Z. Noe Dobrea2, Paul B. Niles3 & Javier Cuadros4

The Eridania region in the southern highlands of Mars once contained a vast inland sea with a

volume of water greater than that of all other Martian lakes combined. Here we show that the

most ancient materials within Eridania are thick (4400 m), massive (not bedded), mottled

deposits containing saponite, talc-saponite, Fe-rich mica (for example, glauconite-non-

tronite), Fe- and Mg-serpentine, Mg-Fe-Ca-carbonate and probable Fe-sulphide that likely

formed in a deep water (500–1,500 m) hydrothermal setting. The Eridania basin occurs

within some of the most ancient terrain on Mars where striking evidence for remnant

magnetism might suggest an early phase of crustal spreading. The relatively well-preserved

seafloor hydrothermal deposits in Eridania are contemporaneous with the earliest evidence

for life on Earth in potentially similar environments 3.8 billion years ago, and might provide

an invaluable window into the environmental conditions of early Earth.
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T
he oldest supracrustal rocks on Earth are early Eoarchean
seafloor deposits (Z3.7 Ga)1. The presence of isotopically
light carbon2 within biogenic morphologies in these rocks

indicates that life may have flourished on the early Earth in
hydrothermal seafloor environments3. Yet progress in further
understanding the actual origin of life or prebiotic chemistry from
these rocks, or those of similar age, is severely challenged by the
fact that they have experienced multiple generations of
metamorphism, metasomatism and deformation4. The search
for life’s origins through empirical geologic evidence might
require exploration beyond Earth, where younger geological
activity has not overwritten critically important chemical and
textural records. This journey could lead to Mars where
ancient sedimentary, volcanic and hydrothermal deposits
contemporaneous with the origin of life on Earth have escaped
deep burial and metamorphism.

The Eridania region, located at the boundary of Terra
Cimmeria and Terra Sirenum (Fig. 1), includes exposures of
some of the most ancient terrain on Mars5. This area exhibits the
strongest evidence for remnant magnetism on Mars and could be
a site of ancient crustal spreading6 (Fig. 1a). Geophysical models
suggest that the area had a high thermal gradient in the
Noachian7, consistent with regional magmatism. The presence
of a high-potassium anomaly8 could be an indication of a deep
mantle source for ancient volcanism in the area or widespread
alteration of the crust9,10. Regardless of whether the remnant
magnetism is truly indicative of early plate tectonics,
the fact that the magnetic signature is observed is an indication
that the near surface materials formed when the magnetic field
of Mars was strong, and have not been buried as has occurred in
other areas5. Therefore, the geology observed here provides
insights into geological processes that operated in the earliest
observable epoch of Martian history11.

In addition to containing come of the most ancient crust on
Mars, the Eridania region is important because it contains a large
basin that was once filled with water. In this study, we examined
the geology and mineralogy of the most ancient deposits within
this basin. Using infrared spectroscopy and high-resolution
imaging, we show that the Eridania basin contains a complex
suite of alteration minerals that likely formed in a hydrothermal
seafloor volcanic-sedimentary setting.

Results
Geomorphic evidence for an ancient sea in Eridania basin.
Eridania basin is composed of a series of connected, smaller,
quasi-circular basins (Fig. 1), which potentially originated as very
ancient impacts that were resurfaced by volcanism and erosion
early in Mars’ history12,13. The extent of the Eridania basin was
previously defined as the 1,100 m elevation contour around these
sub-basins13 (Fig. 1). Irwin et al.13 deduced that the Eridania
basin was once filled to this level because it is at this elevation that
the 3-km-wide Ma’adim Vallis outflow channel originates
(Fig. 1c)13. This morphology, with a complete lack of upstream
tributaries, suggests that the channel formed at full width,
although a spillway at the edge of the Eridania basin at B1,100 m
elevation, a strong indication that the basin was filled with water
at the Noachian/Hesperian boundary13.

Irwin et al.13 recognized the unusual hypsometry of the
Eridania basins, noting that they have unusual concave
topographic profiles. We similarly compare the topographic
data of Eridania basins to data of basins elsewhere on Mars
(Supplementary Fig. 1). Most similar sized basins elsewhere on
Mars exhibit clear ‘U-shaped’ topographic profiles which arise
from colluvial, fluvial and volcanic resurfacing of the basins in a
subaerial setting. The concave structure of the Eridania basins is

an indication that, during the only intense period of erosive
activity in mars history, these basins were protected beneath
water or ice-covered water.

