
Research Article
Stability Analysis of Mathematical Model including
Pathogen-Specific Immune System Response with
Fractional-Order Differential Equations

Bahatdin Daşbaşı
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In this study, the mathematical model examined the dynamics between pathogen and specific immune system cells (memory Tcells) for
diseases such as chronic infection and cancer in which nonspecific immune system cells are inadequate to destroy the pathogen and has
been suggested by using a system of the fractional-order differential equation withmulti-orders. Qualitative analysis of the proposedmodel
reveals the equilibriumpoints giving important ideas about the proliferation of the pathogen andmemoryTcells. According to the results of
this analysis, the possible scenarios are as follows: the absence of both pathogen andmemory Tcells, only the existence of pathogen, and the
existence of both pathogen andmemory Tcells./e qualitative analysis of the proposedmodel has expressed the persistent situations of the
disease where thememory Tcells either do not be able to respond to the pathogen or continue to exist with the disease-causing pathogen in
the host. Results of this analysis are supported by numerical simulations. In the simulations, the time-dependent size of the tumor
population under the pressure of the memory T cells was tried to be estimated.

1. Introduction

For three centuries, the theory of fractional derivatives was
developed as a pure theoretical field of mathematics, useful
only for mathematicians. But, the use of fractional-orders
differential and integral operators in mathematical models
has become increasingly common of late years. /erefore,
various forms of fractional-order differential equations
are suggested for standard models. In this sense, the frac-
tional-order calculus plays an important role in physics [1],
thermodynamics [2], viscoelasticity [3], electrical circuits
theory [4], fractances [5], mechatronics systems [6], signal
processing [7], chemical mixing [8], chaos theory [9], en-
gineering [10], biological system [11], and other applications
[12]. Also, a large number of literatures on the application of
fractional-order differential equations (FODEs) in nonlinear
dynamics have been improved. Especially, when the bi-
ological applications of FODEs have considered, it is a rich
source for mathematical ideas [13].

/e mathematical modeling of diseases in biological
applications is a subject discussed in the literature. Such

models are considered under two main headings as by
modeling the size of the spread of infected individuals in
a population (SIR) and modeling the population size of the
pathogens such as the tumor in an individual as it is here./e
word tumor simply refers to amass./is is a general term that
can refer to benign (generally harmless) or malignant (can-
cerous) growths. Many types of tumors are considered to be
a major factor in many fatal diseases in human history.
Fundamentally, it is said that this disease is a complex process
for both tumor and host. Although different treatment
strategies are proposed for tumors, the first and foremost role
in disease progression belongs to the immune system of the
individual (or host) [14]. /e immune system is stated as
a system of biological structures and processes in an organism
that protects the body from the possible hazardous organism
by recognizing and responding to antigens. Inmore detail, the
immune system cells such as Tcells are generally described in
terms of two different types. /ese are the effector and the
memory of T cells. /e ordinary behaviour of the immune
system is generally an acute infection, controlled initially by
effector T cells (aspecific response or the innate immune
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system response), later by memory T cells (specific response or
the adaptive immune response), until complete clearance of the
pathogen. /e adaptive immune response is much slower to
respond to threats and infections than the innate immune
response, which is primed and ready to fight at all times [15].
Especially, T cells are a crucial component of the adaptive
immune response against malignancies. Antigen-experienced
T cells specific for tumor antigens can be recovered from the
blood, lymphoid organs, and tumors of both cancer patients
and tumor-bearing mice [16]. Concordantly, the reactions of
different hosts in case of the same disease may be different
because of the immune system response given by host, and so,
the disease progression varies from person to person. Within
this context, dynamics of relevances between immune systems
cells (Tcells) and tumor are significant to find out the nature of
the disease./e problem is to try to obtain the known biological
features without making the mathematics too complicated.

/e basic of a most useful explanation of fractional
calculus is memory concept. If the output of a system at each
time t depends only on the input at time t, then such systems
are said to be memoryless systems. On the contrary, if the
system has to remember previous values of the input in order
to determine the current value of the output, then such
systems are said memory systems [17, 18]. Accordingly, the
behaviour of most biological systems has memory or after-
effects. /e modeling of these systems by FODEs has more
advantages than classical integer-order modeling, in which
such effects are neglected. Also, FODEs are, at least, as stable
as their integer order counterpart [11]. In the process of
modeling real-life situations, the created mathematical
models by using the fractional-order differential operations
allow to display the some extra cases regarding the stability
region of the equilibrium point of the mathematical model
caused by parameters such as derivative orders. For this
reason, the mathematical models formed by FODEs are
more realistic and feasible [19]. Additionally, stability
analysis of equilibrium points for mathematical models
consisting of FODEs with multi-orders and its systems is
more general than those of the same-orders too.

