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Abstract

Wearable physical activity monitors are growing in popularity and provide the opportunity

for large numbers of the public to self-monitor physical activity behaviours. The latest gener-

ation of these devices feature multiple sensors, ostensibly similar or even superior to

advanced research instruments. However, little is known about the accuracy of their energy

expenditure estimates. Here, we assessed their performance against criterion measure-

ments in both controlled laboratory conditions (simulated activities of daily living and struc-

tured exercise) and over a 24 hour period in free-living conditions. Thirty men (n = 15) and

women (n = 15) wore three multi-sensor consumer monitors (Microsoft Band, Apple Watch

and Fitbit Charge HR), an accelerometry-only device as a comparison (Jawbone UP24) and

validated research-grade multi-sensor devices (BodyMedia Core and individually calibrated

Actiheart™). During discrete laboratory activities when compared against indirect calorime-

try, the Apple Watch performed similarly to criterion measures. The Fitbit Charge HR was

less consistent at measurement of discrete activities, but produced similar free-living esti-

mates to the Apple Watch. Both these devices underestimated free-living energy expendi-

ture (-394 kcal/d and -405 kcal/d, respectively; P<0.01). The multi-sensor Microsoft Band

and accelerometry-only Jawbone UP24 devices underestimated most laboratory activities

and substantially underestimated free-living expenditure (-1128 kcal/d and -998 kcal/d,

respectively; P<0.01). None of the consumer devices were deemed equivalent to the refer-

ence method for daily energy expenditure. For all devices, there was a tendency for nega-

tive bias with greater daily energy expenditure. No consumer monitors performed as well as

the research-grade devices although in some (but not all) cases, estimates were close to cri-

terion measurements. Thus, whilst industry-led innovation has improved the accuracy of

consumer monitors, these devices are not yet equivalent to the best research-grade devices

or indeed equivalent to each other. We propose independent quality standards and/or accu-

racy ratings for consumer devices are required.
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Introduction

There has been an explosion in the availability and popularity of wearable devices that track

physical activity. This sector has grown by 150% year-on-year [1], with sales of fitness trackers,

sports watches and smartwatches predicted to be 116 million in 2016 [2]. Fitbit is an estab-

lished provider but, recently, some of the biggest technology companies in the world (includ-

ing Apple) have also entered the wearable technology sector.

Wearable devices may be effective facilitators of behaviour change, particularly because of

the opportunities arising for provision of instantaneous feedback [3] and because personalised

physical activity data is motivating [4]. Therefore, as these wearable devices become more

commonplace, there is the potential to harness these technologies to engage patients in the

self-management of their care as well as provide lifestyle information to health care providers

[5]. However, despite their enormous potential, several authors have highlighted the need for

studies establishing the accuracy of these instruments [6–8].

Whilst early commercially-available wearable trackers relied on movement sensors alone

(e.g., accelerometers), more recent models integrate other physiological outputs in recognition

of how this improves estimates of energy expenditure [9,10]. This step-change in consumer

monitor sophistication has resulted in the latest generation of consumer devices sharing simi-

lar technology as established multi-sensor devices used in research studies. There have been

various assessments of older generations of consumer monitors [11–18], and a recent labora-

tory investigation has suggested that both the Apple Watch and Fitbit Charge HR underesti-

mate energy expenditure during a combined 1 hour protocol involving rest, walking, running

and cycling [19]. However, there has been no examination of other activities of daily living or

daily energy expenditure estimates of the next generation of sophisticated multi-sensor devices

including those large technology companies such as Apple.

The present study therefore examined energy expenditure estimates from these multisensor

consumer technologies for a range of activities in a controlled laboratory setting and during

normal free-living conditions.

Methods

Individuals participated in two main experimental elements. During both aspects, participants

wore activity trackers from a range of manufacturers and different price points as well as two

research-grade multi-sensor devices. These research devices (BodyMedia Core and Actiheart™)

have been extensively validated and shown to accurately predict energy expenditure [11,20–

28]. A laboratory validation was conducted where the devices were compared to indirect calo-

rimetry as a criterion measure. Additionally, individuals wore these devices for a calendar

day with the validated Actiheart™ research-grade device used as a reference method for daily

energy expenditure. This experimental protocol was approved by the institutional review

board of the University of Bath, Department for Health (EP 14/15 253) and conducted in

accordance with the principles of the Declaration of Helsinki [29].