Previous researchers noted that Noachian valley networks also
terminate at an elevation of B700–1,100 m (refs 13,14),
suggesting the existence of an ancient base level. If a water level
existed between 700 and 1,100 m elevation, the basin topography
implies that the parts of the lake would have been 1–1.5 km deep.
The approximate size of such a body of water would have been
B1.1� 106 km2, B3� larger than the largest landlocked lake or
sea on Earth (Caspian Sea) (Fig. 2). In fact, even a conservative
estimate of the volume of the Eridania sea exceeds the total
volume of all other lakes on Mars combined (Fig. 2)15. Here we
synthesize previous work and provide new analyses of the
mineralogy, geology, and context of the most ancient deposits in
Eridania basin (Fig. 1c), which we argue formed in a deep-water
hydrothermal setting.

Multiple types of colles and chaos units in Eridania basin.
Unique deposits found only at the centre (deepest part) of each
basin (Fig. 1c) consist of fractured and dismembered blocks
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Figure 1 | Regional context of Eridania basin. Eridania is located at the

boundary of Terrae Cimmeria and Sirenum (B180E, 30S), an ancient part

of martian crust which exhibits strong remnant magnetism (a) and

increased abundance of potassium observed in GRS data (b). Eridania

contains a large closed basin defined by the 1,100 m MOLA topographic

contour shown here in black (c). This elevation marks the maximum extent

of an ancient sea which spilled over to form the Ma’adim vallis channel,

feeding a smaller lake in Gusev crater in the lake Noachian. A lower,

perhaps more stable base level is defined by the 700 m contour shown in

white (c). GRS, Gamma Ray Spectrometer.
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estimated volume of all other closed basin lakes on Mars combined15 and far exceeds that of any terrestrial lake.

b

c

75 m

75 m

15 km 15 km

75 m

75 m

a d

e

f

e
fcb

Atlantis chaos Gorgonum chaos
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Atlantis (a–c) contain mottled bedrock with pervasive veins, strong spectral signatures of clay minerals and a complete lack of bedding. The east basins
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HiRISE, High Resolution Imaging Science Experiment.
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B0.1–10 km diameter (Fig. 3). While these deep basin units are
in some cases formally named ‘chaos’ and in other cases,
‘colles16,’ there are some clear and important geological
differences among the deposits that are not reflected in the
naming convention and often confused in previous work (Fig. 3).
Most importantly, the fractured blocks in the western and central

parts of Eridania, as we argue in this paper, represent ancient,
deep basin subaqueous units and those in the eastern parts of the
basin are younger, eroded volcanics deposited subaerially.

Ariadnes Colles and Atlantis Chaos contain the best examples
of deep basin deposits (Fig. 3a–c) that formed in deep water16.
There, massive blocks of bedrock (lacking observable bedding)
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level of an ancient sea. Alteration minerals represent phases detected in this study using CRISM data with the exception of ‘chlorides,’ which were detected
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reach up to 400 m elevation above the surrounding dark-toned
plains (Fig. 4). The deep basin unit was eroded and dismembered
into buttes and mesas, subsequently embayed and blanketed by
volcanic materials in the Hesperian, resulting in a kı%puka-like
landscape (Fig. 4).

By contrast, block-forming units observed to the east in
Gorgonum are completely different in terms of texture,
bedding17, colour and mineralogy (Fig. 3d–f ). These units are
characterized by the presence of smaller blocks composed of a
mixture of boulders and friable materials. Texturally, they are
smooth and hummocky, and they have been widely eroded to
form gullies in many cases18, which is rare in the deep basin
deposits to the west except where mantling volcanic deposits
occur. The younger chaos units never show mottled colour
patterns and do not contain evidence for fractures and veins.
These are eroded blocks within the younger, superposed volcanic
material (likely both ash and lava).