Although there are many studies that examined the dy-
namics between tumor and immune system response, the
proposedmodel in this study differs from them in terms of both
mathematical structure such as the use ofHolling function type-
2 (functional and numerical responses) in the model consisting
of the FODE system with multi-orders and examination of
qualitative analysis of the proposed model. In this sense, it was
tried to bring a different perspective from the previous studies.

In this study, a FODEmodel withmulti-orders considering
the basic mechanisms of tumor and the memory Tcells having
functional and numerical responses, respectively, has been
constructed, and so, the qualitative analysis of the proposed
model was performed. /e reason for using the Holling
function type-2 is to show the limit cycle behaviour of system
[20]. /e certain conditions dependent on the development of
the tumor population under the pressure ofmemory Tcells was
obtained. In this respect, all of the possible scenarios related to
the tumor size were tried to be explained as parameter-de-
pendent. Additionally, numerical analysis of the model was
given as to be compatible with the qualitative analysis.

2. Preliminaries and Definitions

In here, the main definitions and properties of fractional
derivative operators have been expressed. Also, the FODE
systems with multi-orders have been introduced, and the
properties such as stability and existence of the equilibrium
points of such systems are given.

2.1. Fractional Differential Operators. /ere are various
definitions of a fractional derivative with the order α> 0./e
definitions of Riemann–Liouville and Caputo are used most
widely. /e Caputo sense was used in this study. Taking into
account the definition of Caputo sense, the fractional de-
rivative of the function f(t) is identified as

D
α
f(t) � J

m−α
D

m
f(t) �

1
Γ(m− α)


t

0

f(m)(τ)

(t− τ)α−m+1 dτ,

(1)

for m− 1< α≤m, m ∈ N, t> 0 [21].

2.2.(eFODESystemwithMulti-orders. Let us consider that
t is the time parameter. We have assumed that the system of
FODE with multi-orders is given as the following equation:

D
α
t X(t) � F(t, X),

X(0) � X0,
(2)

where the variable X � [x11(t), x21(t), . . . , xn1
(t)]T ∈ Rn,

the initial conditions by X0 � [x10(0), x20(0), . . . ,

xn0
(0)]T ∈ Rn, the functions by F � [f1, f2, . . . , fn]T ∈ Rn

and fi : [0, +∞)xRn⟶ R for i � 1, 2, . . . , n, and the de-
rivative orders by α � [α1, α2, . . . , αn]T.

Also, when it is considered as Dα
t � [D

α1
t , D

α2
t , . . . , D

αn

t ]T,
D

αi

t indicates αi th-order fractional derivative in the Caputo
sense. In this sense, it is Dα

t X(t) � [D
α1
t x11(t), D

α2
t x21

(t), . . . , D
αn

t xn1
(t)]T. /e multi-orders can be mathemati-

cally any real or complex vector. In this study, the real case
was only taken into account. /roughout the paper, we
restrict αi to a rational number in the interval (0, 1] [22].

Remark 1. From (2), we have assumed that

F(t, X) � F(X), (3)

where the independent variable t is not clearly seen in the
function F. /e equilibrium point of (3) is the point X �

(x1, x2, . . . , xn) obtained from the equations F(X) � 0.

Remark 2. For each equilibrium point X of the autonomous
system in (3), the eigenvalues λ obtain from the following
equation:

det diag λmα1 , λmα2 , . . . , λmαn( − J(X)(  � 0, (4)

where J(X) is the Jacobian matrix evaluated at the equilib-
rium point and m is the smallest of the common multiples of
the denominators of the rational numbers α1, α2, . . . , αn [23].
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Theorem 1. For each equilibrium point X of system (3), X

is locally asymptotically stable (LAS), if the eigenvalues
λi obtained from (4) satisfy Routh–Hurwitz Stability Criteria
or the inequalities |arg(λi)|> (π/2m) for i � 1, 2, . . . , m(α1 +

α2). Here, m has been defined in Remark 2 [22]. Because the
2-dimensional of system (3) is used in the proposed model in
this study, the stability analysis of such systems are described
in detail below.

Remark 3. Let us assume that the autonomous system of
FODE with multi-orders is as following:

D
α1x1(t) � f1 x1, x2( ,

D
α2x2(t) � f2 x1, x2( ,

(5)

with the nonnegative initial conditions

x1(0) � xo1 and x2(0) � xo2, (6)

where the derivative orders α1 and α2 are rational numbers
in the interval (0, 1]. /e equilibrium point of system (5) is
the point X � (x1, x2) obtained from the equations
Dαi xi(t) � 0 for � 1, 2. To evaluate locally asymptotically
stability (LAS) of equilibrium point, the Jacobian

matrix, J �
zf1/zx1 zf1/zx2
zf2/zx1 zf2/zx2

  �
(f1)x1

(f1)x2
(f2)x1

(f2)x2

 , is

used. Considering Remark 2, the eigenvalues λi for
i � 1, 2, . . . , m(α1 + α2) are obtained from the following
equation:

det diag λmα1 , λmα2( − J(X)( 

�

λmα1 − f1( x1

 x1 ,x2( )
  − f1( x2

 x1 ,x2( )

− f2( x1

 x1 ,x2( )
λmα2 − f2( x2

 x1 ,x2( )
 





� 0.

