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Background: Glutamine (Gln) metabolism has been reported to play an essential

role in cancer. However, a comprehensive analysis of its role in lung

adenocarcinoma is still unavailable. This study established a novel system of

quantification of Gln metabolism to predict the prognosis and immunotherapy

efficacy in lung cancer. Further, the Gln metabolism in tumor microenvironment

(TME) was characterized and the Glnmetabolism-related genes were identified for

targeted therapy.

Methods: We comprehensively evaluated the patterns of Gln metabolism in

513 patients diagnosed with lung adenocarcinoma (LUAD) based on 73 Gln

metabolism-related genes. Based on differentially expressed genes (DEGs), a

risk model was constructed using Cox regression and Lasso regression analysis.

The prognostic efficacy of the model was validated using an individual LUAD

cohort form Shandong Provincial Hospital, an integrated LUAD cohort from

GEO and pan-cancer cohorts from TCGA databases. Five independent

immunotherapy cohorts were used to validate the model performance in

predicting immunotherapy efficacy. Next, a series of single-cell sequencing

analyses were used to characterize Gln metabolism in TME. Finally, single-cell

sequencing analysis, transcriptome sequencing, and a series of in vitro

experiments were used to explore the role of EPHB2 in LUAD.

Results: Patients with LUAD were eventually divided into low- and high-risk

groups. Patients in low-risk group were characterized by low levels of Gln

metabolism, survival advantage, “hot” immune phenotype and benefit from

immunotherapy. Compared with other cells, tumor cells in TME exhibited the

most active Gln metabolism. Among immune cells, tumor-infiltrating T cells
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exhibited the most active levels of Gln metabolism, especially CD8 T cell

exhaustion and Treg suppression. EPHB2, a key gene in the model, was shown

to promote LUAD cell proliferation, invasion and migration, and regulated the

Gln metabolic pathway. Finally, we found that EPHB2 was highly expressed in

macrophages, especially M2 macrophages. It may be involved in the M2

polarization of macrophages and mediate the negative regulation of M2

macrophages in NK cells.

Conclusion: This study revealed that the Gln metabolism-based model played

a significant role in predicting prognosis and immunotherapy efficacy in lung

cancer. We further characterized the Gln metabolism of TME and investigated

the Gln metabolism-related gene EPHB2 to provide a theoretical framework

for anti-tumor strategy targeting Gln metabolism.
KEYWORDS

lung adenocarcinoma, glutamine metabolism, prognosis, tumor microenvironment,
immunotherapy, EphB2
Introduction

Lung cancer remains the leading cause of cancer-related

death worldwide (1). Non-small cell lung cancer (NSCLC)

accounts for 85% of lung cancers, with lung adenocarcinoma

(LUAD) constituting half of all cases of NSCLC (2).

Notwithstanding the advances in treatment strategies, the five-

year survival rate of patients with LUAD remains limited. In

recent years, immunotherapy showed significant efficacy in

LUAD, while drug resistance and recurrence due to tumor

heterogeneity still limit the efficacy of immunotherapy (3, 4).
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Therefore, it is essential to comprehensively investigate the

mechanisms underlying the differential response to

immunotherapy and develop tools to predict prognosis and

immunotherapy efficacy.

Recent inves t iga t ions revea led that oncogenic

transformation induces a well-characterized metabolic

phenotype in tumor cells, which in turn affects the tumor

environment (TME) (5). TME is composed of distinct cell

populations in a complex matrix, which is characterized by

inefficiencies of oxygen and nutrition delivery due to limited

or poorly differentiated vasculature. In order to meet the energy

demands, rapidly proliferating cancer cells compete with

immune cells for nutrients required to manifest anti-tumor

effects, thus creating an immune suppressive environment. In

this harsh TME, infiltrating immune cells are forced to undergo

relevant metabolic adaptations, which in turn disrupt the anti-

tumor effects of immune cells (6, 7). Therefore, therapeutic

strategies that target tumor metabolism and thus modulate or

improve immune cell metabolism to enhance inflammation are

extremely promising. However, tumor cells share a large number

of metabolic pathways with inflammatory immune cells, which

makes metabolic blocking strategies often counterproductive (8).

Therefore, targeting the appropriate metabolic pathway to block

tumor metabolism and activate inflammatory immunity is

essential to improve immunotherapy. Targeting Gln

metabolism is one of the optimal choices available.

As the most abundant amino acid in circulation, glutamine

(Gln) is rapidly consumed by cultured tumor cells (9). Gln is

commonly used to maintain TCA flux in cellular aerobic

glycolysis, or as a source of citrate for lipid synthesis in

reductive carboxylation. Besides, glutaminolysis also promotes
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survival of proliferating cells by suppressing oxidative stress and

maintaining the integrity of mitochondrial membrane (10). Gln

is an energy source required by both tumor and immune cells.

However, inflammatory antitumor immune cells do not appear

to rely on or even reject Gln metabolism, which is particularly

evident in macrophages (11, 12). Compared with naïve

macrophages, M2 macrophages exhibit strong dependence on

Gln, while pro-inflammatory M1 macrophages can be induced

by suppressed Gln metabolism. Therefore, Gln metabolism

represents a potential target to convert tumor-associated

macrophages (TAMs) from M2 to M1 phenotype, thereby

enhancing the anti-tumor inflammatory immune response

(13). In addition, Gln metabolism is also involved in the

differentiation of Th1 cells and the activation of effector T cells

(13, 14). These findings suggest that targeting Gln metabolism

can potentially remodel TME and improve immunotherapy

efficacy. In fact, recent studies reported that extensive blockade

of Gln metabolism significantly improves the anti-tumor effect

of anti-PD-1, accompanied by enhanced cytotoxic function of

effector T cells due to metabolic reprogramming (15). In LUAD,

although targeting Gln metabolism in combination with

immunotherapy is extremely promising, the landscape of Gln

metabolism in TME is still not fully known. Therefore, we

performed this study for a systematic analysis of Gln

metabolism and immunotherapy in LUAD.

Our study comprehensively evaluated the expression of Gln

metabolism-related genes. Based on these genes, 514 patients

with LUAD from The Cancer Genome Atlas (TCGA) were

clustered using a consensus clustering algorithm and

eventually a scoring system was constructed for predicting

overall survival (OS) and immunotherapy efficacy. An

integrated Gene-Expression Omnibus (GEO) cohort including

719 patients with LUAD and 32 cohorts of pan-cancer from

TCGA were used to validate the predictive performance of the

risk model. Five independent immunotherapy cohorts were

identified to validate the predictive performance for

immunotherapy efficacy. Multiple single-cell sequencing data

were used to describe the Gln metabolism landscape of various

cell types in TME. Finally, using in vitro experiments based on

second-generation sequencing and public single-cell sequencing

analysis, we investigated the regulation of biological behavior

and signaling pathways of LUAD cells by EPHB2, a key gene

related to Gln metabolism, which is also significantly enriched

and plays an essential role in M2 macrophages.
Materials and methods

Data source and preprocessing

Public gene expression data (fragments per kilobase million,

FPKM) and full clinical annotations were respectively retrieved

from TCGA (https://cancergenome.nih.gov/) and GEO (https://
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www.ncbi.nlm.nih.gov/geo/) databases. The FPKM values of

LUAD were transformed into transcripts per kilobase million

(TPM). The training cohort included 513 patients with LUAD

from TCGA while 6 eligible LUAD cohorts (GSE13213,

GSE37745, GSE31210, GSE3141, GSE30219, GSE50081) from

GEO dataset represented the validating cohort of our study,

which consisted of 719 patients with LUAD. Pan-cancer gene

expression data were extracted from TCGA for further validation.

An individual cohort with 33 LUAD specimens from

Shandong Provincial Hospital was set as a validating cohort.