The block-forming basin unit in Gorgonum is substantially
younger than the deep basin units in Ariadnes or Atlantis.
Crater counting was performed within the deep basin deposits to
estimate minimum ages for those deposits. We counted craters
with diameters Z500 m throughout the deep basin deposits using
Mars Context Imager (CTX) data as the base. The key result is
that that deposits in Ariadnes and Atlantis basins are much older

than basin deposits in eastern basins, especially Gorgonum.
Assuming a crater producton function from Ivanov (2001) and
absolute chronology based on Hartmann and Neukum19,20, we
estimate that minimum exposure age for the Ariadnes deposits at
3.77 Ga and the Gorgonum deposits at 3.47 Ga (Supplementary
Fig. 2). These ages are consistent with previous results, which
suggest that the Eridania basin-forming impacts occurred 44 Ga,
the sea existed in the Late Noachian and was resurfaced
by subaerial volcanism in the Late Hesperian5,12,13,16. A key
new conclusion is that, while all of the Eridania sub-basins
likely contained deep water environments, the deposits
representing those environments are only well exposed in
the western basins. They have been too intensely resurfaced
in the east basins.

Mineralogy of the Eridania basin. In this work, we analysed the
infrared spectra of all Compact Reconnaissance Imaging
Spectrometer for Mars (CRISM) and all High Resolution Imaging
Science Experiment data within the Eridania basin in order to
evaluate the detailed mineralogy and geological context of deep
basin deposits within the Eridania region (Fig. 5).

CRISM spectra acquired of the kı%pukas throughout the western
and central Eridania basin contain absorptions at (l) B1.4, 1.9
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Figure 6 | Mineralogy of the colles deposits. CRISM I/F ratio data scaled and offset reveal a large suite of alteration minerals in the Eridania deep basin
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HOH absorptions located near 1.91mm related to adsorbed water. Some exposures show evidence for a strong 1–2mm slope suggestive of abundant Fe2þ
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and 2.3 mm indicative of the presence of Mg-rich and Fe-rich clay
minerals21,22 (Fig. 6). Fe-Mg-rich clays are common on Mars23,24,
but in detail, the deep basin bedrock units show spectral
characteristics unusual for the planet.

CRISM spectra of the kı%puka blocks typically show absorptions
at 2.31–2.315 mm characteristic of Mg-rich, trioctahedral clay
minerals. Specifically, this absorption is indicative of Mg3OH and
Mg2FeOH combination bands in the octahedral sheets of
saponite, talc, serpentine and various mixed-layer clays25. Pure
talc (that is, with little Fe2þ or Fe3þ substitution for Mg2þ )
exhibits pronounced doublet absorptions at 2.29 and 2.31 mm, as
do well-ordered examples of saponite and sepiolite.

The deep basin bedrock units show, in some cases, evidence
for the doublet at 2.31–2.315 mm attributable to talc or other
well-ordered, Mg-rich tetrahedral-octahedral-tetrahedral (TOT)
clays such as sepiolite and some saponite, and in others, simply
show a sharp absorption that could be attributable to saponite or
Fe-rich talc. However, saponite and talc are commonly
interstratified at the lattice scale in some seafloor settings26,27

(mixed-layering), and some of the best matches to these Martian
spectra correspond to spectra of mixed-layer seafloor clays on
Earth28. In addition, the presence of a 1.9 mm H2O absorption in
many of the detections (Fig. 6) suggests the presence of TOT clays
with expandable layers (smectite or smectitic mixed-layer clays).
However its absence in other materials suggests non-expandable
TOT clays, such as talc, or that expandable clays have been locally
dehydrated while others remain hydrated. Absorptions at 1.39,
2.315, 2.43 and 2.51 mm in some deposits suggest the presence of
serpentine29, which could also include serpentine-smectite
mixed-layered clays (Fig. 6).

Fe-rich phyllosilicates are also observed. These deposits show
absorptions at 2.295–2.305mm, which are characteristic of Fe-rich
dioctahedral mica or smectite with some Mg-substitution (that is,
VIFe3þ /Mg2þ molar ratio r4)28. Such materials are spectrally
similar to Fe-rich seafloor deposits sampled on Earth, and easily
distinguishable from Al-bearing nontronite formed in a subaerial/
continental setting30. In some deposits, an unusual doublet
absorption at 2.32 and 2.38 is observed, and the same spectra
display a weak or absent 1.9 mm feature and a very strong spectral
slope from 1 to 2 mm, indicative of Fe-rich serpentine- or chlorite-
group minerals31. In fact, the 1–2mm slope, which is stronger
than is typically observed in Martian clays23 is likely a reflection
of the abundant Fe2þ present in many of the clay detections32,
and is a key indicator that the formation conditions likely
involved a very Fe-rich fluid.

