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Abstract

Background: Honey bees are complex eusocial insects that provide a critical contribution to human agricultural food production.
Their natural migration has selected for traits that increase fitness within geographical areas, but in parallel their domestication
has selected for traits that enhance productivity and survival under local conditions. Elucidating the biochemical mechanisms of
these local adaptive processes is a key goal of evolutionary biology. Proteomics provides tools unique among the major ‘omics
disciplines for identifying the mechanisms employed by an organism in adapting to environmental challenges.

Results: Through proteome profiling of adult honey bee midgut from geographically dispersed, domesticated populations
combined with multiple parallel statistical treatments, the data presented here suggest some of the major cellular processes
involved in adapting to different climates. These findings provide insight into the molecular underpinnings that may confer
an advantage to honey bee populations. Significantly, the major energy-producing pathways of the mitochondria, the
organelle most closely involved in heat production, were consistently higher in bees that had adapted to colder climates. In
opposition, up-regulation of protein metabolism capacity, from biosynthesis to degradation, had been selected for in bees
from warmer climates.

Conclusions: Overall, our results present a proteomic interpretation of expression polymorphisms between honey bee
ecotypes and provide insight into molecular aspects of local adaptation or selection with consequences for honey bee
management and breeding. The implications of our findings extend beyond apiculture as they underscore the need to
consider the interdependence of animal populations and their agro-ecological context.
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Adaptation Council, the Conseil pour le développement de l’agriculture du Québec, and Agri-Futures Nova Scotia. Mass spectrometry infrastructure used in this
project was supported by the Canada Foundation for Innovation, the British Columbia Knowledge Development Fund and the Michael Smith Foundation through
the British Columbia Proteomics Network (BCPN). LJF is the Canada Research Chair in Quantitative Proteomics. The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: ljfoster@interchange.ubc.ca

Introduction

Human association with the Western honey bee (Apis mellifera L.)

spans at least 7,000 years [1]. At present, this species is largely

domesticated and is not only used to produce hive products, such

as honey, wax and royal jelly, but is the primary species used for

the pollination of agricultural crops globally [2]. A. mellifera initially

evolved in Africa and then, in at least two separate events

predating the arrival of Homo sapiens, migrated north to central

Asia and northern Europe [3], diverging into at least two-dozen

physiologically, behaviourally and morphologically-distinct sub-

species [4]. Domestication, however, has eroded sub-species

distinctions through hybridization, particularly in regions such as

North America where A. mellifera was not native.

It is common practice among North American beekeepers to

replace queens every one to two years to maximize productivity

[5]. These queens originate from a restricted set of queen breeders

situated in regions optimal for queen production and mating. In

the United States these regions are located in Hawaii, central

California and along a south-eastern band spanning from Florida

through to Texas. While a small number of queens in Canada are

produced domestically, the majority are imported from central

California, Hawaii, New Zealand, Australia or Chile. Since the

genotypes of the individual workers in the colony are derived from

the mated queen, this practice undermines the stock improvement

goals of queen purchasers in two ways. First, purchasers frequently

value traits differently than queen breeders [6]. Second, the agro-

ecological conditions where queens are selected may not resemble
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those where the queens are used. Combined, these aspects results

in a situation where many beekeepers operate without the full

benefits of stock improvement.

Like any livestock, the variation in phenotypes observed among

honey bees are a product of artificial and natural selection. The

common methodology for estimating variation among popula-

tions, however, provides only a limited picture of the adaptive

significance of this variation. Such methods rely on quantifying

neutral genetic variation among populations by correlating

microsatellite markers with quantitative traits found in the

populations. Consequently, these techniques provide little insight

into the biochemical mechanism(s) at work in adaptation [7].

Mutations that occur in protein coding regions are infrequent but

can lead to mechanistic insight: in feral honey bees the

identification of locally adapted population clines due to

geographic diversity has been shown previously by the polymor-

phism of alloenzymes [8,9].

Of the large-scale approaches available to study biological

diversity, next-generation sequencing technology allows a deep

and high-resolution probing of differences among groups or

individuals in a species [10] but is too far removed from the level of

proteins to provide much functional insight into the adaptations.

Even mRNA expression profiling, either by RNA-Seq [11] or

more classical microarrays [12,13], is not consistently correlated

with protein expression [14,15]. Proteomics [16], in contrast,

directly measures biomolecules responsible for responding to a

changing environment and so is ultimately the best approach for

probing the underlying mechanisms at work in adaptation. Despite

this potential power, proteomics has been under-utilized in the

study of population biology [17] and has not been previously used

to study local adaptation among commercial bee populations.

The primary objective of this study was to determine the diversity

of protein expression in commercial honey bee populations, to

develop an understanding of the mechanisms used by bee

populations to adapt to different agro-ecological conditions and to

develop tools for bee breeders. Our approach towards this objective

was to test the null hypothesis that no differences in expression exist

among the populations, given that queen production is centralized

in a few locations. In order to address these goals, we carried out a

quantitative analysis of the midgut proteome from adult nurse bees.