Participants

Thirty men (n = 15) and women (n = 15) took part in this study (mean ± SD; Age: 27 ± 6 y,

height: 1.72 ± 0.10 m, body mass: 69.7 ± 13.2 kg, BMI: 23.4 ± 2.5 kg/m2). Participants were

eligible to undertake this study if they were aged 18–50 years, free from illness or injury

restricting physical function and able to undertake moderate intensity exercise. All individuals

provided written informed consent and were screened for eligibility to undertake exercise by

way of PAR-Q prior to commencement of testing.
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Criterion indirect calorimetry

A portable metabolic system (COSMED K4b2, Rome, Italy) was used during the laboratory

validation element of the study, with data collected continuously during activity protocols.

This device has been shown to be both reliable and valid [30,31], and has also been used previ-

ously to determine criterion energy expenditure [28,32–34]. The unit was calibrated prior to

each session according to manufacturer’s instructions. Continuous data from the device was

filtered into 1- minute epochs, with data for each specific activity then compared on a like-for-

like basis with the commercial devices.

Consumer physical activity monitors

During laboratory and free-living testing participants wore four (two on each wrist) consumer

devices appropriate for their size, with balancing of left and right arm wear for each device.

Devices were worn according to manufacturers’ instructions and configured using the associ-

ated app on a bluetooth linked mobile phone for the individual’s personal details (height, body

mass, age/date of birth, sex) before testing. As these consumer devices do not provide minute-

by-minute data, during laboratory testing, energy expenditure estimates were obtained imme-

diately before and after each discrete activity with the difference calculated to represent the

energy expenditure of each activity. All devices were connected to associated apps running on

Apple iPhone models 5 or later, running iOS 8.

Apple Watch. Released in April 2015, this is the first smart watch produced by Apple Inc

(Cupertino, California, USA). The device includes a triaxial accelerometer as well as heart rate

(HR) measurement using photoplethysmography at the wrist. The “workout” setting on the

device allows selection of different activity types, which during outdoor activities can also use a

paired iPhone’s GPS. During “workout” mode the HR recording function is activated continu-

ously. When not in “workout” mode heart rate recordings are obtained every 10 minutes. The

Apple Watch provides some physical activity outputs on the device itself and also fuller infor-

mation (e.g. total energy expenditure data through the associated “Activity” app). During labo-

ratory testing, total energy expenditure estimates were obtained via the app, with the Watch

OS version 1.0.1 used.

Microsoft Band. The first activity tracker from Microsoft Corporation (Redmond, Wash-

ington, USA) this device was released in the UK in April 2015. The Microsoft Band incorpo-

rates an optical HR sensor, a triaxial accelerometer, gyrometer, GPS, ambient light sensor,

skin temperature sensor, UV sensor, capacitive sensor and galvanic skin response. The device

includes various exercise modes which when activated increase the frequency of HR measure-

ment. This device provides feedback on the device itself and through an associated app

“Microsoft health” and was tested using firmware version 10.2.2818.0 and app version

1.3.10506.1. During laboratory testing, total energy expenditure estimates were obtained from

the device itself.

Fitbit Charge HR. Released in the UK in January 2015 and produced by Fitbit Inc (San

Francisco, California, USA). This company was one of the first in the activity tracking market

in 2007, and is currently the market leader by volume for dedicated commercial fitness track-

ing devices. It includes an optical HR monitor, a triaxial accelerometer and an altimeter. The

Fitbit Charge HR provides feedback on the device itself and also through the associated Fitbit

app (version 2.9.1 used). During laboratory testing, total energy expenditure estimates were

obtained from the device itself.