While the signature of phyllosilicates dominates the spectral
character of the deep basin colles and chaos units, there are also
several detections of jarosite occurring along with clay minerals
within the chaos blocks (Fig. 6). The key distinguishing features
of jarosite are absorptions at 2.265, 2.41, 2.46 and 2.51 mm
(ref. 33). HOH absorptions occurring from 1.85 to 1.9 are variable
on Mars34 likely due to Kþ , Naþ and H3Oþ content33. The
most common formation mechanism for jarosite is through
oxidative chemical weathering of sulphide minerals35. Sulphides
might be present in the deep basin units, but they are very
difficult to detect directly because, in the near infrared, they
exhibit few or no distinguishing features. In fact, jarosite formed
through oxidative weathering36 is commonly considered a proxy
for sulphide-bearing ore deposits35.

Spectra extracted from the central peaks and interior walls of
impact craters occurring within the basin centres provide
information about the mineralogy of the units stratigraphically
below the Mg-clay units (for example, Fig. 4d), and other deposits
at depth that are poorly exposed. A 17 km diameter impact crater
in Caralis Chaos contains structurally and texturally complex
blocks of exhumed bedrock in its central uplift that display

spectral absorptions at (l) B2.31 and 2.51 mm indicative of
Mg-rich or Fe-Mn-Ca-Mg carbonate37 (Fig. 7). These materials
also contain dense networks of crosscutting veins at the same
scale (5–20 m-spacing) as is observed in the Mg-clay-bearing
colles units (Fig. 7). Similarly, the central peak of an unnamed
15 km diameter crater in Ariadnes colles contains spectral
evidence for Ca/Fe-carbonate in its central peak, as does a
crater in the western, unnamed basin and the walls of a crater
near Simois Colles where carbonates might have been mobilized
within younger gullies38.

The carbonates might have formed from impact-generated
hydrothermal activity, but they appear to occur within coherent
bedrock exposed in the uplifted peak and rim (Fig. 7). Depth of
exhumation can be assessed assuming that the central peak
uplift represents a depth 10% of the final crater diameter39

(D¼ 15–17 km in this case). The carbonates were likely uplifted
from 1 to 2 km below the floor of the basin where the impact
occurred, which has a Mars Orbiter Laser Altimeter (MOLA)
elevation of � 50 m. This observation suggests that alteration is
present to substantial depth within the basin, the deep basin units
might be kilometres thick, and that the phyllosilicate-rich deep basin
units might overly or be interbedded with carbonate-rich rocks.

One B10 km diameter impact crater in Ariadnes Colles has
exhumed material in its ejecta and rim that contain relatively
strong absorptions at 1.9 and 2.24 mm indicating the presence of
hydrated silica. But this crater is nested within a larger impact
structure and it is possible that it has exhumed hydrothermal
crater floor deposits formed from the earlier impact (Fig. 5).

Previous researchers identified chlorides in the region40 using
data from the Thermal Emission Imaging System (THEMIS)
(Fig. 5). In contrast to the Mg- and Fe-rich clays, which are
concentrated below 300 m MOLA elevation, the chlorides occur
at higher elevations (350–1,050 m) (Fig. 8). The average elevation
of chlorides is 660 m, which is similar to the low-water level of the
Eridania sea (700 m)13, suggesting they may have formed through
evaporation in shallow seawater near the basin margin. Impact
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Figure 7 | Context of carbonates in Eridania basin. A 17 km diameter

impact crater in Caralis chaos (a) contains carbonates within exhumed

bedrock in its central peak (b) exhumed from 1 to 2 km depth.
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craters as small as 360 m-diametre have chloride-poor ejecta at
distances up to 2–3 crater radii, suggesting that the craters have
penetrated through a relatively thin (likely o30 m thick) chloride
deposit (Fig. 8c).

Some of the eastern and northern parts of the basin contain
Fe/Al-rich clays that are interpreted as pedogenic weathering
sequences21, as has been observed elsewhere on Mars41,42. These
deposits typically contain 2.28–2.29 mm FeFeOH and FeAlOH
absorptions corresponding to aluminous nontronite, and in two
cases contain absorptions at 2.2 mm corresponding to kaolinite-
group clays and a broad absorption from 2.3 to 2.5 mm likely
interpreted as polyhydrated sulphates43. In Eridania, these
deposits occur in the superposed volcanic resurfacing unit and
are therefore younger than and of different context to the deep
basin deposits.