The adult worker midgut was chosen as it is a key organ in a bee’s

interaction with its environment: it is the primary site of processing

for ingested nutrients and toxins, and as the route of entry for enteric

pathogens, the midgut is also involved in individual [18] and colony-

level [19] resistance to disease. The honey bee gut was also the

organ of choice in a recent gene expression study investigating the

cause of Colony Collapse Disorder (CCD) [12]. Interestingly,

alongside potential markers associated with the prevalence of CCD,

the geographical origin of the colonies was shown to affect gene

expression. The bees used in our study were all reared and sampled

at the Alberta-based Beaverlodge Research Farm from queens

imported from diverse geographical locations, including eastern and

central Canada, California, Hawaii, Chile and New Zealand. Our

findings unveil major differences in the basic biochemical

machinery of these bees, especially proteins involved in metabolism,

protein processing and translation. These results have major

implications for apiculture as they provide a molecular explanation

for the common observation that transplanted bees from different

climates cannot always adjust well to a new location [20,21].

Results

Population Proteomics
Table 1 summarizes the eight different sources of honey bees

analyzed; each source was given a code that can be used to identify

these experimental groups in later figures. A diverse array of bee

stocks from locales covering the most popular sources of

commercial queens for Canadian beekeepers was investigated

(Fig 1a). For the purposes of this study, between four to eleven

colonies originating from each location but raised at least one

generation in Beaverlodge, AB, were sampled; collectively all the

colonies from a single location are referred to as a ‘population’.

Sample collection was performed over a two-day span in July

2008, with each colony sampled in triplicate and each replicate

comprised of midguts from five nurse bees. We then applied a

triplex labeling technology using formaldehyde isotopologues [22]

and a randomized incomplete block design (Fig. 1b,c, Data set 1)

that would allow us to derive relative expression profiles for all

proteins across all colonies. In this approach, a ‘block’ refers to one

triplex analysis of bees from three different colonies. Analysis of all

58 blocks by liquid chromatography-coupled tandem mass

spectrometry (LC-MS/MS) yielded a rich dataset that was both

deep, with more than 470 proteins measured in each block, and

broad, with more than 570 proteins detected in at least 14 blocks

(Dataset S2). Apart from detecting peptides from proteins several

times in different colonies (Dataset S3), confidence in our

identification methodology was measured by controlling the false

discovery rate (estimated to be about 0.25%) utilizing a decoy

strategy. Summary statistics for the entire dataset are displayed in

Table 2, Figure 2 and Dataset S3).

Using these datasets we then asked, are any of the protein

expression profiles explained, at least in part, by an effect of

population? As is typical in LC-MS/MS experiments, a significant

fraction of the proteins identified were observed in only a small

Table 1. Honey bee populations.

Breeder location Strain Population Name Number of colonies

Cutknife, SK, Canada Unknown SK1 4

Cutknife, SK, Canada Russian Carniolan SK2 4

Apple Hill, ON, Canada Russian Carniolan ON 4

Hawke’s Bay, New Zealand Carniolan/Italian NZ 8

Captain Cook, HI, USA New World Carniolan/Italian HI 8

Santiago, Chile Unknown CH 10

Yuba City, CA, USA New World Carniolan CA1 11

Orland, CA, USA New World Carniolan/Italian CA2 9

doi:10.1371/journal.pone.0011096.t001
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number of blocks so in order to streamline down-stream analyses, we

removed from our dataset all those proteins where a quantitative

measurement was available in fewer than 25% of all blocks (Fig. 2b).

This resulted in a final dataset comprised of 578 proteins, for which a

Linear Mixed Effects model was used to estimate the effect of

population on the expression level for each protein, adjusting for

colony, block and label factors. A statistically significant (P,.05) effect

of population was found for 172 proteins across the eight populations

tested (Fig. 2a, red markers, Dataset S3).

Gene Ontology assignment and functional enrichment
In order to evaluate the adaptive processes across the

populations studied, the 172 population-dependent proteins were

categorized according to direction of expression and their

enrichment for Gene Ontology (GO) annotations using their

FlyBase [23] orthologs. Table 3 and Dataset S4 provide GO

(Drosophila melanogaster slim) protein annotations under Biological

Process, Molecular Function and Cellular Compartment catego-

ries for the most significantly enriched annotation observed in each

population. Annotations are observed multiple times and show

common and bi-directional regulation between populations. Of

the processes that are over-represented, protein folding is evident

in 4 populations, being up-regulated in both Californian (2nd term

found) and down-regulated in all three Canadian populations.

Processes for energy production, ion transport and carbohydrate

metabolism were also common and bi-directional within popula-

Figure 1. Overview of experimental design. A. World map indicating the approximate geographical location (red land masses) from where bee
colonies were originally imported to the sampling site Beaverlodge, AB, Canada (green circle). B. Graphical representation of the incomplete
randomized block design (IRBD) used to define the three colonies analyzed in each block (represented by any triangle). The IRBD was restricted so
that no two colonies from the same population were in the same block, and so that the differential labels were balanced across colony replicates (the
full design implemented can be found in Dataset S1). C. Representative spectra of peptides from triplex labelling experiment. Peptides from the three
colonies in each block were differentially labelled with formaldehyde isotopologues (represented here by blue, green and orange, see Methods)
before being analyzed by LC-MS/MS. Differential ratios of the labels were then extracted from the spectra, providing a measure of relative abundance
for the proteins they originate from (the protein ratios obtained from this workflow for all 58 blocks can be found in Dataset S2).
doi:10.1371/journal.pone.0011096.g001

Adaptation in Bees

PLoS ONE | www.plosone.org 3 June 2010 | Volume 5 | Issue 6 | e11096



tions. Intriguingly, enrichments appeared to counterbalance each

other; where processes involving the life span of a protein (e.g.

translation, protein folding) are more highly expressed, metabolic

processes (e.g. ion transport) are under-expressed, and vice versa.