Jawbone UP24. Produced by Jawbone (San Francisco, California, USA) this device was

the second wearable device produced by this company. This device was released in November

2013 and is representative of a typical accelerometer-only device and was included in the

Accuracy of consumer multi-sensor activity monitors

PLOS ONE | DOI:10.1371/journal.pone.0171720 February 24, 2017 3 / 15



present study to provide a comparison with the previous generation of single sensor monitors.

The device has a triaxial accelerometer. The device does not possess a screen so feedback is

through the associated UP app. During laboratory testing, energy expenditure estimates were

obtained via the app (version 4.4).

Research grade devices

Actiheart ™. The Actiheart™ (Cambridge Neurotechnology Ltd, Papworth, UK), integrates

accelerometry and HR signals. The Actiheart™ unit has been described in detail previously

[22]. The Actiheart™ has previously been validated against doubly labelled water [24,26,27] and

has been used as a criterion measure of free-living energy expenditure in epidemiology studies

[35]. In order to individually calibrate the Actiheart™, the relationship between energy expen-

diture and HR in participants was determined at rest and during submaximal exercise at a sep-

arate visit. Individual calibration has been shown to improve energy expenditure prediction in

free-living [24,26,27] and laboratory settings [23,25].

Resting metabolic rate (RMR) was measured following fifteen minutes of rest in a seated

positon in accordance with minimal criteria for best practice recommendations [36], and

taken as the average of fifteen minutes rest. The submaximal exercise test undertaken consisted

of four 4-minute stages of incremental exercise intensity performed on a motorised treadmill

(HP Cosmos Saturn 250/100r, HaB International Ltd, UK). Energy expenditure and HR were

measured using the K4b2 and a Polar T31 HR monitor (Polar Electro Inc., NY, USA), respec-

tively. As the output for minute-by-minute energy expenditure for the Actiheart™ only

includes activity energy expenditure, for equivalence with the other devices during laboratory

testing, the measured RMR was added. For free-living comparisons, the daily energy estimate

setting within the Actiheart™ software added measured daily RMR and estimated dietary

induced thermogenesis to the activity energy expenditure in order to obtain total energy

expenditure.

BodyMedia Core. The BodyMedia Core armband is a research-grade device produced by

BodyMedia Inc., Pittsburgh, PA. This device combines a tri-axial accelerometer with heat-

related sensors (heat flux, skin temperature, near body ambient temperature) and galvanic

skin response to estimate energy expenditure using proprietary algorithms. Data files from the

BodyMedia Core were processed using SenseWear1 Pro 8.0, algorithm v5.2. Previous research

has shown that BodyMedia SenseWear accurately measures energy expenditure relative to cri-

terion measures [11,20,21] and has been used to quantify physical activity and energy expendi-

ture in experimental trials [37,38].

Laboratory activity protocol

Participants arrived at the laboratory having abstained from food intake, caffeine intake and

exercise in the 4 hours prior to testing. Before and after each individual activity, energy expen-

diture estimates from the devices were obtained either from the devices themselves or the

associated apps as described above. Participants undertook two activity blocks during the labo-

ratory protocol. The first block consisted of a 24-minute protocol comprising of 4 activities of

5 minute duration conducted in the same order in all participants (seated typing on a laptop

computer, simulated loading and unloading of a dishwasher, sweeping of light objects across a

3m distance and self-paced ascending and descending of one flight of stairs). During these

activities, it was ensured that participants conducted activities using a relatively equal contri-

bution from both hands.

Following a seated break of 10–15 minutes during which participants removed the portable

indirect calorimeter device participants then commenced a second block of “exercise” activity

Accuracy of consumer multi-sensor activity monitors
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lasting 64 minutes in total. Participants undertook 4 activities of 10 minutes duration com-

pleted in the same order in all participants. These activities were walking on the motorised

treadmill at either 4 or 4.8 km/h, walking at the same speed with shopping bags (6kg distrib-

uted in two bags for females and 10kg distributed in 4 bags for males), cycling (at 75W for

females and 100W for males) on an ergometer (Lode Excalibur Sport, Groningen, The Nether-

lands) and jogging on the motorised treadmill at 8.4km/h. For the cycling and jogging activi-

ties, the Apple Watch and Microsoft Band were placed into the relevant exercise settings

(indoor cycle and indoor run). As the Fitbit Charge HR does not have specific exercise modes

selectable, this was placed into “exercise” mode for both activities. The Jawbone UP24 did not

have any specific modes for activation. All activities were followed by a 5-minute stationary

standing rest period, apart from a 5-minute seated rest period following cycling. Following

each rest period, there was a 1-minute transition period prior to commencing the next activity.