(7)

/erefore, the characteristic equation for eigenvalues is

λm α1+α2( ) − λmα1 f2( x2

 x1 ,x2( )
− λmα2 f1( x1

 x1 ,x2( )

+

f1( x1

 x1 ,x2( )
f2( x2

 x1 ,x2( )

− f1( x2

 x1 ,x2( )
f2( x1

 x1 ,x2( )

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠ � 0.

(8)

If the eigenvalues λi for i � 1, 2, . . . , m(α1 + α2) satisfy
Routh–Hurwitz stability criteria or the conditions,

arg λi( 


>
π
2m

, (9)

then the equilibrium point (x1, x2) is the LAS point for
system (5).

For the system of FODE with multi-orders α1 and α2,
the stability region is as shown in Figure 1 (where σ and ω
are the real and imaginary parts of the eigenvalues, re-
spectively, and j �

���
−1

√
). By Figure 1, we openly see

that the stability region of the equilibrium point of the
FODE with multi-orders is greater than the stability re-
gions of the integer-order case and the same fractional-
order case [24].

Remark 4. Let α1 � α2 � α in system (5). In this case, we
have the system

Dαx1(t) � f1 x1, x2( ,

Dαx2(t) � f2 x1, x2( ,
(10)

with the nonnegative initial conditions x1(0) � xo1 and
x2(0) � xo2. From the equations Dαxi(t) � 0 for i � 1, 2, we
have presumed that the equilibrium point of system (10) is
X � (x1, x2). If the eigenvalues λ1 and λ2 obtained from the
equation

Det J x1 ,x2( )� x1 ,x2( )− λI2  � 0 (11)

provide the conditions

arg λ1( 


>
απ
2

, arg λ2( 


>
απ
2

 , (12)

then the equilibrium point (x1, x2) is the LAS point for
system (10).

Conditions expressed in (12) can be detailed as the
followings. Characteristic equation of (11) is the following
generalized polynomial:

p(λ) � λ2 + a1λ + a2 � 0. (13)

When both the conditions (12) and the polynomial (13)
are considered together, the conditions for LAS of the
equilibrium point (x1, x2) are either Routh–Hurwitz con-
ditions [25, 26]:

a1, a2 > 0, (14)

or

a1 < 0, 4a2 > a1( 
2
, tan−1

���������

4a2 − a1( 
2



a1

⎛⎜⎜⎝ ⎞⎟⎟⎠





>
απ
2

. (15)

3. Model Formulation

/e proposed model is particularly well suited for describing
diseases such as chronic infection and cancer in which the
nonspecific immune system cells are inadequate to destroy the
pathogen. Consequently, it has been proposed, and another
extension of the models in [20, 27–33] has been analyzed.
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Figure 1: Stability region of the equilibrium point X of system (5).
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It has been identified mathematically as a pathogen load,
specifically tumor population, and level of memory T cells,
namely, the adaptive immune response or specific response, in
an individual. In this sense, we have assumed that the population
densities of pathogen and memory T cells at time t are denoted
by P(t) and T(t), respectively. Additionally, the memory Tcells
predate the tumor cells by a Holling function type-2.

Under the assumptions aforementioned, we have pro-
posed the following system of FODE with multi-orders α1
and α2:

D
α1
t P � βPP 1−

P

Λ
 −

cP

1 + aP
T,

D
α2
t T �

μP

1 + ]P
T− δT,

0< α1, α2 ≤ 1,

(16)

where D
αi

t for i � 1, 2 indicates αith-order fractional de-
rivatives in the Caputo sense, it is P � P(t) and T � T(t),
and the parameters have the following properties:

βP,Λ, c, a, μ, ], δ ∈ R+
. (17)

In addition that, system (16) has to be finished with
positive initial conditions P(t0) � P0 and T(t0) � T0. /e
parameters used in the model are defined as follows.