The ontology for cellular component also showed this pattern,

where enrichment for mitochondrion is observed always in

opposition is cytosol, ER, ribosome or Nucleus.

Geographical origin regulates gene expression
If the populations studied here had adapted or were optimally

bred to survive in the climate in which they were situated prior to

transfer to the experimental site then one would expect a higher

degree of similarity between colonies from areas with similar

climates than between colonies from areas with different climates

and, indeed, this was true. Statistically significant (P,.05,

hypergeometric test for similarity) overlap in protein expression

patterns was detected between the New Zealand and Chile

populations, between the two Californian populations and

between the two Saskatchewan populations (Fig. 3). This finer

division of the populations in pairs showed that within each of the

similar pairs, two general classes of proteins appeared to dominate:

stress response and protein folding chaperones, as well as energy

production enzymes, particularly those from the mitochondria.

Proteins responsible for protein folding (GO:0006457) were over

represented in proteins expressed at higher abundance in the

Californian populations, while proteins sharing this GO term as

well as stress response components (GO:0006950) were highly

enriched among the most highly down-regulated proteins in the

Saskatchewan lines. Opposing this, Californian lines tended to

have reduced expression of many proteins at the heart of

mitochondrial function, including ATP synthase b and d subunits,

cytochrome C oxidases, NADH dehydrogenases and malate

dehydrogenase, indicating a much lower rate of primary

metabolism in the Californian populations compared to the other

populations analyzed. In contrast, enzymes all along Carbohy-

drate metabolic processes, the citric acid cycle and the oxidative

phosphorylation pathway were up-regulated in the Saskatchewan

populations, including cytochrome c oxidase and reductase, a

citrate synthase, transaldolase and 6-phosphogluconolactonase.

Strong overlaps were also observed between both Californian

populations versus the Hawaiian population and between all three

Canadian populations. Taken together these results indicate that

protein expression is regulated by location, but also that parallel

regulation may occur in similar climates at diverse locations.

Metabolic adaptation in geographically distinct bee
populations

To discover less implicit relationships present between the

populations, we used the one-sided P-values from the Linear

Mixed Effects analysis to carry out inclusive and explorative

analysis using a neural network clustering method based on the

self-organizing tree algorithm [24]; hierarchical clustering of each

cluster then aided the visualization of similarities and differences

Figure 2. Description of proteomic dataset. A. Frequency (x-axis) at which each protein (y-axis) was observed across all 58 blocks. B. The number
of proteins (y-axis) and their observation frequency (x-axis) across all 58 blocks. The horizontal line represents the cut-off applied for keeping proteins
in the dataset: only those proteins observed in at least 25% of the blocks were considered further. Of these, 172 proteins (red lines in A) had
statistically significant expression patterns with respect to population (P,.05).
doi:10.1371/journal.pone.0011096.g002

Table 2. Summary of Proteomics.

Data feature Number

Experimental blocks 58

No. Matched spectra ion score = /.25 283074

No. Unique Peptides 4735

No. Proteins (1peps) 1454

Quantifiable Proteins (Parsimony rule) 1169

False discovery rate peptide ID (reverse decoy) 0.25%

Quantified Proteins (observed = /.25%) 578

Differentially expressed Proteins (p = /,0.05) 172

doi:10.1371/journal.pone.0011096.t002
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across all populations. The most efficient analysis was determined

empirically and resulted in eight gene clusters of low diversity

.0.75. The four largest clusters (,10%) were significantly

enriched for proteins with function in specific cellular processes

and cellular compartments (Fig. 4). Notably, the largest cluster was

highly enriched for basic biochemical pathways, including

carbohydrate metabolic process (GO:0005975), amino acid and

derivative metabolic process (GO:0006519) and generation of

precursor metabolites (GO:0006091); Bi-directional hierarchical

clustering divided the populations into two main groups, with the

three Canadian populations clustering away from the other five. In

concordance with the results from the hypergeometric test for

similarity that showed up-regulation of mitochondrial proteins in

Canadian populations, the cellular compartment ontology for

mitochondrion (GO:0005739) was also significantly enriched in

this cluster. Cluster 7 also provided additional confirmation of the

mitochondria as the principle site for response to adaptive

pressure: this grouping was highly enriched for a separate cluster

of mitochondrial proteins, including components of Electron

transport (GO:0006118), Generation of precursor metabolites and

energy and Ion transport (GO:0006811). Finally, cluster 2 the

second largest cluster, terms for Response to stress (GO:0006950),

Protein folding and DNA Metabolic processes (GO:0006259) were

enriched as was the Cellular component Nucleus with higher

expression in Hawaiian, Chilean and Californian populations.

Overall the results of this cluster analysis are in agreement with the

observations reported above in that the Canadian populations

show higher levels of proteins involved in energy metabolism

compared with the other populations.

The clustering performed here was based on P-values from the

Linear Mixed Effects analysis as they consider significance of the

relative differences on protein levels. However, a close approxi-

Table 3. Number of differentially expressed proteins and the direction of change in expression for each population.