Free-living data collection

Participants were shown how to use the activity trackers and informed to wear the devices at

all times apart from during contact with water. They were instructed to use relevant available

modes where applicable. The participants were told that there were no restrictions on their

activity for the recording period and wore the devices for a minimum of 36 hours, such that

one full calendar day was obtained of activity measurements. After a day of wear, these devices

were collected from participants and the relevant data recorded by experimenters.

Statistical analysis

Predicted energy expenditure data from each wearable device was compared to corresponding

criterion energy expenditure data for each activity. Statistical significance was set a priori at α
< 0.05. Analyses of agreement were conducted comparing an assigned criterion (laboratory;

indirect calorimetry, free-living: individually calibrated Actiheart™) and predicted energy

expenditure from each device using Bland and Altman plots to calculate absolute bias and 95%

limits of agreement (LoA). Other comparison statistics were also calculated including mean

signed error (MSE) and mean absolute error (MAE) for each activity. As it is likely the absolute

error of estimation will increase with exercise intensity [39] and to allow comparison between

activities, error of estimate data is presented as a percentage (absolute kcal/min is presented in

Table 1). Root mean squared error and Pearson product-moment correlations relative to crite-

rion measures for laboratory activities and free-living is also presented in supplementary mate-

rials (S1 and S2 Tables). Repeated measures ANOVA was conducted on free-living energy

expenditure estimates from devices, with pairwise comparisons conducted with a Holm-

Table 1. Measured energy expenditure (± SD) of the activities undertaken.

Activity Measured EE

(kcal.min-1)

Microsoft Band

(kcal.min-1)

Apple Watch

(kcal.min-1)

Fitbit Charge HR

(kcal.min-1)

Jawbone UP24

(kcal.min-1)

Bodymedia Armband

(kcal.min-1)

Actiheart

(kcal.min-1)

METs

(calculated)

Typing 1.51 ± 0.39 1.56 ± 0.33 2.10 ± 0.51 1.42 ± 0.35 1.49 ± 0.33 1.72 ± 0.35 1.25 ± 0.35 1.4 ± 0.2

Dishwasher 3.69 ± 1.11 1.61 ± 0.34 2.40 ± 0.58 3.36 ± 1.14 1.88 ± 0.84 5.57 ± 2.36 2.96± 1.25 3.5 ± 0.8

Sweeping 4.03 ± 1.07 2.14 ± 0.58 2.85 ± 0.93 5.20 ± 1.42 2.67 ± 1.36 6.37 ± 2.33 3.18 ± 1.23 3.9 ± 1.0

Stairs 7.19 ±1.48 2.74 ± 0.82 5.43 ± 1.87 7.17 ± 2.08 5.15 ± 1.36 5.72 ± 1.32 6.04 ± 2.22 7.0 ± 1.3

Walk 4.12 ± 0.97 2.67 ± 0.91 4.56 ± 1.47 6.99 ± 1.63 5.08 ± 1.08 4.47 ± 1.03 4.12 ± 1.30 3.9 ± 0.7

Loaded

walk

4.91 ± 1.28 2.41 ± 0.59 4.84 ± 1.58 7.07 ± 1.34 5.17 ± 1.06 5.55 ± 0.94 4.79 ± 1.62 4.7 ± 0.9

Cycle 7.44 ± 1.42 5.24 ± 2.77 7.21 ± 2.63 3.53 ± 2.00 1.30 ± 0.21 6.49 ± 1.90 5.55 ± 1.95 7.2 ± 1.3