It is presumed that the pathogen follows a logistic growth
rule with the carrying capacity Λ and the growth rate βP. /e
memory T cells proliferate proportionally to the pathogen
load by the Holling function type-2. Since the pathogen
capture rate of memory T cells is assumed to be proportional
to the per capita growth rate of memory Tcells, the constant μ
represents the maximum growth rate for memory T cells and
the constant ] is the pathogen population size at which the
growth rate of memory T cells in half of its maximum. /ese
situations are very suitable for the growth of memory T cells
especially in case of chronic infection or tumor. Memory
T cells have per capita natural death rate δ. Moreover, the
pathogen die due to the action of the memory T cells, and we
have presumed that the effect of these cells on pathogen is
modeled using a saturating response, (cP/1 + aP), subject to
a maximum killing rate c and the level of memory T cells
required for the half maximum effect, a.

Remark 5. Rate of replication of the immune system cells is
higher than its death rate, at least every time the pathogen
load is very high [20]. In this case, we have lim

t⟶∞
((μP(t))/

(1 + ]P(t))) � μ/] by (16). /erefore, the following in-
equality is obtained:

μ
]
> δ, (18)

by this limit.

Proposition 1. System (16) provides the followings. (e free-
disease equilibrium point E0(0, 0) and the equilibrium point
E1(Λ, 0), where only the pathogen exists and always exist. In
addition to E0 and E1, there exists a third equilibrium point as
E2 � (P∗, T∗) for

P
∗

�
δ

μ− ]δ
,

T
∗

�
βP 1− P∗/Λ( )( )

c/ 1 + aP∗( )
,

(19)

when (δ/(μ− ]δ))<Λ.

Proof. /e steady states of the model (16) are again the in-
tersection of null clines Dα1P � 0 and Dα2 T � 0 in (16). We
have accepted that the solutions of theses equations consist of
the pairs (P, T). /en, we have the following system:

P βP 1−
P

Λ
 −

c

1 + aP
T  � 0,

T
μP

1 + ]P
− δ  � 0.

(20)

From the first equation of (20), it is P � 0 or
βP(1− (P/Λ))− (c/1 + aP)T � 0. Let P � 0, and then T � 0.
/erefore, the system (16) has the free-disease equilibrium
point E0(0, 0). On the contrary, let βP(1− (P/Λ))−
(c/1 + aP)T � 0, that is, T � (βP(1− (P/Λ)))/((c/1 + aP)).
If the value T is rewritten in the second equation of system
(20), then we have found the equilibrium points E1(Λ, 0)

and E2((δ/(μ− ]δ)), (βP(1− (δ/(μ− ]δ))/Λ))/(c/1 + a(δ/
μ− ]δ))). Considering (19), if E2 is rewritten, the point
E2(P∗, T∗) is obtained. E1 always exists due to (17). Let us
consider E2. P∗ is positive due to (17) and (18). On the
contrary, T∗ is positive due to (17), when

δ
μ− ]δ
<Λ. (21)

/erefore, we have a positive equilibrium point
E2(P∗, T∗) where P∗ and T∗ are in (19).

In Table 1, biological existence conditions of equilibrium
points of system (16) are showed. □

Proposition 2. In system (16), let us consider derivative
orders as

α1 �
k1

m1
, α2 �

k2

m2
and k1, k2, m1, m2 ∈ Z

+
, (22)

where the smallest common multiple of m1 and m2 is m.
System (16) satisfies the following:

(a) E0(0, 0) is a unstable point
(b) E1(Λ, 0) is LAS, when (δ/(μ− ]δ))>Λ. Also, if

(δ/μ− ]δ)≤Λ, then this point is a unstable point
(c) E2 � (P∗, T∗) where P∗ and T∗ defined in (19) is

LAS, when all roots λi for i � 1, 2, . . . , m(α1 + α2)
found from the equation

λm α1+α2( ) − λmα2βP A1 A2 + 1( − 1(  +
βPδ

2A1

μΛ 1−A1( 
� 0

(23)

satisfy Routh–Hurwitz stability criteria or the con-
dition |arg(λi)|> (1/m)(π/2). In here, it is
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1−
P∗

Λ
  � A1,

aP∗

aP∗ + 1
  � A2.

(24)

Proof. For the stability analysis of the equilibrium points,
the functions in system (16) are assigned as

f(P, T) � P βP 1−
P

Λ
 −

c

1 + aP
T ,

g(P, T) � T
μP

1 + ]P
− δ .

(25)

In this respect, the Jacobian matrix evaluated at each
equilibrium point showed in Table 1 is
J Ei(P, T)( 

�

βP 1−
2P

Λ
  +

Tc

aP + 1
aP

aP + 1
− 1  −

cP

aP + 1

Tμ
(1 + ]P)2

μP

1 + ]P
− δ 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(26)

for i � 0, 1, 2.

(a) For E0, the Jacobian matrix in (26) is

J E0(0, 0)(  �
βP 0

0 −δ
 . (27)

Now, we will investigate whether the inequality (9) has
been achieved. By (27), the eigenvalues have been found
from the following determinant:

det diag λmα1 , λmα2( − J E0(0, 0)( ( 

� det
λmα1 − βP 0

0 λmα2 + δ
  � 0.