Popul-
ation Expression Biological Process P value Molecular Function P value Cellular Component P value

Ch q37 translation .011 binding .037 cytosol .019

Q45 carbohydrate metabolic
process

.0019 catalytic activity 4.2E-05 mitochondrion .0031

Ko q12 No significant enrichment nucleic acid binding .0088 No significant enrichment

Q33 generation of precursor
metabolites and energy

1.3E-05 transporter activity 1.5E-09 mitochondrion 2.7E-05

NZ q12 No significant enrichment No significant enrichment No significant enrichment

Q23 No significant enrichment No significant enrichment No significant enrichment

Ol q42 response to stress .0029 binding .025 endoplasmic reticulum .015

Q41 ion transport .00024 transporter activity 6.1E-05 mitochondrion .00014

oR q20 electron transport 0.014 catalytic activity .00022 mitochondrion 1.9E-06

Q17 protein folding .0086

Pt q30 generation of precursor
metabolites and energy

1.2E-08 transporter activity .0025 mitochondrion .00010

Q22 protein folding .0065 binding .0061 nucleus .0073

sR q25 carbohydrate metabolic
process

.016 catalytic activity .057 mitochondrion .0026

Q19 protein folding .00028 binding .00036

St q36 protein folding 1.2E-05 binding .056 No significant enrichment

Q41 ion transport .0023 transporter activity .00061 mitochondrion 2.7E-05

GO terms significantly enriched (FDR Corrected P..1 Hypergeometric test).
doi:10.1371/journal.pone.0011096.t003

Figure 3. Similarity matrix showing the presence of significant overlaps in protein expression between populations. Data shown is
the representation factor where .1 indicates more overlap than expected between two populations. Statistical significance of this overlap was
determined by applying an exact hypergeometric test (red indicates P,.05).
doi:10.1371/journal.pone.0011096.g003
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mation to protein abundance in the Linear Mixed Effects model is

the population effect value, which give a measure of relative

change (log scale) of abundance for each protein compared to all

the populations (see Methods); the average population effect values

for each Drosophila KEGG [25] pathway is plotted in Fig. 5a,b.

The dme01100 General Metabolism, dmel00480 Citrate cycle and

dmel 00190 Oxidative phosphorylation pathways were used, along

with two manually constructed composite pathways named

Carbohydrate metabolism and Amino acid metabolism. Here

functional specificity allows any noise associated with co-clustering

proteins of different pathways to be eliminated. From the plot it is

clear that populations from Ontario, and Saskatchewan express

higher levels of all 4 key metabolic pathways that emerged from

the analysis of P-value clustering above. Likewise, opposing

expression patterns in the population effects are observed for

proteins involved in protein biosynthesis/folding/degradation:

Ribosome Small subunit, Ribosome large subunit, Translation,

Protein Chaperones, Protein disulphide isomerase and Proteosome

(Fig. 5b). To confirm the presence of a relationship between local

climate and expression of these processes, linear regression was

employed to test for a correlation between absolute latitude and

protein expression (Fig. 5c,d). The average stock effect for ‘general

metabolism’ and all protein biosynthesis/folding/degradation

processes are plotted. Regression analysis indicated there was

indeed a high correlation between absolute latitude and protein

expression for both of these biological processes.

Figure 4. Results of clustering of all midgut proteins found differently expressed for any population. The 172 proteins with a significant
population effect were grouped using the SOTA into eight clusters based on their one-sided P-values; the four clusters exhibiting significant
enrichment in functional classes of proteins are shown. The proteins within each SOTA cluster were further clustered hierarchically by both protein
(vertical) and population (horizontal). The cluster number, number of proteins, and diversity is given to the left. GO terms for biological processes
found to be significantly enriched (FDR Corrected P..05 Hypergeometric test) in each cluster are shown to the right.
doi:10.1371/journal.pone.0011096.g004

Figure 5. Pathway analysis of honey bee midgut proteins across the populations studied. Bee proteins identified here were first matched
against KEGG [25] using the annotations of their Drosophila orthologs and then the median protein abundance for each pathway was plotted. A.
Proteins were divided into several key metabolic processes. B. Protein biosynthesis/folding/degradation factors exhibited a distinct profile with
respect to the populations analyzed. C-D. Linear regression analysis of stock effect versus absolute latitude. The dependant variable (x), was median
stock effect for all proteins of (C) general metabolism and (D) protein biosynthesis/folding/degradation proteins are plotted against the independent
variable (y) absolute degrees from equator of population origin. A quadratic model (Y = bo + b1A + b2A2) is fitted to the data and the R2 and
correlation values shown.
doi:10.1371/journal.pone.0011096.g005
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Potential adaptive mechanisms of gut innate immunity
Among those proteins also enriched in clusters 1 and 2 (Fig. 4)

were several proteins involved in gut innate immunity, including

Toll-like receptor (TLR) 3, Vanin-1, Ferretin 2 and Chitinase,

indicating that bee populations may differ in their ability to mount

an immune response or cope with local enteric pathogens. TLR-3

is a pattern recognition receptor involved in the recognition to

viral pathogens, and intestinal tissue necrosis during inflammatory

responses [26,27]. Vanin-1 has pantetheinase activity that

mediates oxidative burst in the gut epithelia, potentially facilitated

via Toll/Cytokine signaling [28,29]. Ferretin 2 is also involved in

the oxidative stress response, in this case it sequesters excess ferric

iron, reducing the generation of H2O2 and abating oxidative stress

induced in response to the activity of proteins like Vanin-1 [30].