Run 9.90 ± 2.01 10.32 ± 2.56 11.47 ± 2.85 10.36 ± 2.34 12.62 ± 3.14 10.61 ± 2.19 10.22 ± 2.54 9.6 ± 1.8

doi:10.1371/journal.pone.0171720.t001
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Bonferonni stepwise adjustment to prevent inflation of type 1 error [40]. For further context,

as proposed by other authors [11], “equivalence testing” was conducted to compare the equiva-

lence between the consumer devices and free-living criterion measure. For devices to be con-

sidered equivalent to the criterion with 95% precision, the 90% confidence interval of the

mean must fall within the proposed equivalence zone. Based upon previous work this equiva-

lence zone was determined as ±10% of the criterion mean [11].

Results

Laboratory validation

Bland and Altman plots (Fig 1) illustrate the agreement between criterion and predicted energy

expenditure for each device by displaying the mean difference and 95% LoA. For the commer-

cially available monitors, the absolute bias ± 95% LoA values were -1.8 ± 3.9, -0.2 ± 3.4,

0.3 ± 4.6 and -0.9 ± 5.4 kcal/min for the Microsoft Band, Apple Watch, Fitbit Charge HR and

Jawbone UP24, respectively. Visual inspection of the plots for the consumer devices highlights

some tendency for over prediction of higher intensity activity relative to more frequent under

prediction of lower intensity activities. Of the research grade wearable monitors, absolute

bias ± 95% LoA values were 0.6 ± 3.8 kcal/min for the Bodymedia Armband with the smallest

limits of agreement of any device observed for the Actiheart (-0.6 ± 2.5 kcal/min).

Modified box and whisker plots (Fig 2) present the overall and activity specific percentage

error of estimate (± 95% LoA) for all devices, with absolute energy expenditure for each activ-

ity displayed in Table 1. Fig 2 shows variability between and within monitors for specific

Fig 1. Bland-Altman plots for laboratory activities. Bland-Altman plots depicting absolute bias and 95%

limits of agreement of estimated energy expenditure across a number of different activities for a range of

activity trackers relative to the criterion indirect calorimetry measure. Bias represents predicted expenditure-

criterion expenditure. The solid line represents mean bias, the dashed lines the upper and lower 95% limits of

agreement and the dotted line represents perfect agreement.

doi:10.1371/journal.pone.0171720.g001
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activities. However, looking solely at directional error can be misleading as under and over-

predictions can cancel each other out [41]. Therefore we have presented mean absolute error

in Table 2. Absolute errors of estimation for the activities considered separately (the mean of

the absolute error of the individual activities) was lowest amongst the consumer monitoring

devices for the Apple Watch (27 ± 10%) and this was not enormously different to that recorded

for the Actiheart research device (20 ± 7%). This analysis is useful for understanding cumula-

tive error but it also assumes that gross error for each type of activity is equally important

Fig 2. Percentage error of estimation of laboratory activities. Modified box and whisker plot depicting the

percentage error of estimation relative to criterion indirect calorimetry for each activity undertaken. The

highlighted ‘All’ data furthest left represents the combination of all the activities and recovery periods

considered as a whole block. Recovery data represents the combination of the 5 minute stationary recovery

periods after the 10 minute walk, loaded walk, cycle and jog periods. Small circles represent the individual

data points, with horizontal bars representing the mean for each activity bordered by the 95% limits of

agreement.

doi:10.1371/journal.pone.0171720.g002

Accuracy of consumer multi-sensor activity monitors
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(e.g., error for typing and walking), and irrespective of activity intensity, when, of course, this

will not be the case outside the laboratory.

Free living energy expenditure

Data for estimated 24 hour energy expenditure is displayed in Fig 3. Pairwise comparisons

indicated that all of the consumer devices produced significantly different estimates from the

research grade devices (which were not different from each other). The mean absolute percent

error relative to the Actiheart device was greatest in the Microsoft Band (34 ± 10%), followed

by a similar magnitude of error for the Jawbone device (30 ± 11%). Both the Apple and Fitbit

devices produced considerably lower error (15 ± 10% and 16 ± 8%, respectively).