(28)

In this respect, the characteristic equation obtained from
(28) is

λmα1 − βP(  λmα2 + δ(  � 0. (29)

/us, we have λmα1 � βP and λmα2 � −δ. λmα1 is real
positive due to (17). Moreover, it is obtained as

λi �

��

βP
1/mα1



∈ R+ for i � 1, 2, . . . , mα1. (30)

For the eigenvalues in (30), it is arg(λi) � 0 for i �

1, 2, . . . , mα1. /ese eigenvalues are positive real number
on the right side of the complex plane, and so, it is
|arg(λi)| � 0< (π/2m). Since the stability condition is not
supplied, the equilibrium point E0(0, 0) is a unstable point
for system (16).

(b) From (24), the Jacobian matrix related to E1(Λ, 0) is

J E1(Λ, 0)(  �

−βP −
cΛ

aΛ + 1

0
μΛ

1 + ]Λ
− δ 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (31)

From the equation det(diag(λmα1 , λmα2)− J(E1(Λ,
0))) � 0, the characteristic equation of eigenvalues is

λmα1 + βP(  λmα2 −
μΛ

1 + ]Λ
− δ   � 0. (32)

/erefore, it is λmα1 � −βP and λmα2 � ((μΛ/(1+

]Λ))− δ). /ese equations are examined as the following:

(1) λmα1 is a negative real number due to (17). By De
Moivre’s formula, we have λmα1 � βPcisπ⇒ λi �

β(1/mα1)
P cis(π/mα1) for i � 1, 2, . . . , mα1, such that

cisπ � cos π + i sin π, i �
���
−1

√
. Considering (9), the

stability condition for E1(Λ, 0) is α1 < 2 due to
|arg(λ)| � |π/(mα1)|> (π/2m). /is condition has
been always provided since 0< α1, α2 ≤ 1 in (16).

(2) On the other hand, we have considered the equation
λmα2 � ((μΛ/(1 + ]Λ))− δ). If (μΛ/(1 + ]Λ))< δ,
then λi � (δ − (μΛ/(1 + ]Λ)))(1/mα2)cis(π/mα2) for
i � 1, 2, . . . , mα2 is obtained from λmα2 � (δ −
(μΛ/(1 + ]Λ)))cisπ by De Moivre formulas. In this
respect, the stability condition is α2 < 2 by |arg(λ)| �

|(π/mα2)|> (π/2m). /is condition has been always
provided from (16). Additionally, If (μΛ/(1+ ]Λ))≥ δ,
then the eigenvalues are positive real number
due to λi � ((μΛ/(1 + ]Λ))− δ)(1/mα2)cis0 for
i � 1, 2, . . . , mα2. In this sense, we have arg(λi) � 0.
/e stability condition is not provided due to
|arg(λ)| � 0< (π/2m). /erefore, the equilibrium
point E1(Λ, 0) is an unstable point for system (16).

Consequently, if the inequality

μΛ
1 + ]Λ
< δ (33)

is provided, then the equilibrium point E1(Λ, 0) is LAS, and
if ((μΛ/(1 + ]Λ))− δ)≥ 0, then this point is an unstable
point for system (16). When (33) is rearranged, the stability
condition of E1(Λ, 0) is

δ
μ− ]δ
>Λ. (34)

(c) Jacobian matrix evaluated at E2(P∗ � δ/(μ− ]δ),

T∗ � βP(1− (P∗/Λ))/c/(1 + aP∗)) is

Table 1: Biological existence conditions for the equilibria of system
(16).

Equilibrium points Biological existence conditions
E0(0, 0) Always exists
E1(Λ, 0)

E2(P∗, T∗) δ/(μ− ]δ) <Λ

Computational and Mathematical Methods in Medicine 5



J E2( 

�

βP 1−
2P∗

Λ
  +

T∗c

aP∗ + 1
aP∗

aP∗ + 1
− 1  −

cP∗

aP∗ + 1

T∗μ
1 + ]P∗( )2

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(35)

that is,

J E2(  �

βP A1 A2 + 1( − 1(  −
c

a
A2

aβPδ
2A1

cμΛ 1−A1( A2
0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (36)

where A1 and A2 are defined in (24).

Let us give more details for A1 and A2. Accordingly, it is

0<A1 < 1, (37)

since the value P∗, the pathogen size may take, is less than or
equal to its carrying capacity Λ. In addition, it is

0<A2 < 1, (38)

due to (17), and the components of the equilibrium point in
E2 are positive.

From (36), we have the characteristical equation as
follows:

λm α1+α2( ) − λmα2βP A1 A2 + 1( − 1(  +
βPδ

2A1

μΛ 1−A1( 
� 0.