Chinitases are involved in inflammatory responses of the intestines,

inducible by cytokine signalling [31]. Further, insect chitinases

modulate the thickness of the peritrophic membrane (PM) which

forms a film-like structure separating undigested nutrients from

epithelial cells protecting the epithelium from food abrasion and

enteric pathogens (reviewed by [32]. The differential expression of

proteins involved in the exposure and response to pathogens

suggests that different populations may have different levels of

susceptibility to disease.

Discussion

Honey bees are an essential component of human agriculture

and many crops are completely dependent on the pollination

services provided by bees, often over a period as short as a few

days [33]. Superimposed on these demands, is the reality that

under northern temperate climatic conditions annual viability of

commercial colonies is mitigated without extensive human

assistance, e.g., Peace River District of British Columbia and

Alberta, Canada, yet may produce large quantities of honey [34].

These demands make for a complex beekeeping paradigm where

beekeepers in northern climates are required to purchase queens

or bulk bees from breeders who specialize in their production.

Because of the high demand for queens in Canada during the

spring, many are sourced from offshore sites, particularly from the

tropics (e.g., Hawaii) or the southern hemisphere (e.g., New

Zealand, Chile). This importation of bees is currently necessary

but not optimal as the bees may not perform as well as locally

raised bees [21]). Queen breeders endeavour to select and to

maintain economically desirable phenotypes (e.g., high honey

production, disease resistance, winter survival, gentleness) in their

populations, nevertheless when bees are sold abroad the fidelity of

these characteristics is not necessarily maintained. Through

proteomic analysis of honey bee populations from several

geographically distinct regions, our data indicates that optimized

metabolic capacities for various climatic regions have developed,

potentially conferring beneficial phenotypic characteristics. It is

worth noting that the adaptation of the queens to their original

breeding site was maintained after being moved to an experimen-

tal location in Alberta where their colonies were sampled. These

local adaptations observed as differences in protein levels may be

related to genetic or epigenetic changes in the queens of the

different populations.

Our null hypothesis stated that no differences should exist

among the protein expression profiles of different populations of

honey bees; the basis for this being that queen production for

North America is centralized in a few locations. The data

presented here argue strongly in favor of rejecting this null

hypothesis: a) At the individual protein level there are at least 172

proteins whose expression in the midgut correlates with population

(Fig. 2, Fig. 4). b) At the level of the whole protein expression

profile, populations from similar climates tended very strongly to

be more similar to one another (Fig. 3). c) At the functional level,

the expression levels of whole classes of proteins tended to be co-

regulated (Fig. 5, Table 3). We are cognizant, however, that the

choice of colonies used in these analyses did not permit random

selection from a large cohort representing each population, due to

constraints brought upon by practical considerations associated

with importation and maintenance of stock. These data nonethe-

less are highly suggestive of intriguing local adaptations occurring

in honey bee metabolism.

The populations studied here may represent separate geo-

graphical ecotypes, where metabolic control and protein synthe-

sis/folding mechanisms has been finely tuned to confer fitness to

local environmental pressures such as climate, food resources,

predation and diseases. In general, such processes are non-random

series of genetic events where allelic frequencies alter with a direct

influence on the phenotype. It must also be appreciated that these

populations were developed by commercial breeding programs

and thus environmental factors are not the only parameters

affecting phenotype; selective breeding, as well as importation and

hybridization of new genetic stock, has likely also influenced each

population. Also, selection is not the only mechanism that can

result in inter-population variance. Genetic drift is a stochastic

mechanism that can change the frequency in alleles within a

population regardless of the influence of ecological gradients.

Although in this case, the type of micro-evolutionary process

responsible is not directly demonstrated, the processes were found

to cluster bi-directionally depending on climate of population

origin. This indicates an extremely low chance that observations

were the result of random genetic drift, as the same protein

expression trends appear to be lost or gained in the opposing

direction at each geographical origin. Non-random genetic causes,

such as direct exchange of genetic material between two or more

of the populations studied here can also be ruled out. For example,

New Zealand and Chile have national policies in place that restrict

the importation of bees yet these two populations showed a high

degree of similarity. The cases are less clear-cut between the

Californian and Hawaiian populations or between those from

Saskatchewan, nevertheless each of these breeders maintains that

there has been no intentional genetic exchange among the

populations in question. Likewise, even populations who share a

traceable common ancestor but who had several years to adapt to

their current environment did not show any greater similarity than

those sharing a climatic region, e.g., the Ontario and Saskatch-

ewan Russian lines.

In the data presented here, pairs of populations that shared the

most similar latitudes tended to have the most similar protein

expression profiles. Through the analysis of isozymes of malate

dehydrogenase, latitudinal clines present across several continents

have been identified in honey bees [9]. Natural and introduced

Drosophila populations also exhibit similar allelic clines shown by

isozyme polymorphisms of alcohol dehydrogenase (ADH) and

glycerol-3-phosphate dehydrogenase (GPDH); the present study

demonstrates selective pressure on these same enzymes whose

expression patterns seem to correlate with latitude (reviewed by

[35]). Although these markers provide an unbiased association

with which to identify local adaptation, they also indicate that

metabolism is often a selective target of local adaptation.