Besides, 22 tumor specimens and 11 normal specimens from

Shandong Provincial Hospital were used to perform differential

expression analysis and survival analysis of EPHB2.
Consensus molecular clustering based
on Gln metabolism-related genes

73 Gln metabolism-related genes were extracted from

Molecular Signatures Database (MSigDB, http://www.gsea-

msigdb.org/gsea/msigdb/index.jsp). These genes are listed in

Supplementary Materials. A consensus clustering algorithm

was used to classify LUAD cohorts into distinct GlnClusters

and test the corresponding stability based on survival-related

Gln genes. ConsensuClusterPlus package was used to perform

the above steps and 1000 repetitions were conducted to

guarantee the corresponding stability.
Identification of DEGs and construction
of geneClusters

Differentially expressed genes (DEGs) among 3 GlnClusters

were identified using “limma” package in R with an adjusted P

value< 0.001 and a |logFC|>1. Survival-related DEGs were

identified via univariate cox regression analysis, and patients

with LUAD were classified into distinct geneClusters based on

selected DEGs using R package “ConsensuClusterPlus”.
Construction and validation of a
prognostic risk model

Survival-related DEGs were sequentially subjected to Lasso

Cox regression analysis and multivariate Cox regression

analysis. Ten genes were finally identified and involved in the

construction of the prognostic risk model, including EPHB2,

CAV2, RTN2, SCPEP1, UNC5D, FURIN, PITPNC1, CH25H,

RGS20 and TSPAN11. The risk score was calculated following

the formula:

Risk score =o(Expi*Coefi)
frontiersin.org

https://cancergenome.nih.gov/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
http://www.gsea-msigdb.org/gsea/msigdb/index.jsp
http://www.gsea-msigdb.org/gsea/msigdb/index.jsp
https://doi.org/10.3389/fimmu.2022.960738
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Liu et al. 10.3389/fimmu.2022.960738
Coefi and Expi denote the risk coefficient and gene

expression, respectively. Based on the median risk score of

training cohort, patients from training and validating cohorts

were divided into low-risk and high-risk groups, respectively.

Kaplan–Meier survival analysis was followed by the generation

of receiver operating characteristic (ROC) curves involving low-

and high-risk groups.
Enrichment analysis and
functional annotation

Gene Set Variation Analysis (GSVA) enrichment was

performed to explore the heterogeneity of various biological

processes using “GSVA” package. Hallmark gene sets

“h.all.v7.4.symbols.gmt” extracted from MSigDB database were

used for GSVA. R package “ClusterProfiler” was applied to

perform functional annotation. Single sample gene set

enrichment analysis (ssGSEA) was performed to calculate the

score of Gln metabolism based on 73 previously extracted Gln

metabolism-related genes.
Mutation and drug
susceptibility analysis

The mutation annotation format (MAF) from the TCGA

database was generated using R package “maftools” and the

somatic mutations of LUAD in low- and high-risk groups were

plotted. The tumor mutation burden (TMB) of each patient with

LUAD in the TCGA cohort was also calculated. Drug sensitivity

analysis was performed with R package “pRRophetic”. A

parliament plot was developed to demonstrate drug sensitivity

of low- and high-risk groups using the website HIPLOT (https://

hiplot.com.cn/).
TME landscape analyses

Single sample gene set enrichment analysis (ssGSEA) was

performed to calculate and compare the enrichment scores of

infiltrating immune cells and immune function (16, 17).

Immune score, ESTIMATE score and stromal score were

calculated using the ESTIMATE algorithm (18). Data of T cell

dysfunction, T cell exclusion and TIDE scores were obtained

from TIDE website (http://tide.dfci.harvard.edu/). A correlation

heatmap of 10 genes in the risk model and 4 panels of immune

function were also downloaded from the TIDE website (19).

Immunophenoscore (IPS) of patients in TCGA was obtained

from The Cancer Immunome Atlas (https://tcia.at/).
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Immunotherapy datasets

Five immunotherapeutic cohorts were used to validate the

prediction of immunotherapy efficacy using the risk model:

melanoma treated with adoptive T cell therapy (ACT)

(GSE100797) (20); melanoma treated with pembrolizumab, an

anti-PD-1 antibody (GSE78220) (21); melanoma treated with

anti-CTLA4 and anti-PD1 therapy (GSE91061) (22); NSCLC

treated with nivolumab or pembrolizumab, an anti-PD-1

antibody (GSE126044) (23); and advanced urothelial cancer

treated with atezolizumab, an anti-PD-L1 antibody

(IMvigor210 cohort) (24). The response and benefit of TCGA

cohort were calculated based on the TIDE website (http://tide.

dfci.harvard.edu/) by integrating TIDE score, INFG, MSI score,

CD274, Merck18, CD8, MDSC, CAF and TAM M2.
Establishment and validation of a
nomogram scoring system

A predictive nomogram was constructed using R package

“rms”, which consisted of risk, age and stage. The total score of

each patient was calculated based on each variable matched

score. The calibration plot was used to assess the predictive value

between the predicted 1-, 3-, and 5-year OS rates and the actual

results observed. Time-dependent ROC curves were plotted to

assess the prediction of 1-, 3-, and 5-year OS by the nomogram.
Single-cell RNA-seq analysis and online
website analysis

GSE111907 was used to evaluate the degree of Gln

metabolism in malignant, pan-immune cells, endothelial and

fibroblast cells. GSE117570, GSE131907, GSE99254 and

GSE127465 were analyzed in the website scTIME Portal

(http://sctime.sklehabc.com/unicellular/home) (25). The degree

of Gln metabolism was calculated using ssGSEA based on 73

identified Gln metabolism-related genes.

The differential expression analysis of 10 pan-cancer genes

was performed online at Gene Expression Profiling Interactive

Analysis (GEPIA, http://gepia.cancer-pku.cn/).
Transcriptome sequencing

Transcriptome sequencing was performed in EPHB2-siRNA

treated PC-9 cells using the Illumina NovaSeq platform with

Annoroad Gene Technology. The differentially expressed genes

were identified with FC > 2 and P< 0.05.
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RNA extracting and real-time PCR

Following manufacturer’s protocol, the total RNA of LUAD

specimens or cells was extracted using the AG RNAex Pro

Reagent (Accurate Biotechnology (Hunan) Co., Ltd China). The

cDNA was synthesized after reverse transcription using Evo M-

MLVRT Master Mix kit (Accurate Biotechnology (Hunan) Co.,

Ltd China). The relative gene expression was detected using the

SYBR Premix Ex Tap kit (Accurate Biotechnology (Hunan)Co.,

Ltd China) and normalized to the expression using 18S. The

primers are listed in Supplementary Table 1.
Cell culture and reagents

Human PC-9, A549 and THP-1 cell lines were purchased

from Procell Life Science & Technology Co., Ltd. PC-9 and

THP-1 cells were maintained in RPMI 1640 (Gibco)

supplemented with 10% FBS, and A549 cel ls were

maintained in F12K (Gibco) supplemented with 10% FBS.

The cell lines were cultured at 37°C in a humidified

incubator containing 5% CO2.
EPHB2 knockdown

PC-9 cells were plated at a density of 3*105 per 60 mm dish.

After 24 h culture, the medium was changed to fresh medium.

The PC-9 cells were transfected with EPHB2-short interfering

RNAs (siRNAs) or control-siRNA purchased from

TransheepBio (Shanghai, China), accompanied by jetPRIME®

transfection reagent (PolyPlus transfection, Illkirch, France).