(39)

To be LAS of E2, it should be that all roots λi for i �

1, 2, . . . , m(α1 + α2) found from the (39) satisfy the in-
equalities |arg(λi)|> (π/2m) in (9).

Proposition is proved. □

Corollary 1. Equation (39) can be examined in more detail
as shown below. (is equation can be rewritten by De Moivre
formulas such that

λ � rcisθ � cos θ + i sin θ,

λmα1 � r
mα1cismα1θ,

λmα2 � r
mα2cismα2θ,

(40)

where r ∈ R+, angle θ ∈ [0, 2π), and i �
���
−1

√
. By (40), (39)

transforms to

r
m α1+α2( )cism α1 + α2( θ− βP A1 A2 + 1( − 1( r

mα2cismα2θ 

+
βPδ

2A1

μΛ 1−A1( 
� 0,

(41)

and so,

r
m α1+α2( ) cosm α1 + α2( θ− βP A1 A2 + 1( − 1( r

mα2 cosmα2θ

+
βPδ

2A1

μΛ 1−A1( 
 + ir

m α1+α2( ) sinm α1 + α2( θ

− βP A1 A2 + 1( − 1( r
mα2 sinmα2θ � 0.

(42)

By arranging (42), there is the following system:

r
m α1+α2( ) sinm α1 + α2( θ − βP A1 A2 + 1( − 1( r

mα2

· sinmα2θ � 0,

r
m α1+α2( ) cosm α1 + α2( θ− βP A1 A2 + 1( − 1( r

mα2

· cosmα2θ +
βPδ

2A1

μΛ 1−A1( 
� 0,

(43)

and so,

sinm α1 + α2( θ− βP A1 A2 + 1( − 1( r
−mα1 sinmα2θ � 0,

cosm α1 + α2( θ− βP A1 A2 + 1( − 1( r
−mα1 cosmα2θ

+
βPδ

2A1

μΛ 1−A1( 
r
−m α1+α2( ) � 0.

(44)

From the first equation in system (44), we have found

r �
βP A1 A2 + 1( − 1( sinmα2θ

sinm α1 + α2( θ
 

1/mα1
. (45)

By substituting (45) in the second equation in (44), it is
found

sinmα2θ( 
α2/α1( ) sinmα1θ

sinm α1 + α2( θ( 
1+ α2/α1( )( )

�
βPδ

2A1 / μΛ 1−A1( ( 

βP A1 A2 + 1( − 1( ( 
1+ α2/α1( )( )

.

(46)

Consequently, if the angles θi for i � 1, 2, . . . , m(α1 + α2)
obtained from (46) satisfy Routh–Hurwitz stability criteria
((π/2)< θ< π) or the condition (9) (|θ|> (π/2m)), then E2 is
LAS.

For equilibria of system (16), the conditions found for LAS
and biological existence are summarized in Table 2.

Corollary 2. E1 is an unstable point, when E2 exists bi-
ologically.(erefore, these equilibrium points cannot be stable
when together. Similarly, E2 is biologically meaningless, when
E1 is LAS. (ese circumstances appeared are also seen in
Table 2.
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Corollary 3. Let us consider the special case of α1 � α2 � α
for E2. In this case, we have Remark 4. (e characteristical
equation obtained from Det(J(E2)− λI2) � 0 is

λ2 − λβP A1 A2 + 1( − 1(  +
βPδ

2A1

μΛ 1−A1( 
� 0. (47)

(e conditions for LAS of the equilibrium point E2 are
either Routh–Hurwitz stability conditions.

A1 A2 + 1( − 1< 0, (48)

due to (37) and (38), or the conditions
A1 A2 + 1( − 1( > 0,

4
βPδ

2A1

μΛ 1−A1( 
> A1 A2 + 1( − 1( 

2
,

tan−1

��������������������������������������

4 βPδ
2A1 / μΛ 1−A1( (  − A1 A2 + 1( − 1( 

2


− A1 A2 + 1( − 1( ( 
⎛⎜⎜⎝ ⎞⎟⎟⎠





>
απ
2

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(49)

In addition that, by considering equation (46), there may
be found a similar condition for stability of this point. In this
sense, it is

θ �
1

2mα
cos−1

βP A1 A2 + 1( − 1( ( 
2

2 δ2A1 / μΛ 1−A1( (  
− 1⎛⎝ ⎞⎠, (50)

by formulas of half angle. (ereby, the LAS condition of E2
is

cos−1
βP A1 A2 + 1( − 1( ( 

2

2 δ2A1 / μΛ 1−A1( (  
− 1⎛⎝ ⎞⎠




> πα, (51)

where −1≤ (βP((A1(A2 + 1)− 1))2/2((δ2A1)/(μΛ(1−
A1))))− 1≤ 1. Corollary 3 is summarized in Table 3.