In previous works, many of the pedogenic-type deposits have
not been delineated from the true deep basin deposits. Here we
point out that the deep basin deposits are clearly distinguishable
based on texture, colour, stratigraphic relations and mineralogy.
The older deep basin deposits in the western basins contain clear
and strong evidence for complex Mg- and Fe-rich clay
mineralogy. The younger volcanic resurfacing units (Fig. 3d–f)
are generally spectrally unremarkable. But it is in association with
these units that pedogenic-type sequences are found.

Origin of deep basin deposits. The deep basin units in Ariadnes,
Atlantis and Caralis basins formed in association with significant
amounts of water, as evidenced by the presence of 100 s of metre
thick deposits of phyllosilicates containing dense vein networks.
It is possible that clay in Eridania could have formed in an
alkaline-saline evaporative lake setting16,43, but we present
challenges to the evaporite hypothesis, the most significant of
which is the fact that the deep basin deposits are dominated by
silicates rather than salt deposits.

The chemistry of the Eridania sea is unknown, though the
volume to watershed ratio argues strongly that the sea was fed by
groundwater13,15. Such a fluid would have been a Fe2þ , Mg2þ ,
Ca2þ , Cl� , HCO3

� and sulphur-rich-brine after interaction with
the regional mafic-ultramafic crust44. Evaporation of such a fluid
could initially produce Fe-carbonates. In fact, the occurrence of
carbonates, exhumed from depth within the deep basin deposits
is consistent with precipitation from an early phase of
evaporation or freezing. But continuation along an evaporative
pathway would quickly exhaust Fe2þ in solution leading to
Mg-sulphate and ultimately to chloride precipitation45, which is
not observed in the deep basin units. The deep basin deposits
(that is, in the basin centres) contain 4400 m thick clay deposits
and no detectable hydrated sulphates or chlorides (Figs 5a and 8a),
though anhydrite and small amounts of hydrous salts are
possible.

Chlorides are present at higher elevations along the interior
basin margins at concentrations 10–25% by volume46 and likely
trace evaporitic, shallow water (o100 m) settings40. However,
these deposits do not include any hydrated sulphates that should
have precipitated before the chlorides during the evaporation
sequence44,45. In most terrestrial playas, chloride deposits are
situated in the middle of the basin rather than on the edges.

The lack of Mg, Fe sulphates in these deep basin deposits
makes an evaporite-playa origin untenable. However, the chloride
deposits on the basin margins may be related to evaporation in
coastal, shallow water environments47. If the majority of the
Eridania sea did not evaporate or freeze (both produce similar
evaporite-type deposits), then the fluid was likely lost back into
the subsurface due to some fundamental change in the regional
groundwater table, perhaps including the formation of a new,
deep basin that affected groundwater flow.

A detrital origin of clay-rich, deep basin deposits in Eridania is
also unlikely. The concave topography of the deep basins
below 700 m elevation is unusual for Martian basins13
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(see Supplementary Fig. 2), most of which have flat floors that
formed through subaerial resurfacing. The shape of Eridania
basin floors argues strongly that the surfaces were protected
below water13 during the period of intense sedimentary
deposition on Mars (Late Noachian)11,48.

The deep basin deposits are unlikely to have formed by air fall
as has been previously concluded12,16. The younger Electris
deposits, which are layered, are of consistent thickness
throughout the region (150–200 m), and occur at a wide
range of elevations are consistent with an air fall origin49. By
contrast, the deep basin deposits in Ariadnes and Atlantis are
not layered, are thick, and concentrated at low elevations
(Figs 5 and 8a). Ariadnes Colles and Atlantis Chaos contain at
least 1–5� 104 km3 of altered material (assuming a minimum
thickness of 400 m and a likely thickness of 41 km). Deposition
of such a thickness and volume of material is possible proximal to
explosive vents50. It is possible that unrecognized volcanic vents
are present51, but any air fall origin fails to account for why such
thick deposits are found within the basins, but no trace of similar
deposits of similar age are found outside the basins. Even if air fall
deposition cannot be ruled out as a geological process, this model
seemingly requires major volcanic source regions near, but
outside the basins while ignoring the fact that volcanism would
most likely be localized in the basins themselves, as is observed
elsewhere on Mars and on other planets52.