The transfected cells were cultured for at least 24 h in 10%

FBS RPMI 1640 medium. The sequences of the EPHB2 siRNA

were as follows: 5’GGGAAAUACAAGGAAUAUU3’ (si1),

5’CGCUUUCUAGAGGACGAUA3’ (si2), 5’GGAGUUU

GCCAAGGAAAUU3’ (si3) and 5’GAUGAUGAUGGAGGA

CAUU3’ (si4).
Proliferation assay

Cells were seeded in 96-well plates at a density of 1500 cells

per well. After at least 6 hours, the first dish was fixed with 10%

cold trichloroacetic acid for at least 24 hours, and the other

plates were fixed every 24 hours. After washing and drying, the

plates were stained with Sulforhodamine B sodium salt (SRB)

(Sigma, USA) for 20 minutes and washed with 1% (vol/vol)

acetic acid. After drying, 150 µL of 10 mmol/L Tris was added

and the absorbance was measured using the microplate reader

(Thermo Fisher, USA) at 562 nm. The results were analyzed with

GraphPad Prism 8.0.2.
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Colony formation assay

Cells were seeded in 6-well plates at a density of 500 cells per

well and cultured at 37°C for two weeks. Subsequently, the plates

were washed with phosphate-buffered saline (PBS) and fixed with

4% paraformaldehyde for 30 minutes. Finally, 0.1% crystal violet

was used to stain the plates. The colonies were counted with ImageJ

software (Wayne Rasband, National Institutes of Health, USA).
Wound healing assay

Cells were seeded in 12-well plates and monolayers were

scratched with a pipette tip until 95% confluence. The cells were

subsequently photographed every 12 hours and the migrated

areas were calculated using ImageJ software.
Transwell assay

Cells (4×104) were seeded in the upper chamber in RPMI

1640 without FBS. The lower chamber was filled with 600 µL of

RPMI 1640 medium containing 20% FBS. After 24 hours of

incubation, the cells were fixed and stained with crystal violet.

The cells in the upper chamber were removed, the migrated cells

were photographed and counted with ImageJ software.
THP-1 polarization

THP-1 cells were seed into 6-well plates and treat with PMA

(Sigma-Aldrich, St. Louis, MO, USA) for 48 h. Then cells were

treated with IL-4 (20 ng/ml; PeproTech) for 24h to induce M2-

phenotype polarization.
Immunofluorescence (IF)

IF assay was implemented according to the methods

described previously (26). The primary antibodies included

EPHB2 (1:100, 2D12C6, Santa Cruz Biotechnology) and

CD206 (1:100,24595, Cell Signaling Technology).
Western blot analysis

Protein samples were dissolved in lithium dodecyl sulfate

(LDS) sample buffer (Invitrogen). Equivalent amounts of total

protein extract were separated on 10% SDS-PAGE gels (90 V for

30 min and 120 V for 60 min) and transferred to polyvinylidene

fluoride membranes. The transfer was carried out at 100 V for 2 h

using a Bio-Rad transfer apparatus. Membranes were then blocked
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for 1 h at room temperature in 5% BSA solution. Appropriate

primary antibody was incubated overnight at 4°C. The primary

antibodies were listed as followed: Akt, p-Akt (Ser473), ERK1/2 and

p-ERK1/2 (Thr202/Tyr204) (Cell Signaling Technology, USA:

1:1000); GAPDH and EPHB2 (Santa Cruz, USA: 1:1000).
Statistical analysis

The statistical analysis of this study was performed using R-

4.1.2 software. For quantitative data, the statistical significance of

normally distributed variables was estimated by the Student’s t-

test, and non-normally distributed variables were analyzed using

the Wilcoxon rank sum test. Comparisons between more than

two groups were made using the Kruskal-Wallis test and one-

way analysis of variance as non-parametric and parametric

methods, respectively. Kaplan-Meier survival analysis was

performed with the R package “Survminer”. Statistical

significance was set as P< 0.05.
Results

Landscape of genetic variation of Gln
metabolism-related genes in LUAD

The overall design of our study is shown in the flow chart

(Figure 1). Seventy-three Gln metabolism genes were identified

from MSigDB and published articles. Based on univariate Cox

regression analysis, 21 survival-related Gln metabolism genes

were selected for further analyses (Figure 2A). A waterfall chart

was plotted to show the somatic mutations of the 21 genes and

the highest rate of somatic mutations in CPS1 (Figure 2B). The

location of copy number variations (CNV) on chromosomes is

shown in Figure 2C. The frequency of CNV amplification and

deletion is displayed in Figure 2D. Differential expression

analysis revealed that 13 genes were significantly upregulated

in tumor, while 4 genes were downregulated (Figure 2E). The

correlation network showed expression correlation between the

21 survival-related genes (Figure 2F).
Construction of distinct GlnClusters

Based on survival-related Gln metabolism genes, 513

patients with LUAD from TCGA were stratified into 4 distinct

patterns, which were defined as GlnClusters (Figure 3A). PCA

revealed significant differences in Gln metabolism genes between

the 4 clusters (Figure 3B). Survival analysis revealed improved

prognosis of patients in cluster C4 and poor overall survival in

cluster C1 (Figure 3C). Most of the Gln metabolism genes were

significantly upregulated in clusters C1 and C2, followed by

cluster C3, which implied relatively active Gln metabolism.
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Alternatively, cluster C4 showed reduced Gln metabolism with

widespread low expression of Gln metabolism-related

genes (Figure 3D).

We also analyzed the infiltrating immune cells and immune-

related functions in different clusters. Interestingly, the

abundance of most infiltrating immune cells gradually

increased from clusters C1 to C4, which was inversely

proportional to the Gln metabolic activity, including various

DCs (aDCs, DCs, iDCs and pDCs), mast cells, neutrophils, T

helper cells and TILs (Figure 3E). Simultaneously, APC co-

stimulation, HLA, T cell co-stimulation and type II IFN response

showed trends suggesting highly active antigen presentation and

antitumor immunity (Figure 3F).
Construction of geneClusters based
on DEGs

The 237 DEGs among 4 GlnClusters were screened out (P

value< 0.001, |logFC|>1) and intersected with GEO validating

cohort. Univariate Cox regression analysis of these DEGs was

performed and 35 survival-related DEGs were identified for

further analysis (Figure 4A). Based on the 35 DEGs, 513

patients were divided into 3 geneClusters. Compared with

geneClusters B and C, the geneCluster A exhibited significant

survival disadvantage (Figure 4B). PCA analysis revealed

obvious differences in dimensions between distinct

geneClusters (Figure 4C). A heatmap illustrated that the DEGs

were significantly different between distinct geneClusters, and

most DEGs were upregulated in geneCluster A (Figure 4D).

Corresponding to the survival disadvantage, geneCluster A also

exhibited a lower abundance of most infiltrating immune cells

and immune functions (Figures 4E, F). In summary, geneCluster

A can be defined as immune “cold” phenotype.
Development and validation of a
risk model

To construct a more convenient scoring model for clinical

prediction, we performed Lasso regression analysis of the identified

35 survival-related DEGs and 18 Gln metabolism-related genes

remained based on the minimum partial likelihood deviance

(Figure 5A). Subsequently, we performed multivariate Cox

regression analysis of the 18 genes based on Akaike information

criterion (AIC) value and 10 Gln metabolism-related genes were

finally obtained, including EPHB2, CAV2, RTN2, SCPEP1,

UNC5D, FURIN, PITPNC1, CH25H, RGS20 and TSPAN11

(Figure 5B). Based on the results of multivariate Cox regression

analysis, a risk model was constructed based on the formula:

Risk score =o(Expi*coefi)
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Coefi and Expi denote the risk coefficient and gene

expression, respectively.