4. Numerical Analysis for Model

/e proposed model in this study summarizes the general
dynamics of the pathogen-immune system. /e immune
system cells described herein are memory T cells specially
produced by the host against the pathogen. Hence, the
proposed model is suitable for modeling of diseases such
as chronic infections or tumors in which the nonspecific

immune system cells of the host at the beginning of the
disease have failed to destroy the pathogen.

/e conditions found in Table 2 have been supported by
numerical studies shown below. In this section, the time-
dependent sizes of the tumor and memory T cells for cancer
tried to be estimated by giving the different values to the
parameters in the proposed model. /e reason for this is to
be able to obtain different scenarios and to better demon-
strate the results of qualitative analysis. /e values of pa-
rameters used in system (16) are shown in Table 4.

/e values calculated by Table 4 are given in Table 5.
/rough the values in the first columns of Table 4, the

stability of the equilibrium point E1(1, 0), where the tumor
exists and it approaches its carrying capacity, is obtained as
shown in Figure 2. /is happens within at least 200 days.

When the values in the second columns of Table 4 are
used, a situation where the system behaviour is limit cycle
and E2(P∗, T∗) is an unstable point is obtained as shown in
Figure 3.

Finally, let us consider the third column in Table 4. In
here, P∗ for the tumor has a value of 0.5 and T∗ for memory
T cells has a value of 0.81. /is occurs in at least 100 days as
seen in Figure 4. /erefore, these two types of cells stay
permanently in the host.

5. Conclusions

In this study, the mathematical model examining the changes
in the pathogen population size under pressure of specific
immune system response in case of cancer or chronic in-
fection has been constructed by the FODE system with multi-
orders. According to the results of analysis of model, the
pathogen causing disease never disappears in host unless an
additional treatment is provided, since the disease is con-
tinued by a pathogen, and the free-disease equilibrium point
E0(0, 0) is an unstable point. /is case is very suitable for the
presumed diseases in the proposed model.

When the existence condition of E2(P∗, T∗) and the
stability condition of E1(Λ, 0) in Table 2 is rearranged, then

δ <
μΛ

1 + ]Λ
,

δ >
μΛ

1 + ]Λ
,

(52)

is obtained, respectively. /e term (μΛ/(1 + ]Λ)) is the rate
of growth of the memory T cells when the tumor reaches

Table 2: LAS and biological existence conditions for the equilibria of system (16).

Equilibrium
points

Biological existence
conditions LAS conditions

E0(0, 0) Always exists Unstable point
E1(Λ, 0) Always exists (δ/(μ− ]δ))>Λ

E2(P∗, T∗) (δ/(μ− ]δ)) >Λ

For i � 1, 2, . . . , m(α1 + α2), either the eigenvalues λi obtained from the characteristic
equation λm(α1+α2) − λmα2βP(A1(A2 + 1)− 1) + ((βPδ

2A1)/(μΛ(1−A1))) � 0 satisfy
|arg(λ)|> (1/m)(π/2) or the angles θi obtained from the equation

(((sinmα2θ)(α2/α1) sinmα1θ)/((sinm(α1 + α2)θ)(1+(α2/α1)))) �

(βPδ
2A1/μΛ(1−A1))/(βP(A1(A2 + 1)− 1))(1+(α2/α1)) satisfy |θi|> (π/2m)

where (P∗, T∗) and (A1, A2) are defined in (19) and (24), respectively.
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Table 5: /e values calculated from Table 4 according to Table 2.

Expressions Terms
Values

For Figure 2 For Figure 3 For Figure 4
Equilibrium point E1 E1(Λ, 0) E1(1, 0) E1(10, 0) E1(5, 0)

Stability condition of E1 (δ/μ− ]δ)>Λ 10> 1 (E1 is LAS) 0.50< 10 (E1 is unstable) 0.50< 5 (E1 is unstable)

Equilibrium point E2

E2(P∗ � δ/(μ− ]δ),

T∗ � βP(1− (P∗/Λ))/
(c/(1 + aP∗)))

E2(10,−16.20)

(biologically
meaningless)

E2(0.50, 1.71) E2(0.50, 0.81)

Parameter A1 (1− (P∗/Λ)) — 0.95 0.90
Parameter A2 (aP∗/aP∗ + 1) — 0.66667 0.3333
Least common multiple of
order’s denominator m — 5 5