Table 2. Mean absolute percent error (± SD) of the activities undertaken.

Activity Mean Absolute Percent Error (%)

Microsoft Band Apple Watch Fitbit Charge HR Jawbone UP24 Bodymedia Armband Actiheart

Typing 20 ± 19 47 ± 36 20 ± 18 18 ± 16 19 ± 15 23 ± 15

Dishwasher 54 ± 12 34 ± 16 23 ± 14 52 ± 18 71 ± 52 25 ± 19

Sweeping 45 ± 16 30 ± 16 39 ± 44 39 ± 21 75 ± 59 25 ± 20

Stairs 62 ± 9 29 ± 19 15 ± 14 29 ± 11 20 ± 11 20 ± 16

Walk 37 ± 17 24 ± 18 73 ± 29 27 ± 16 18 ± 14 13 ± 12

Loaded walk 49 ± 16 14 ± 13 48 ± 23 14 ± 10 27 ± 21 12 ± 11

Cycle 38 ± 24 20 ± 18 53 ± 23 82 ± 2 21 ± 19 28 ± 17

Run 18 ± 15 22 ± 16 16 ± 13 29 ± 21 15 ± 14 13 ± 10

Mean 40 ± 16 27 ± 19 36 ± 22 36 ± 14 33 ± 26 20 ± 15

doi:10.1371/journal.pone.0171720.t002

Fig 3. Estimated 24 hr energy expenditure from the wearable devices. Data is depicted as mean, with

individual data points shown and error bars representing the SD. * Denotes that all consumer devices were

significantly different p < 0.01 from the research devices. Each individual device is significantly different

p < 0.01 from every other device, except for the comparisons between Microsoft vs. Jawbone, Fitbit vs. Apple

and Bodymedia vs. Actiheart.

doi:10.1371/journal.pone.0171720.g003
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Bland and Altman plots (Fig 4) illustrate the agreement between the activity trackers

and the criterion measure for free-living energy expenditure. Both the Fitbit Charge HR

(-405 ± 944 kcal/d) and Apple Watch (-394 ± 970 kcal/d) displayed similar 95% limits of agree-

ment. The Microsoft Band and Jawbone UP24 devices displayed much greater bias and wider

limits of agreement of -1123 ± 1235 kcal/d and -998 ± 1153 kcal/d, respectively. Visual inspec-

tion of the Bland-Altman plots shows increasing negative bias with increasing daily energy

expenditure for all of the consumer devices, with this effect particularly pronounced for the

Microsoft Band and Jawbone UP24. For reference, the research grade Bodymedia device had

similar limits of agreement to the Apple and Fitbit devices but with lower mean bias when

compared to individually-calibrated Actiheart™ (-66 ± 965 kcal/d).

For further context, as suggested by other authors, 95% equivalence testing was conducted

[11]. Fig 5 demonstrates that the Sensewear device was the only monitor deemed equivalent

to the Actiheart™ device for daily energy expenditure estimates, with none of the consumer

devices lying within the proposed equivalence zone of ±10% of the criterion mean.

Discussion

This study demonstrates that the gap between consumer and research-grade devices was only

modest in some cases and industry-led technological innovation is clearly improving the accu-

racy of physical activity monitors that are available to consumers. However, performance was

not consistently good across all devices; sometimes in spite of the inclusion of a plethora of

sensors. Clinicians and the public should not assume that all devices provide accurate daily

energy expenditure estimates and certainly they are not equivalent.