Based on the median of risk score in training cohort, patients

with LUAD from training (TCGA) and validating (integrated

GEO) cohorts were divided into low- and high-risk groups,

respectively. A heatmap demonstrated a high abundance of Gln

metabolism-related genes in the low-risk group, suggesting the

activation of Gln metabolism (Figure 5C). The Kaplan–Meier

survival curves demonstrated a significant survival advantage of

patients in the low-risk group compared with patients in the

high-risk group in training (Figure 5D) and validating cohorts

(Figure 5F), respectively. The area under the ROC curves

(AUCs) were 0.714, 0.705 and 0.685 in TCGA training cohort
Frontiers in Immunology 07
and 0.701, 0.674 and 0.662 in GEO validating cohort for

predicting 1-, 3-, 5-year survival times, respectively, which

revealed the excellent performance of the model in predicting

overall survival of patients with LUAD (Figures 5E,G). Besides,

an individual validating cohort with 33 LUAD patients from

Shandong Province Hospital was used to validate the risk model.

Consistently, patients in the low-risk group revealed a significant

survival advantage, compared with high-risk group (Figure 5H).

The ROC curves indicate the excellent performance of the risk

score in predicting prognosis (Figure 5I). Figure 5J illustrates the

distribution of patients diagnosed with LUAD in four

GlnClusters, three geneClusters and two risk groups.

Compared with GlnClusters C1, C2 and C3, patients in
FIGURE 1

Analysis workflow of this study.
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GlnCluster C4 exhibited significantly lower risk scores

(Figure 5K). Patients in geneCluster A exhibited the highest

risk scores, while patients in geneCluster B showed the lowest

risk score (Figure 5L).

The distribution of risk scores (Supplementary Figures 1A,

B), survival status (Supplementary Figures 1C, D) and gene

expression (Supplementary Figures 1E, F) in training and

validating cohorts are presented. PCA revealed discernible

dimensions between high- and low-risk groups in training and

validating cohorts, respectively (Supplementary Figures 1G, H).
TMB and drug susceptibility analysis

To investigate the correlation between risk score and TMB,

Spearman correlation analysis was performed and significant

positive correlation was found between risk score and TMB (R =

0.22, P< 0.001, Figure 6A). Patients in high-risk group had higher

levels of TMB than in low-risk group (Figure 6B). After integrating

TMB scores, patients with LUAD from TCGA were divided into

four groups. Survival analysis revealed that patients with high TMB

and low risk exhibited significant survival advantage, followed by

the group with high TMB + low risk and low TMB + high risk,

sequentially. The group with low TMB and high risk showed
Frontiers in Immunology 08
significant survival disadvantage (Figure 6C). The variation in the

distribution of somatic mutations between low- and high-risk

groups was investigated in the TCGA-LUAD cohort. Patients in

high-risk group displayed significantly higher frequencies of

somatic mutations compared with patients with low risk scores,

especially in TP53 (53% vs 34%), TTN (49% vs 32%), MUC16 (43%

vs 35%), RYR2 (40% vs 27%), CSMD3 (41% vs 26%) and LRP1B

(36% vs 21%) (Figures 6D, E). We further performed drug

sensitivity analysis to predict IC50 of 136 chemotherapy drugs

(Figure 6F). Our results revealed that 84 drugs had lower IC50

values in the high-risk group, indicating sensitivity. Alternatively,

patients in low-risk group were sensitive to 18 drugs. Together,

these results provide a standard of reference for treatment

stratification of patients with LUAD.
Distribution of Gln metabolism and
risk scores

To determine the correlation between risk score and clinical

characteristics, we evaluated the differences in risk score among

different subgroups based on survival status, stage and TNM

stage. Patients in alive, stage I, stage T1 and stage N0 exhibited

lower risk scores compared with other groups, while there was
A B

D E F

C

FIGURE 2

Genetic and transcriptional alterations of Gln metabolism regulators in LUAD. (A) Prognosis-related Gln metabolism regulators after uniCox
regression analysis. (B) 119 of the 561 LUAD patients showed genetic alterations of prognosis-related Gln metabolism regulators. (C) The
location of CNV alterations of prognosis-related Gln metabolism regulators on chromosomes. (D) CNV mutation was widespread in 21
prognosis-related Gln metabolism regulators. The column represented the alteration frequency. Deletion, green dot; Amplification, pink dot. (E)
Differential mRNA expression of prognosis-related Gln metabolism regulators between normal and tumor samples (*P < 0.05; **P < 0.01; ***P <
0.001). (F) Correlation network between prognosis-related Gln metabolism regulators.
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no difference in risk score across M stages (Figures 7A–E). To

further investigate the distribution of Gln metabolism, we

performed ssGSEA to calculate the value of Gln metabolism

based on 73 Gln-related genes identified. Similar to the risk

score, dead patients had higher levels of Gln metabolism

(Figure 7F). In addition, the level of Gln metabolism was

significantly and positively correlated with stages T, N and M,

with higher stage implying higher Gln metabolism (Figures 7G–

J). We next analyzed the differences in Gln metabolism between

low- and high-risk groups. The heatmap revealed significant

upregulation of prognostic Gln metabolism-related genes in the

high-risk group (Figure 7K). Consistently, patients with higher

risk scores revealed higher levels of Gln metabolism (Figure 7L).

In conclusion, Gln metabolism and risk scores were significantly

correlated, and both were positively associated with malignant

progression of LUAD.
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Evaluation of TME and prediction of
immunotherapy efficacy in high- and
low-risk groups

To further investigate the functional characteristics, we

performed GSVA enrichment analysis of the two groups

(Figure 8A). The results showed that bile acid metabolism was

significantly upregulated in the low-risk group. Alternatively, the

KRAS signaling pathway was inhibited in the low-risk group. In

addition, various carcinogenic pathways were activated in the

high-risk group, suggesting a possible positive correlation with

Gln metabolism, such as TGF-b signaling, hypoxia, glycolysis,

EMT, PI3K-AKT-MTOR signaling, DNA repair, MYC signaling

and E2F targets.

To further explore the correlation between risk score and

TME, we analyzed the differential abundance of immune-
frontiersin.org
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FIGURE 3

Distinct Gln metabolism-related patterns. (A) Consensus clustering matrix for k = 4. (B) Principal component analysis (PCA) for the
transcriptome profiles of four clusters. (C) Survival analyses for four different clusters based on 513 LUAD patients from TCGA. (D) Heatmap of
prognosis-related Gln metabolism regulators in four clusters. (E) The abundance of tumor infiltrating immune cells in four clusters. (F) The
difference of immune functions between four clusters. "*” means that p < 0.05; “**” means that p < 0.01; "“***” means that p < 0.001; ns, no
significance.
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infiltrating cells and immune function to characterize the

landscape of TME. Various immune cells involved in antigen

presentation, processing and tumor killing were present at

higher levels of abundance in the low-risk group, such as

aDCs, B cells, DCs, iDCs, NK cells, T helper cells, Th1 cells

and TIL (Figure 8B). Correspondingly, the low-risk group

also showed active signaling of antigen recognition,

processing and presentation, and antitumor effects,

including APC co-stimulation, HLA, T cell co-stimulation

and type II IFN response (Figure 8C). Besides, the low-risk

group showed a higher expression of immune checkpoints,

revealing possible benefit from immune checkpoint inhibitor

(ICI) therapy. The risk score was also positively correlated

with other carcinogenic pathways, such as nucleotide excision

repair, DNA damage repair, mismatch repair and DNA

replication (Figure 8D). A low risk score was also
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significantly correlated with a high immune score and

ESTIMATE score, indicating increased abundance of

infiltrating immune cells (Figure 8E). In summary, the low-

risk group can be defined as a “hot” immune phenotype,

associated with highly infiltrated antitumor immune cells and

upregulated antitumor pathways.

To further investigate the correlation between risk score and

efficacy of immunotherapy, we calculated the TIDE score.