Characteristical equation
of eigenvalues for E2

λm(α1+α2) − λmα2βP

(A1(A2 + 1)− 1) +

((βPδ
2A1)/(μΛ(1−A1))) � 0

— λ7 − 1.40λ3 + 1.1692 � 0 λ7 − 0.48λ3 + 1.1077 � 0

/e eigenvalues for E2 — —

λ1 ≈ 0.9614 + 0.2454i

λ2 ≈ 0.9614− 0.2454i

λ3 ≈ 0.1199 + 1.1495i

λ4 ≈ 0.1199− 1.1495i

λ5 ≈ −1.2004
λ6 ≈ −0.4812 + 0.7135i

λ7 ≈ −0.4812− 0.7135i

λ1 ≈ 0.9287 + 0.3757i

λ2 ≈ 0.9287− 0.3757i

λ3 ≈ 0.1852 + 1.0410i

λ4 ≈ 0.1852− 1.0410i

λ5 ≈ −1.0798
λ6 ≈ −0.5741 + 0.7646i

λ7 ≈ −0.5741− 0.7646i

Angle of eigenvalues for
E2

θ � arg(λ) —

θ1 ≈ 14.3191∘,
θ2 ≈ −14.3191∘,
θ3 ≈ 84.0452∘,
θ4 ≈ −84.0452∘,

θ5 ≈ 180∘,
θ6 ≈ 123.997∘,
θ7 ≈ −123.997∘

θ1 ≈ 22.0255∘,
θ2 ≈ −22.0255∘,
θ3 ≈ 79.9123∘,
θ4 ≈ −79.9123∘,

θ5 ≈ 180∘,
θ6 ≈ 126.901∘,
θ7 ≈ −126.901∘

Stability condition of E2 |θi|> (π/2m) — E2 is an unstable point,
since |θ1|, |θ2| ≈ 14.31∘ < 18∘.

E2 is LAS,
since

|θ1|, |θ2|, . . . , |θ7|> 18∘.
Initial conditions (P0, T0) (0.3, 0.01) (0.3, 0.01) (0.3, 0.01)

Table 4: /e interpretation and considered values of the parameters in the proposed model.

Parameters Descriptions Units
Values

For Figure 2 For Figure 3 For Figure 4
βP Growth rate of the tumor Day−1 2.4 2.4 2.4
Λ Carrying capacity of the tumor Cells 1 10 5
c Maximum killing rate of the tumor by immune cells Day−1 4 4 4
a Immune cells for half maximum effect on the tumor Cell−1·day−1 0.2 4 1
μ /e effect of capture rate of immune cells Day−1 3.98 3.9 3.9

] /e tumor population size at which the growth rate of
immune cells is half its maximum Cell−1·day−1 1.9 1.9 1.9

δ Natural death rate of immune cells Day−1 1.99 1 1

α1 Fractional-order of the first equation in (16) A rational number
in the interval (0, 1|

0.9 0.8 0.8

α2 Fractional-order of the second equation in (16) A rational number
in the interval (0, 1|

0.75 0.6 0.6

Table 3: /e LAS conditions for E2(P∗, T∗), in case of α1 � α2 � α.

LAS conditions of E2

A1(A2 + 1)− 1< 0 (from Routh–Hurwitz criteria in (14))
Or

(A1(A2 + 1)− 1)> 0,

4((βPδ
2A1)/(μΛ(1−A1)))> (A1(A2 + 1)− 1)2,

|tan−1(4(βPδ
2A1)/(μΛ(1−A1))− (A1(A2 + 1)− 1)2)/(−(A1(A2 + 1)− 1))|> (απ/2),

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
(from |arg(λi)|> (απ/2) in (15))

Or
|cos−1((βP((A1(A2 + 1)− 1))2/2(δ2A1/μΛ(1−A1)))− 1)|> πα (from (46))
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its carrying capacity Λ. /e parameter δ is the natural death
rate of memory T cells. Accordingly, the value (((μΛ)/
(1 + ]Λ))− δ) can be interpreted as the proliferative power
of the memory T cells against the tumor. When this value is
negative as seen in Figure 2, the memory T cells cannot
reproduced as enough, and consequently, it can be men-
tioned from the stability of the equilibrium point E1, that
only the tumor exists, and the tumor approaches its car-
rying capacity. Let us consider that this value is positive,
and some additional conditions in Table 2 are met. As can
be seen in Figure 4, it can be said that the positive equi-
librium point E2, in which both tumor and memory T cells
exist, is stable.

In numerical studies, we tried to estimate the timing and
magnitude of the development of the tumor. If treatment

procedure for the individual has not been applied, then
the results obtained from the proposed model emphasize the
fact that either the tumor reaches its maximum size and
the memory Tcells collapse or the tumor andmemory Tcells
continue to stay together in the host. In the last case
mentioned above that the memory T cells of the individual
does not collapse, the tumor maintains its presence in the
host in a limited manner. /e results obtained from analysis
are quite consistent with the scenarios of real situations
related to the tumor.
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