The most plausible way to produce such large volumes of deep
basin, deep water deposits is through seafloor volcanic-sedimen-
tary processes focused in the basin floors where fractured, thinner
crust and higher heat flow would be expected. Large volumes of
Hesperian lava present throughout Eridania are proof that
significant volcanism occurred within the basins. We argue that
this volcanism did not suddenly begin after the sea had ceased to
exist in the Early Hesperian, but most likely began in the
Noachian, shortly after the basins formed. A sea of the size of
Eridania is unlikely to have been ephemeral and therefore, it is
nearly inescapable that subaqueous volcanism would have
occurred during the period in which the sea existed.

Previous authors have demonstrated that most ancient, large
impact basins on Mars were resurfaced by ultramafic to mafic
volcanic materials—olivine rich lavas that have erupted through the
relatively thin crust of basin environments53. The Eridania basins
would have likely had the same type of activity. The important

difference in Eridania is that a deep sea was present while volcanism
occurred. If the Eridania sea level was at the 700 m elevation level (a
conservative estimate), it implies that the deep basin deposits
formed beneath 500–1,200 m water depth (Fig. 9). The lower
gravity of Mars results in lower water pressure in a Martian sea
compared to one on Earth, for a given depth (Fig. 9). Seafloor
volcanism in Eridania would have occurred at water pressures of
20–50 bars. At these pressures, Martian seafloor volcanism could
have included both effusive and explosive elements, in addition to
chemical sedimentation from hydrothermal fluids (Fig. 10). The
transition from altered deep basin deposits to flood lavas in the
Hesperian does not represent the onset of volcanism in the basins,
but the transition from subaqueous to subaerial volcanic activity as
the Eridania sea came to an end.

Implications of the hydrothermal seafloor model. We conclude
that thick, massive, clay-, carbonate- and likely sulphide-bearing
deposits in Eridania basin formed in a deep-water hydrothermal
environment on ancient Mars (43.8 billion years ago) (Fig. 10).
Saponite, talc, talc-saponite, Mg-bearing nontronite, glauconite,
serpentine and berthierine are all common in terrestrial seafloor
deposits26,27,54. The clay assemblages and spectral trends observed
in seafloor deposits on Earth provide a good analogue for the deep
basin deposits detected remotely in Eridania28. Salts only observed
at higher elevations likely represent coastal evaporative settings
(Fig. 10). Several lines of evidence strongly suggest that Eridania
was a sustained inland sea in the late Noachian.

The deep-water environment was likely reducing based on
direct evidence for Fe2þ -rich clay minerals and indirect evidence
for Fe-sulphides. This could be an indication of stratification of
an ancient sea beneath an oxidized atmosphere, chemical
isolation in an ice-covered sea, or quasi-equilibrium with a
reduced atmosphere. The ancient Eridania sea deposits might
represent a setting analogous to Fe-rich sea environments present
on the early Earth.

Ancient, deep-water hydrothermal deposits in Eridania basin
represent a new category of astrobiological target on Mars. To
date, the search for habitable environments on Mars has been
focused on exploration of ephemeral playa and shallow lacustrine
settings. The Eridania deposits represent an ancient environment
rich in chemical nutrients and energy sources. Such a deep-water
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environment would have been protected from harsh surface
conditions and ideally suited for preservation of organic matter
under reducing conditions. In fact, the earliest evidence of life on
Earth seemingly corresponds to seafloor deposits2 of similar
origin and age, although the terrestrial counterparts are
metamorphosed and metasomatized. Eridania seafloor deposits
are not only of interest for Mars exploration, they represent a
window into early Earth.

Data availability. Data required to complete this work include: (1) hyperspectral
image cubes from CRISM; (2) high-resolution visible images from High Resolution
Imaging Science Experiment; (3) day and night-time infrared image data from
THEMIS; (4) visible image and digital elevation information from HRSC; and (5)
topographic data from MOLA. All data used in this work, as well as the software
used to process CRISM data, are available through the Planetary Data System
(https://pds.nasa.gov). Other planetary data sets and visualization capabilities are
available within the JMARS software provided by Arizona State University
(https://jmars.asu.edu).
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