Patients with a low risk exhibited higher levels of T cell

dysfunction and a lower level of T cell exclusion and TIDE

score (Figure 8F). We further evaluated the association between

the expression of each gene and several immunotherapy-related

features, including T cell dysfunction, ICB response outcome,

phenotypes in genetic screens and cell types promoting T cell

exclusion (Figure 8G). Higher IPS was also exhibited by patients

in the low-risk group compared with those in the high-risk
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FIGURE 4

Construction of gene clusters based on DEGs. (A) Univariate cox regression analysis of DEGs. (B) Survival analyses for the three gene clusters
based on the prognosis-related DEGs. (C) PCA for the transcriptome profiles of three gene clusters. (D) Expression of prognosis-related DEGs in
three gene clusters. (E) The abundance of tumor infiltrating immune cells in three gene clusters. (F) The difference of immune functions
between three gene clusters. “**” means that p < 0.01; "“***” means that p < 0.001; ns, no significance.
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group, which indicated that patients with a low-risk score were

more sensitive to immunotherapy (Figures 8H–K). To fully

validate the accuracy of risk score in predicting the efficacy of

immunotherapy, multiple independent immunotherapy cohorts

in the published literature were used to validate immunotherapy

efficacy and prognosis. Melanoma treated with adoptive T cell

therapy (ACT) (Figures 9A–C), melanoma treated with

pembrolizumab, an anti-PD-1 antibody (Figures 9D–F),

melanoma treated with anti-CTLA4 and ant-PD1 therapy

(Figures 9G–I) , NSCLC treated with nivolumab or

pembrolizumab, an anti-PD-1 antibody (Figures 9J–L),

advanced urothelial cancer treated with atezolizumab, an anti-

PD-L1 antibody (Figures 9M–O) were used to validate the
Frontiers in Immunology 11
performance of risk score in predicting prognosis and efficacy

of immunotherapy. Patients with a low-risk score were more

sensitive to immunotherapy (Figures 9A, D, G , J, M). Further,

patients in the low-risk group had a significant survival

advantage compared with those in the high-risk group

(Figures 9B, E, H, K, N), and the predictive performance was

tested using ROC curves (Figures 9C, F, I, L, O). The response to

anti-PD1 and anti-CTLA4 therapy was calculated using the

TIDE website based on TCGA cohort (Figures 9P–S). Patients

in the low-risk group were established as responders to

immunotherapy (Figures 9P, Q). By contrast, patients in the

high-risk group were shown to be less likely to benefit from anti-

PD1 and anti-CTLA4 immunotherapy (Figures 9R, S).
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FIGURE 5

Construction and validation of a prognostic risk model. (A, B) Lasso regression analysis of prognosis-related DEGs. (C) Multivariate Cox
regression analysis. (D) Survival analyses for low- and high-risk group in training cohort. (E) ROC curves of predicting prognosis in training
cohort. (F) Survival analyses for low- and high-risk group in GEO validating cohort. (G) ROC curves of predicting prognosis in GEO validating
cohort. (H) Survival analyses for low- and high-risk group in individual validating cohort. (I) ROC curves of predicting prognosis in individual
validating cohort. (J) Alluvial diagram showing the relationships of survival status, Gln clusters, gene clusters and risk score. (K) The distribution
of risk score in different clusters. (L) The distribution of risk score in different gene clusters. "*” means that p < 0.05; “**” means that p < 0.01.
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Prognostic validation of risk score in
pan-cancer

To further validate the performance of risk score in predicting

prognosis of other tumors, we performed a survival analysis of

patients in the high- and low-risk groups involving 32 types of

tumors in TCGA other than LUAD (Figure 10A). Patients in the
Frontiers in Immunology 12
low-risk group had a significant survival advantage in 22 tumors,

including bladder urothelial carcinoma (BCLA, p = 0.001),

cervical squamous cell carcinoma and endocervical

adenocarcinoma (CESC, p = 0.004), cholangiocarcinoma

(CHOL, p = 0.017), colon adenocarcinoma (COAD, p = 0.001),

lymphoid neoplasm diffuse large B-cell lymphoma (DLBC, p =

0.02), glioblastoma multiforme (GBM, p = 0.003), head and neck
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FIGURE 6

TMB and drug susceptibility analysis. (A) Correlation analysis between risk score and TMB. (B) Difference between low and high-risk group. (C)
Kaplan–Meier curves show overall survival differences stratified by TMB and risk score (p < 0.001). Visualization of gene mutations in high-risk
group (D) and low-risk group (E). (F) Drug sensitivity analyses between low-and high-risk groups. Green, sensitive to patients with low risk
scores; Red, sensitive to patients with high risk scores; Blue, no sense.
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squamous cell carcinoma (HNSC, p< 0.001), kidney renal clear

cell carcinoma (KIRC, p< 0.001), kidney renal papillary cell

carcinoma (KIRP, p< 0.001), acute myeloid leukemia (AML, p =

0.007), brain lower grade glioma (LGG, p< 0.001), liver

hepatocellular carcinoma (LIHC, p<0.001), mesothelioma

(MESO, p = 0.005), pancreatic adenocarcinoma (PAAD, p<

0.001), pheochromocytoma (PCPG, p = 0.013), sarcoma (SARC,

p = 0.002), skin cutaneous melanoma (SKCM, p< 0.001), thyroid

carcinoma (THCA, p = 0.003), thymoma (THYM, p = 0.022),

uterine corpus endometrial carcinoma (UCEC, p< 0.001), uterine

carcinosarcoma (UCS, p = 0.017) and uveal melanoma (UVM, p<

0.001). The ROC curves were performed to evaluate the

prognost ic performance of pan-cancer risk scores

(Supplementary Figure 2). The AUC values are presented

in Figure 10B.
Development of a nomogram to
predict survival

Considering the inconvenience of risk score in predicting OS

in patients with LUAD, a nomogram was developed to predict 1-
Frontiers in Immunology 13
, 3-, and 5-year OS rates by integrating the risk score, age and

clinicopathological parameters (Figure 11A). The performance

of the constructed nomogram in TCGA-LUAD cohort was

comparable to an ideal model (Figure 11B). We further

constructed ROC curves to evaluate the performance of

nomogram, risk, stage and age in predicting 1-, 3- and 5-year

OS (Figures 11C–E). The nomogram always showed the best

performance in predicting the 1-, 3- and 5-year OS rates,

followed by risk and stage.
Analysis of Gln metabolism at the level of
single cell

To investigate the differences in Gln metabolic activity of

various cell types in LUAD, we performed an in-depth analysis

of public single-cell sequencing data of lung cancer. We

developed a heatmap to present the expression of Gln

metabolism-related genes in four types of major cells that

constitute the TME, including flow-sorted malignant cells,

endothelial cells, immune cells and fibroblasts (Figure 12A).

Gln metabolism-related genes were most significantly
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FIGURE 7

Association between Gln metabolism, risk scores and clinical characteristics. Difference of risk score between different survival status (A), stages
(B), T stages (C), N stages (D), and M stages (E). Level of Gln metabolism in different survival status (F), stages (G), T stages (H), N stages (I), and
M stages (J). (K) Expression of Gln metabolism regulators between low- and high-risk groups. (L) Difference of Gln metabolism level between
low- and high-risk groups. " **” means that p < 0.01.
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upregulated in malignant cells, followed by fibroblasts, while

the lowest expression of Gln metabolism was observed in

immune cells (Figure 12A). The ssGSEA revealed the highest

level of Gln metabolism in malignant cells, and the least
Frontiers in Immunology 14
activity of Gln metabolism in infi l trating immune

cells (Figure 12B).