Temperature influences the biosynthesis, stability and activity of

proteins with functional adaptation of homologous proteins to

their operating environment common [36]. While proteomics does

not allow us to determine the presence of alloenzymes between

populations, bi-directional segregation of pathways for metabolism
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and protein folding with latitude is consistent with the presence of

distinct ecotypes for the warmer Californian/Hawaiian and colder

Saskatchewan and Ontario populations. The Californian/Hawai-

ian ecotype has to deal with year round average higher

temperatures resulting in the evolutionary imprinting of a lower

metabolic rate and heat stress coping strategies, with opposing

trends seen in Saskatchewan and Ontario populations. In order to

rigorously test the hypothesis that climate and protein expression

are linked, one would need to relocate honey bees adapted to

specific climates to regions of similar or vastly different climates

and then continue to correlate colony-level productivity with

protein expression profiles.

Genomic and transcriptomic analysis are powerful tools able to

dissect gene expression variations among populations (e.g.

[37,38,39]). In D. melanogaster for example, 153 genes were shown

to vary between natural populations sampled in Europe and Africa

[40]. Gene enrichment identified genes related to the cytoskeleton

being over-expressed in African populations compared to

Europeans, with the opposite pattern for genes involved in fatty

acid metabolism [40]. Bee transcriptome analysis has been limited

to a few studies, and while none have been specifically designed to

analyse inter-population variation in gene expression, relevant

information can be obtained from them. For example, a recent

study that focused on detecting transcript differences between

healthy versus CCD bees also revealed inter-population variance

[12]. By sampling bees obtained from the west and east coasts of

the USA, a large amount of location specific transcript variation

was detected. Gene enrichment revealed that genes controlling

mitochondrial and ribosomal function were largely responsible for

transcript variation, in agreement with our findings that metabolic

processes are targets of local adaptation. Furthermore, a study

investigating DNA methylation and gene expression status of the

honey bee genome [41], found that genes encoding metabolic and

energy transfer enzymes were enriched within the methylated

genes. These findings reveal epigenetic imprinting potentially from

environmental stimuli as a mechanism able to orchestrate changes

in basal gene expression [41]. Future studies may further clarify

the role of the different regulatory mechanisms responsible for the

observed variations in protein levels that seem to occur in local

adaptive responses of different populations.

Our findings may also open the door to expanding the use of

honey bees as models of human diseases [42]. Studying honey bee

populations from different origins may help us understand the

differential susceptibility of human populations to metabolic

diseases. Of particular interest are populations of diverse genetic

backgrounds that are now living in the same environment, such as

westernized populations from Eastern Europe or of Native

American background. Interestingly, Fridlyand and Philipson

hypothesized that the lower incidence of type 2 diabetes (T2D) in

Western-Europeans, compared to westernized populations with

origins in warmer climates, may be due to the existence of cold

climate genes that can lead to both increased thermogenesis and

decreased incidence of T2D [43]. The candidates for cold climate

genes were reportedly evaluated from three areas: the uncoupling

proteins, maternally-transmitted mitochondrial genes, and mito-

chondrial biogenesis. Given this, it is highly suggestive that in our

own data mitochondrial proteins emerge as being differentially

regulated in honey bee populations originated in the colder

Canadian climates as compared to populations from warmer

climates. These findings suggest that honey bees have similar

adaptive mechanisms to humans and therefore confirm the utility

of using honey bees as models of human metabolic diseases, as well

as to understand the epidemiology of these diseases. In conclusion,

we have provided evidence for the molecular basis of honey bee

adaptations to diverse environments. Overall, energy-related

mitochondrial pathways were up-regulated in bees adapted to

colder climates while protein biosynthesis and degradation

pathways were preferentially up-regulated in honey bees from

warmer climates. The observations reported here increase our

understanding of metabolic diversity in honey bee populations and

lay a framework for biomarker use in selective breeding. Results

may also be extrapolated to other species, confirming the need to

consider the relationship of animal populations and their native

biome in commercial agriculture and in natural environments.

Furthermore, our findings underscore the value of honey bees as

models of human diseases. Mass spectrometry- based proteomics

has rarely been applied to ecology and population biology [17] but

this study demonstrates that exploiting proteomics towards these

goals can provide great insight into ecological issues and adaptive

processes in nature.

Materials and Methods

Reagents
All chemicals used were of analytical grade or better and all

solvents were of HPLC-grade or better; all were obtained from

ThermoFisher-Scientific (St. Waltham, MA, USA). Other reagents

used were purchased from the following commercial sources:

Endopeptidase Lys-C, Wako Chemicals (Osaka, Japan); porcine

modified trypsin, Promega (Nepean, Ontario, Canada); loose

ReproSil-Pur 120 C18-AQ 3 mm, Dr Maisch (Ammerbuch-

Entringen, Germany); 96-well full skirt PCR plates, Axygen

(Union City, CA, USA); fused silica capillary tubing, Polymicro

(Phoenix, AZ, USA); protease inhibitor mixture, Roche Applied

Science (Basel, Switzerland); NuPAGE Novex BisTris Gels,

Invitrogen (Carlsbad, CA, USA).

Honey bee populations and sample collection
Eight populations (Table 1) of bees were used in this study and

all bees were imported to and maintained at the Agriculture and

Agri-Food Canada, Beaverlodge Research Farm, Beaverlodge,

AB, Canada (55u189 N; 119u179 W) for one to two years. Multiple

colonies (4–10) from each population were sampled in triplicate

and five bee midguts were pooled for each sample. Midguts were

dissected from the abdomens of freshly decapitated bees by using

forceps to grasp the terminal abdominal segments and pulling

gently. This released the almost complete digestive tract, which

was then cut posterior to the crop and anterior to the rectum.

Midguts were immediately washed three times to remove most of

their contents and stored in phosphate-buffered saline (50 mM

K2HPO4, 150 mM NaCl, pH 7.4) containing Complete, EDTA-

free Protease Inhibitor cocktail (Roche) before storage at 270uC.

Matrix for sample analysis
We generated a D-optimal design matrix [44] to group the

samples in blocks of three, and assign a label to each sample (Fig 1).

This randomized incomplete block design was chosen to minimize

the standard error of the estimate of the population effect on

protein expression level. Two constrains were included in the

design: no two colonies from the same population appeared in the

same block and no two samples of the same colony were assigned

the same label.

Protein preparation for mass spectrometry
With most tissues, honey bee or otherwise, we find that protease

inhibitor cocktails are sufficient to prevent protein degradation.

This was not the case with midgut samples, however, likely since

proteolysis is one of the major functions of that tissue, and so we
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developed an extraction procedure where trichloroacetic acid was

used to control degradation by endogenous proteases. Bee midguts

were bead-homogenized in an ice-cold solution of 15% (w/v)

trichloracetic acid, 1% (w/v) dithiotheitol (DTT) for 2 pulses of

2 min at 35 Hz. After 30 min on ice, precipitated proteins were

collected by centrifugation at 16,100 relative centrifugal force (rcf)

and the precipitate was washed 3 times with ice-cold acetone.

Washed pellets were dried and solubilized in 6 M urea, 2 M

thiourea, 100 mM Tris-Cl (pH 8.0); insoluble material was

subsequently removed by centrifugation at 16,100 rcf. Protein

estimations were carried out by a micro Bradford assay using serial

dilution of BSA to establish a standard curve. Protein stability and

quantity were check by 1-D Nu-PAGE (Invitrogen) and bands

were visualised by staining with Coomassie Safe Blue (Pierce). For

each sample, 20 mg of total protein was initially diluted to 1 mg/ml

in 6 M Urea, 2 M Thiourea, 100 mM Tris-Cl, pH 8.0 and

proteins were digested in solution exactly as described [45].

Peptide clean-up and labelling
Peptide digests were purified using the C18 flavor of STop And

Go Extraction (STAGE) tips [46] and eluted peptides were dried

and labelled by reductive dimethylation using formaldehyde

isotopologues [22,47]. For each triplex, peptides were dissolved

in 500 mM NaCH3COO (pH 8.0) and derivatized by addition of

20 ml of 200 mM CH2O (light) or 200 mM C2H2O (medium) and

6 mL of 1 M NaBH3CN to both or 200 mM 13C2H 2O (heavy)

and 6 mL of 1 M NaB2H3CN. The reaction proceeded for 90 min

before it was quenched with 20 mL of 3 M NH4Cl. Samples were

acidified by addition of 2% (w/v) acetonitrile, 1% (v/v)

trifluoroacetic acid, 0.5% (v/v) acetic acid, then the three

differentially-labeled peptide pools were combined and resolved

into 5 fractions using C18-SCX-C18 STAGE tips [46]. Each

fraction was dried completely and resuspended in 2% (w/v)

acetonitrile, 1% (v/v) trifluoroacetic acid, 0.5% (v/v) acetic acid.

Liquid chromatography-tandem mass spectrometry (LC-
MS/MS)

Analysis of peptides by LC-MS/MS was performed using an

1100 Series nanoflow high performance liquid chromatography

system (Agilent Technologies) on-line coupled to a LTQ-FT

(ThermoFisher Scientific, Bremen, Germany). Peptide separation

was performed by reversed phase chromatography using a 75 mm

inner diameter fused silica emitter self packed with 3 mm Reprosil-

Pur C18-AQ resin (Dr. Maisch GmbH). Peptides were loaded in

4.8% (v/v) aceonitirle, 0.5% (v/v), acetic acid at 0.6 mL/min and

then resolved at 200 nL/min for 75 min, during which a linear

gradient of acetonitrile was created from 4.8% to 64% in 0.5%

(v/v) acetic acid. Mass spectrometry: Operating in data dependent

aquisition, the LTQ-FT was set up to aquire FT full scan data over

a mass range of 350–1600 m/z before performing FT selected ion

monitoring (SIM) and MS/MS in the ion trap on the top 3 most

intense multiply charged ions [48].

Protein identification and quantification
Peak lists were created using DTASuperCharge [49] with

default parameters and searched using Mascot (v2.2) against the

Honey Bee, A. mellifera Amel_4.0 translation (forward plus inverted

sequences) of the genome with additional entries for human

keratins, porcine trypsin and LysC. Tryptic cleavage rules (R/K,

except preceding P) were specified with up to two missed cleavages

allowed. Carbamidomethyl (C) was set as a fixed modification,

Acetyl (Protein N-term), Deamidated (NQ), Oxidation (M),

Dimethyl (K), Dimethyl (N-term), Dimethyl:2H(4) (K), Di-

methyl:2H(4) (N-term), Dimethyl:2H(6)13C(2) (K), Di-

methyl:2H(6)13C(2) (N-term) as variable modifications. Peptide

tolerance was set to 10 ppm and MS/MS tolerance was 0.6 Da.