To further investigate the differences in Gln metabolism of

infi ltrating immune cells in the TME, 208506 lung
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FIGURE 8

Characteristic of TME between low- and high-risk group. (A) GSVA enrichment analyses based on the Hallmarker gene sets showed the states
of biological processes in low- and high- risk groups. (B) The abundance of tumor infiltrating immune cells in low- and high-risk groups. (C)
The difference of immune functions between low- and high-risk groups. (D) Correlation between risk score and tumor-related functions. (E)
Differences of ESTIMATE score, stromal score and immune score between low- and high- risk score. (F) Differences of T cell dysfunction,
exclusion and TIDE in low- and high-risk score. (G) Enrichment of 10 selected genes in T cell dysfunction level, ICB response outcome,
phenotypes in genetic screens and cell types promoting T cell exclusion. Difference of IPS with CTLA4- and PD-1- (H), CTLA4- and PD-1+ (I),
CTLA4+ and PD-1 (J) and CTLA4+ and PD-1+ (K) between low- and high-risk group. "*” means that p < 0.05; “**” means that p < 0.01; "“***”
means that p < 0.001; ns, no significance.
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FIGURE 9

Prediction of immunotherapy efficacy by the risk model. Response to ACT (A), survival analyses (B) and ROC curves of predicting prognosis (C)
between low- and high-risk groups in melanoma cohort (GSE100797). Response to anti-PD-1 therapy (D), survival analyses (E) and ROC curves
of predicting prognosis (F) between low- and high-risk groups in melanoma cohort (GSE78220). Response to anti-CTLA4 and ant-PD1 therapy
(G), survival analyses (H) and ROC curves of predicting prognosis (I) between low- and high-risk groups in melanoma cohort (GSE91061).
Response to anti-PD-1 therapy (J), survival analyses (K) and ROC curves of predicting prognosis (L) between low- and high-risk groups in
NSCLC cohort (GSE126044). Response to anti-PD-L1 therapy (M), survival analyses (N) and ROC curves of predicting prognosis (O) between
low- and high-risk groups in advanced urothelial cancer cohort (IMvigor210 cohort). (P) Difference of responder between low- and high-risk
group of LUAD in TCGA. (Q) Difference of risk score between responder and non-responder of LUAD in TCGA. (R) Difference of benefits
between low- and high-risk group of LUAD in TCGA. (S) Difference of risk score between benefit and no benefit of LUAD in TCGA.
Frontiers in Immunology frontiersin.org15

https://doi.org/10.3389/fimmu.2022.960738
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Liu et al. 10.3389/fimmu.2022.960738
A

B

FIGURE 10

Prognostic validation of risk score in pan-cancer. (A) Survival analyses between low- and high-risk group in 32 pan-caner cohorts of TCGA. (B)
Corresponding AUC values in 32 pan-cancer cohorts.
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adenocarcinoma cells from 58 specimens were clustered and

defined into 10 cell types, including B lymphocytes, endothelial

cells, epithelial cells, fibroblasts, mast cells, myeloid cells, NK

cells, oligodendrocytes, T lymphocytes, and undetermined cells

(Figure 12C). Cell type fraction of each sample is presented in

Figure 12D. A heatmap was plotted to show the expression of

key regulators of Gln metabolism (Figure 12E). Compared with

other cells, T lymphocytes exhibited the most active Gln

metabolism. To further validate our findings, 9705 NSCLC

cells from GSE117570 were also clustered and defined

(Figure 12F). Cell composition is presented in Figure 12G.

Consistently, the key regulators of Gln metabolism were

significantly overexpressed in a variety of T cells, revealing a

relatively active Gln metabolism in infiltrating T cells

(Figure 12H). Subsequently, we used single-cell sequencing

data of T cells (GSE99254) to investigate the heterogeneity of

Gln metabolism in various types of T cells in NSCLC

(Figure 12I). Based on ssGSEA, exhausted CD8 T cells (C6-

LAYN) and suppressive Tregs (C9-CTLA4) were shown to

express the most active Gln metabolism compared with other
Frontiers in Immunology 17
T cells (Figure 12J). Interestingly, exhausted CD8 T cells and

suppressive Tregs are also key target cells for immune

checkpoint inhibitor (ICI) therapy.
EPHB2 affects the biological behaviors of
LUAD cells in vitro

We performed differential expression analysis of the 10 genes in

pan-cancer risk score (Supplementary Figure 3). Among the 10

genes, EPHB2 showed the most significant difference between

normal and tumor cells of all cancers and was significantly

overexpressed in tumors. However, the biological role of EPHB2

in LUAD was rarely studied. We subsequent performed a series of

experiments to elucidate the role of EPHB2 in LUAD.

The expression of EPHB2 in 22 LUAD specimens and 11

normal specimens was detected and EPHB2 was highly

expressed in LUAD specimens (Figure 13A). Patients with

high expression of EPHB2 showed worse overall survivals

compared with low EPHB2 group (Figure 13B).
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FIGURE 11

Construction of a nomogram. (A) Construction of a nomogram based on risk, age and stage. (B) Calibration curves of the nomogram in
predicting OS of TCGA-LUAD patients. ROC curves of the nomogram, risk, stage and age in predicting 1 year- (C), 3 years- (D) and 5 years- (E)
OS of TCGA-LUAD patients.
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FIGURE 12

Characteristic of Gln metabolism in TME. (A) Expression of identified Gln metabolism regulators in malignant cells, endothelial cells, fibroblasts
and pan-immune cells. (B) Difference of Gln metabolism levels in malignant cells, endothelial cells, fibroblasts and pan-immune cells. (C) The
distribution of immune cell clusters in UMAP plot of GSE131907. (D) Cell type fraction of each sample in GSE131907. (E) Expression of key Gln
metabolism regulators in immune cells of GSE131907. (F) The distribution of immune cell clusters in UMAP plot of GSE117570. (G) Cell type
fraction of each sample in GSE117570. (H) Expression of key Gln metabolism regulators in immune cells of GSE117570. (I) The distribution of T
cell clusters in UMAP plot. (J) Level of Gln metabolism in 16 distinct T cells. “**” means that p < 0.01; "“***” means that p < 0.001; ****” means
that p < 0.0001; no significance.
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FIGURE 13

EPHB2 affects the biological behaviors of LUAD cells in vitro. (A) Expression of EPHB2 in normal and tumor specimens. (B) Survival analyses
between low and high EPHB2 groups in LUAD cohorts. Expression of EPHB2 with treatment of Gln-replete and Gln-deprived in A549 cell line
(C) and PC-9 cell line (D). (E) QRT-PCR was performed to detect the efficiency of EPHB2-siRNA transfection. (F) Growth curves of PC-9 cells
treated with EPHB2 knockdown was developed using SRB assay. (G) Colony formation assay was conducted to detect the proliferation of PC-9
cells. (H) Transwell assay was performed to detect the invasion of PC-9 cells with treatment of EPHB2 knockdown. (I) The cell migration of
EPHB2 knockdown was detected by wound healing assay in PC-9 cells. (J) Expression of PD-L1 with treatment of Gln-replete medium, Gln-
deprived medium for 12h and Gln-deprived medium for 24h. (K) A volcano map to exhibit differential expressed genes between normal and
EPHB2 knockdown treated PC-9 cells. (L) GO and KEGG enrichment analysis between normal and EPHB2 knockdown treated PC-9 cells after
sequencing. (M) GAPDH, EPHB2, AKT, P-AKT (Ser473), ERK1/2, P-ERK1/2 (Thr202/Tyr204) were detected by western blotting in EPHB2
knockdown treated PC-9 cells. (N) Expression of key Gln metabolism regulators in normal and si-EPHB2 treated PC-9 cells. "*” means that p <
0.05; “**” means that p < 0.01; "“***” means that p < 0.001.
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To validate the association between EPHB2 and Gln

metabolism, we used Gln-deprived/replete medium to culture

A549 and PC-9 cells. The expression of EPHB2 was significantly

downregulated by Gln-deprived medium in A549 and PC9

(Figures 13C, D). We further designed siRNA for EPHB2

knockdown and transfected siRNA into PC9 cells. The siRNA-

1 and siRNA-4 were selected for further investigation due to the

greater than 70% transfection efficiency (Figure 13E). The SRB

assay was performed to test the cell proliferation, and the

knockdown of EPHB2 significantly inhibited the proliferation

of PC9 cells (Figure 13F). The number of cell clones was

decreased in PC9 cells with EPHB2 knockdown (Figure 13G).

Transwell assay was performed to investigate the cell invasion:

EPHB2 knockdown significantly reduced the invasion of PC9

cells (Figure 13H). EPHB2 knockdown also promoted migration

of PC9 cells in wound healing assay (Figure 13I). In conclusion,

knockdown of EPHB2 significantly inhibited cell proliferation,

migration and invasion. In addition, surprisingly, the removal of

Gln significantly upregulated the PD-L1 expression of PC9 cells,

which may indicate the potential therapeutic role of combining

Gln metabolism inhibitors with PD-L1 inhibitors (Figure 13J).

To explore the regulation of downstream signaling by

EPHB2, we knocked down EPHB2 in PC9 cells, followed by

transcriptome sequencing, which revealed 565 DEGs, which

were screened out with FC > 2 and P< 0.05, including 296

upregulated genes and 269 downregulated genes (Figure 13K).

GO and KEGG enrichment analysis was performed to identified

regulated pathways (Figure 13L). EPHB2 was mainly associated

with cell communication, cellular metabolic process, regulation

of immune, regulation of cell death, cytokine-mediated signaling

pathway, response to amino acids, TNF signaling pathway,

MAPK pathway and regulation of IL-1b and IL-8 production

(Figure 13L). Simultaneously, AKT pathway and ERK pathway

were verified to be down-regulated when EPHB2 was knocked

out, suggesting that EPHB2 is involved in the regulation of these

pathways (Figure 13M). Besides, 11 key Gln metabolism-related

genes were downregulated after treating with EPHB2

knockdown (Figure 13N). In particular, the key regulators of

Gln metabolism, SLC7A7, GLS, ALDH5A1 and GLUL were

significantly downregulated, which indicated significant

correlation between EPHB2 and Gln metabolism.
Effect of EPHB2 on infiltrating immune
cells of TME

To investigate the expression and role of EPHB2 in immune

cells, we selected single cell sequencing data of NSCLCs

(GSE127465) for further analysis by clustering and defining

53215 cells into 21 types using algorithm Uniform Manifold

Approximation and Projection (UMAP) (Figure 14A). EPHB2

was found to be mainly enriched in M0 and M2 macrophages,

especially in M2 macrophages, suggesting that EPHB2 may
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function mainly in macrophages (Figure 14B). The cell type

fraction of each sample is shown in Figure 14C, with M2

constituting almost the highest proportion. We further

analyzed the correlation between EPHB2 expression in M0/M2

and the composition of infiltrating immune cells. The expression

of EPHB2 in M0 macrophages was significantly and positively

correlated with abundance of infiltrating M2 macrophages,

which indicated that EPHB2 may be involved in the

polarization of M2 macrophages (Figure 14D). Besides, the

expression of EPHB2 in M2 macrophages was negatively

correlated with the abundance of activated NK cells and

resting NK cells (Figures 14E, F). These results suggest that

EPHB2 may be associated with cell communication between M2

macrophages and NK cells. The interaction network of

infiltrating immune cells showed that M2 macrophages

exhibited the most extensive interactions with other immune

cells (Figure 14G). The ligand-receptor interaction between M2

macrophages and activated NK cells is presented in Figure 14H.

Similarly, the ligand-receptor interaction between M2

macrophages and resting NK cells was also investigated

(Figure 14I). To verify the distribution of EPHB2 in

macrophages M0 and M2, we induced THP-1 cells into

macrophages M0 and M2, and detected the expression of

EPHB2 by qPCR (Figure 14J). Compared with M0

macrophages, M2 macrophages showed a significant

upregulation of EPHB2, accompanied by significant

upregulation of the markers of M2. We further used Gln-

deprived medium to culture M0 and M2 macrophages and

found that Gln deprivation significantly downregulated

EPHB2 expression in M0 macrophages, but did not affect the

expression in M2 macrophages (Figure 14K). Besides, we also

found that EPHB2 was significantly co-expressed with the M2

macrophage marker CD206 in LUAD ti s sues v ia

immunofluorescence (Figure 14L). These results suggest that

EPHB2 also plays a huge role in macrophages.
Discussion

Although targeting cancer metabolism to enhance

immunotherapy responsiveness is highly promising, the

heterogeneity and crosstalk of metabolic pathways between

cancer cells and immune cells in TME lead to disruption of

normal metabolic pathways in immune cells by strategies to

inhibit/alter cancer metabolism (27). Therefore, it is critical to

target the appropriate metabolic pathways and molecules to kill

tumors without interfering with or even promoting anti-tumor

immunity. However, recent studies have shown that JHU083, a

broad-spectrum inhibitor of Gln metabolism, effectively kills

tumor cells while activating the anti-tumor effects of CD8+ T

cells, thereby significantly enhancing the efficacy of anti-PD-1

immunotherapy (15). Meanwhile, another study reported that

targeting Gln metabolism increased antitumor immunity in
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FIGURE 14

Effect of EPHB2 on infiltrating immune cells of TME. (A) The distribution of immune cell clusters in UMAP plot. (B) The expression of EPHB2 in
distinct clusters of immune cells. (C) Cell type fraction of each sample. (D) Correlation analysis between expression of EPHB2 in macrophages
M0 and composition of infiltrating macrophages M2. Correlation analysis between expression of EPHB2 in macrophages M2 and composition of
infiltrating activated NK cells (E) and resting NK cells (F). (G) Correlation network between tumor infiltrating immune cells. (H) The ligand-
receptor interaction between macrophages M2 and activated NK cells. (I) The ligand-receptor interaction between macrophages M2 and resting
NK cells. (J) Expression of EPHB2 and macrophages M2 markers in macrophages M0 and M2. (K) Expression of EPHB2 in normal macrophages
M0, M2 and Gln-deprived macrophages M0, M2. (L) Co-localization between EPHB2 and CD206 detected by IF in LUAD specimen. “**” means
that p < 0.01; "“***” means that p < 0.001; ns, no significance.
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mouse models by upregulating mitochondrial metabolism of

CTLs in NSCLC (28, 29). These studies make Gln metabolism an

ideal target for improving tumor immunotherapy, but related

multi-omics systematic studies are still extremely rare in LUAD

and even in other tumors.

Herein, we first defined four patterns based on prognosis-

related regulators of Gln metabolism. The four clusters exhibited

significantly different prognostic features, Gln metabolism and

TME. The immune phenotype gradually changes from “cold” to

“hot” sequentially, from clusters C1 to C4, accompanied by an

upregulation of the abundance of infiltrating immune cells and

activation of the anti-tumor immune pathway. Notably, the

“hot” immune phenotype in different clusters is often

associated with a survival advantage and low levels of Gln

metabolism. Gln is a common metabolic substrate in tumor

and immune cells (9), and therefore tumor cells can reduce the

anti-tumor effect of Gln-dependent immune cells, such as T cells

and DCs, by competing for and depleting Gln. Gln metabolism

was shown to mediate the activation of DCs, and coincidentally,

low levels of Gln metabolism and highly enriched DCs were

present concurrently in cluster C4, followed by upregulation of

APC co-stimulation and HLA. These suggest activation of the

antigen presenting pathway, which may contribute to the

significant upregulation of TIL and T cell co-stimulation in

cluster C4. Based on DEGs, patients with LUAD were further

classified into three geneClusters. Similar to the previous

clusters, the immune phenotype also showed a transition from

“cold” to “hot” from geneClusters A to C, and exhibited a similar

TME landscape. In addition to DCs, various helper T cells

exhibited significant differences, including Th1 and Th2 cells.