The false discovery rate (FDR, % of type one errors) for peptide

identifications was estimated at 0.25% for the whole dataset as:

FDR = rev/(for+rev) where ‘rev’ are the number of hits against

reversed protein sequences and ‘for’ are the number of hits against

real protein sequences for a given cut-off criteria. All peptides with

an IonsScore $25 were quantified using MS Quant (v1.5) [49];

after automated quantitation all files were manually edited to

ensure consistent quantitation and the peak area ratios were

exported for further analysis. An in-house script, finalList.pl,

described previously [47] for applying parsimony (Occam’s razor)

to generate a non-redundant list of identified proteins from a large

pool of independent experiments was adapted to simultaneously

calculate average peptide ratios for each protein in each block.

Statistical analysis
Logarithms of intensities were normalized by first subtracting

the average of the three measurements in each block (for each

protein independently) and then centering and standardizing

within each label (across proteins) by the median and median

absolute deviation. For each protein, a Linear Mixed Effects

model was used to estimate the effect of population on the protein

expression level, adjusting for block and label factors. Colony was

treated as a random factor to control for the three repeated

measures within each colony. Proteins for which the population

factor was significant at P,.05 were selected for further analysis.

For the significant proteins the following analysis was performed:

for each protein, individual effects of the 8 populations and their

standard errors were computed (keeping the average effect equal

to 0). They were then converted into a set of 8 one-sided P-values

such that values close to 1 indicate strong positive effect and values

close to 0 indicate strong negative effect. P-values were chosen

over z-values so that all strongly expressing populations were

grouped together regardless of the degree of expression. One-sided

P-values were chosen over 2-sided so that the directionality of the

change in expression was carried forward. To convert 1-sided P-

values into the more traditional 2-sided P-values the following

formula can be used: P2 = 122*|P120.5|, which can be

visualized as an inverted V-shape centered around 0.5. All

calculations were performed in R.

Gene ontology enrichment and expression overlap and
clustering

Gene ontology (GO) enrichment analysis was performed based

on the Drosophila orthologs to the complete protein sequence of the

bee proteins identified. GOToolBox [50] was used to calculate

enrichments between protein lists of interest using the entire

midgut proteome characterized here (578 proteins) as background.

A hypergeometric test with subsequent correction for false

discovery rate (FDR) when using multiple testing was applied.

To determine statistical significance of protein overlaps between

populations a representation factor was calculated: (number of

significant proteins common between two populations)(number of

proteins identified)/(number of proteins in population X)(number

of proteins in population Y) [51]. Overlap for all binary

relationships possible was calculated and statistical significance

tested using exact hypergeometric test (1-tailed) and where P,.05

GO categories for overlapping proteins were determined as done

previously. SOTA (self-organizing tree algorithm) clustering was

used to determine one side probability metrics for all 172

population significant proteins across all eight honey bee

populations. Using MultiExperiment Viewer [52] eight hard
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clusters were generated using seven cycles with a maximum

diversity of 0.8. Hierarchical dendrograms for population and

proteins were calculated using Euclidean distances.

Supporting Information

Dataset S1 Spreadsheet containing the randomized incomplete

block design (RIBD). Columns show how each colony (4–6) from

different populations (1–3) is distributed across 58 blocks using a

triplex experimental design afforded by the use of the triplex

dimethylation labeling strategy.

Found at: doi:10.1371/journal.pone.0011096.s001 (0.02 MB

XLS)

Dataset S2 Spreadsheet containing the raw quantitative ratios

observed for each protein (columns) identified in the 58 blocks

(three colonies per block) analyzed. The top row indicates the bee

colonies in each block.

Found at: doi:10.1371/journal.pone.0011096.s002 (1.94 MB

XLS)

Dataset S3 Expression spreadsheet of quantified midgut pro-

teins, consisting of column A: the Honey bee gene identifier

accession number from the NCBI Genbank database, column B:

the Drosophila refseq accession number from the fly NCBI reference

sequence database, column C: the Flybase accession number,

column D: the K code from the Kyoto Encyclopedia of Genes and

Genomes database, columns E-L: the 1-sided P values and

columns M-T: stock effect values for each population and protein

analyzed. The 2-sided P value for population effect for each

protein is given in column U and V states if this value was

considered significant. Columns W-AC give up to three example

peptide sequences with MASCOT scores that were quantitated for

each protein identified.

Found at: doi:10.1371/journal.pone.0011096.s003 (0.36 MB

XLS)

Dataset S4 Complete gene enrichment spreadsheet for all

analysis performed and shown in the results section. Each sheet

has self explanatory column headers, sheet 1 ‘Table 1’ is the full

results of the data summarized in Table 1. Sheet 2 ‘Figure 3’ is the

enrichment results based on the similarity matrix present in

Figure 3. Sheet 3 ‘Figure 4’ is the enrichment results based on the

top 4 clusters presented in Figure 4.

Found at: doi:10.1371/journal.pone.0011096.s004 (0.05 MB

XLS)
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