Studies have shown that Gln deficiency alters Th1 differentiation

and converts CD4+ T cells to a Treg phenotype (30). In addition,

genetic deletion of the Gln transporter protein ASCT2 impaired

Th1 production and function (31). In the group with low Gln

metabolism, CD4+ T cells may acquire additional Gln and thus

promote Th1 cell differentiation and activation. Th1 mediates

anti-tumor immunity mainly by expressing CD40L and

secreting cytokines such as INFg and IL-2 to recruit and

activate macrophages and cytotoxic T cells, which may be

involved in the upregulation of TIL, macrophages and type II

IFN response in geneCluster C (32). In addition, we found that

low Gln metabolism in tumors may drive the Th1/Th2 balance

toward Th1, which favored anti-tumor immunity (33).

Based on prognosis-related DEGs, we developed a risk score

and divided patients with LUAD into low- and high-risk groups.

Similarly, the low-risk group was defined as “hot”

immunophenotype, corresponding to a survival advantage and

lower levels of Gln metabolism, while the high-risk group showed

the opposite effect. In the low-risk group, the low levels of tumor

Gln metabolism may imply a weaker competitive depletion of

Gln, thus allowing immune cells to acquire further Gln and
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activate anti-tumor effects, which may explain the upregulation

of anti-tumor immune cells or pathways such as DCs, TIL, Th1

cells, NK cells, APC co-stimulation, T-cell co-stimulation and type

II IFN response. “Hot” immune phenotype was shown to benefit

strongly from immunotherapy, which was also validated by the

levels of immune checkpoints, TIDE, IPS and immunotherapy

cohorts. Patients in low-risk group benefited significantly from

immunotherapy, especially following ACT therapy of melanoma

cohort and anti-PD-1 antibody treatment of NSCLC cohort.

Deletion of glutaminase enhanced the effector differentiation of

CAR-T cells (34). Alternatively, no further studies are available to

demonstrate that Gln metabolic blockade improves the efficacy of

ACT therapy. Although extensive blockade of Gln metabolism has

been shown to significantly enhance the efficacy of anti-PD-1

therapy, corresponding studies in LUAD are still lacking.

Therefore, the constructed risk model not only facilitates the

differentiation of the efficacy of immunotherapy, but also provides

an important reference for Gln blockade combined with

immunotherapy. In addition, the risk model was used to

significantly differentiate patient prognosis in 23 different

cancers, indicating the generalizability of the model.

Gln metabolism was shown to be involved in multiple cancer

progression as shown in our study. Gln metabolism was

significantly and positively correlated with TNM and stage

(Figures 7G–J). We performed single-cell sequencing analysis

to describe the landscape of Gln metabolism in TME. Consistent

with previous results, tumor cells exhibited significantly

activated Gln metabolism compared with immune cells or

fibroblasts. However, in two independent single-cell

sequencing analyses of LUAD, T cells exhibited relatively

higher active Gln metabolism compared with other immune

cells. Although Gln metabolism has been reported to be involved

in T cell differentiation and activation, the landscape of Gln

metabolism in tumor-infiltrating T cells remains elusive (30).

Therefore, we further extracted and analyzed single-cell

sequencing data targeting lung cancer-infiltrating T cells.

Surprisingly, exhausted CD8 T cells and suppressive Tregs

exhibited the most active Gln metabolism compared with

other 14 types of T cells, and represent key target cells in anti-

PD1 and anti-CTLA4 immunotherapy, respectively (35, 36).

These results suggest the feasibility of utilizing Gln metabolism

inhibitors combined with immunotherapy. Indeed, due to the

robust plasticity of T cell metabolism, the blockade of Gln

metabolism increases T cell proliferative capacity and

anticancer activity, in addition to preventing exhaustion via T

cell metabolic reprogramming (15).

To further characterize the genes used in the model, we

performed differential pan-cancer analysis, showing that EPHB2

is most differentially and highly expressed in the vast majority of

tumors (Supplementary Figure 3). EphB2 is a significant member

of the Eph receptor family, which has been verified to regulate the
frontiersin.org

https://doi.org/10.3389/fimmu.2022.960738
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Liu et al. 10.3389/fimmu.2022.960738
malignant progression of various tumors through different

signaling pathways. In hepatocellular carcinoma, EPHB2

enhances cancer stem cell properties and drive sorafenib

resistance by activating SRC/AKT/GSK3b/b-catenin signaling

cascade. Moreover, EPHB2 mediated malignant progression of

medulloblastoma by regulating ERK, P38 and mTOR pathway

(37, 38). Although studies have shown that EPHB2 is involved in

the malignant progression of various cancers, its role in LUAD has

yet to be investigated (37). In the present study, we found that

EPHB2 was closely associated with malignant progression of

LUAD, promoting proliferation, invasion and migration of

LUAD cells. Simultaneously, EPHB2 has been verified to be

involved in the regulation of AKT pathway and ERK pathway,

which may be the potential mechanism for promoting the

malignant progression of LUAD by EPHB2. Interestingly, Gln

deprivation significantly downregulated EPHB2 expression, and

knockdown of EPHB2 in turn downregulated key regulators of

Gln metabolism, such as GLS, GLUL, SLC7A7 and GLUD1.

Meanwhile, the results of enrichment analysis after

transcriptome sequencing showed that EPHB2 was associated

with cellular metabolic regulation and response to amino acid

stimulus. Therefore, we speculate that EPHB2 may be involved in

the Gln metabolic pathway, which has yet to be reported.

Based on transcriptome sequencing analysis, EPHB2 was also

significantly associated with cell communication and immune

regulation. Although previous studies reported that EPHB2

promoted monocyte activation and T-cell migration, studies

investigating the regulation of tumor immunity by EPHB2 are

still unavailable (39, 40). In our study, we found that EPHB2 was

mainly enriched in macrophages, especially in M2 types. EPHB2

expression in M0 macrophages enhanced the levels of M2

macrophages, and the expression of EPHB2 in M2 macrophages

reduced the composition of activated and resting NK cells

(Figure 14). These results suggest that EPHB2 may promote M2-

like polarization and also mediate the interactions between M2

macrophages and NK cells, which in turn suppress NK cell

infiltration or proliferation. Previous studies revealed that the

expression of EPHB2 was significantly correlated with trans-

differentiation of monocytes into macrophages by upregulating

CCL2 and IL-8 (40). However, no previous study explored the

function of EPHB2 in M2 macrophages, which was precisely the

focus of our study. Previous research revealed that Gln metabolism

positively regulated M2-like polarization of macrophage, which

may be the potential mechanism of regulating M2-like

polarization by EPHB2 (13).

However, our study did not elucidate the mechanism of

EPHB2 in LUAD cells and M2 macrophages, which will be

addressed in future studies.

In conclusion, based on the regulators of Gln metabolism,

we finally constructed a Gln metabolism-related risk model to
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accurately predict the prognosis of patients with LUAD and even

multiple cancers as well as the efficacy of multiple

immunotherapies. In addition, we described the Gln

metabolism of cells in TME at the single-cell level. Finally,

EPHB2, a Gln metabolism-related molecule in the model was

shown to promote the malignant progression of LUAD cells and

also play an essential role in M2 macrophages.
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