Across all assessments, strong overall performance was observed for the Apple Watch,

which displayed the tightest limits of agreement and mean absolute error of the consumer

devices in the laboratory assessments. The Apple Watch was also the closest of the consumer

Fig 4. Bland-Altman plots for daily energy expenditure. Bland-Altman plots depicting bias and 95% limits

of agreement of 24 hr energy expenditure for a range of commercial activity trackers relative to the criterion

individually calibrated Actiheart device. Bias represents (predicted expenditure—criterion expenditure). The

solid line represents absolute bias, the dashed lines the upper and lower 95% limits of agreement and the

dotted line represents perfect agreement.

doi:10.1371/journal.pone.0171720.g004
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devices in free-living conditions to the Actiheart™ for assessing daily energy expenditure. In

spite of its many sensors, there was consistent under prediction from the Microsoft Band both

inside and outside the laboratory. Of the other devices, less consistent prediction of the energy

expenditure of discrete specific activities was observed from the Fitbit Charge HR in the labo-

ratory assessments, although the free-living daily expenditure estimates from this device were

similar to the Apple Watch. Therefore, in comparison with the Apple device, it appears that

despite more marked error in estimating the expenditure of some specific activities, this does

not have a detrimental effect upon the total expenditure estimates from this device outside the

laboratory. As discussed below, this probably reflects the contrived nature of laboratory-based

assessments, and a strength of this work is that we also obtained energy expenditure estimates

during free-living. This provides the most ecologically valid assessment of these monitors car-

rying out their designated function and showed that all of the consumer devices underesti-

mated daily energy expenditure relative to the reference method (individually calibrated

Actiheart™).

To our knowledge, this is the first examination of these consumer multi-sensor devices in

both laboratory and free-living settings. Our results demonstrate that these sophisticated

devices are yet to match the consistency of the best performing research device in measuring

discrete activities. The pattern of error for the commercial devices indicated a greater degree of

underestimation relative to the Actiheart™ device with greater daily energy expenditure. As a

substantial contributor to total energy expenditure (particularly with lower levels of activity)

will be RMR, which is a broadly predictable component of energy expenditure [42], the greater

accuracy for individuals with lower energy expenditure is unsurprising. Assuming relative

similarity of resting energy expenditure estimates between devices, this variance in total energy

expenditure estimates between devices suggests that the measurement of physical activity per
se is more variable than the estimation of total energy expenditure would suggest. Indeed, the

marked underestimation with increasing energy expenditure for certain monitors highlights

there are ongoing discrepancies in the ability to translate inputs from sensors into estimates of

physical activity expenditure.

Fig 5. 95% equivalence testing for daily energy expenditure. The shaded area bordered by dashed black

lines is the proposed equivalence zone (±10% of the criterion mean). The mean of the daily energy

expenditure estimates is shown for the devices, bordered by 90% confidence intervals.

doi:10.1371/journal.pone.0171720.g005
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Our work has important implications for researchers undertaking monitor evaluations.

Commonly, laboratory validations employ protocols comprising a variety of activities treated

as a single block to represent “overall” monitor performance. The rationale for this approach is

that devices will over predict for some activities and under predict for others, with the assump-

tion that the most relevant outcome is the estimate derived from a sustained period of wear

time [43]. Laboratory and free-living assessments both give valuable but unique information

with which to assess monitor performance in different contexts. Laboratory assessments can

produce data about specific activities which is useful for individuals interested in measuring a

particular activity (e.g., someone taking up jogging wanting to assess energy expenditure dur-

ing running). However, laboratory protocols tend to overemphasise active elements of daily

living, relative to the reported 52% sedentary time from 24 hour measured activity in young

men [44]. Furthermore, the specifics of any given activity protocol (including our own) is

unlikely to represent the distribution and importance of various activities in normal life.

Indeed, Murakami and colleagues (2016), have shown that estimates for the same devices

assessed during a standardized day and free-living wear do not necessarily produce similar

directions or magnitudes of error in the different settings [18]. Therefore, it is beneficial to

assess prolonged wear in free-living conditions in addition to laboratory assessments of moni-

tor performance for specific activities.

The large discrepancies in estimating daily energy expenditure between the various activity

trackers illustrates that the public and practitioners need to be cautious when using these

devices to guide lifestyle decisions around energy balance. The difference between the group

mean from the device predicting the lowest and highest energy expenditure (Microsoft Band

versus Apple Watch) was>750 kcal/d which is clearly a meaningful difference. This highlights

that medical and other practitioners should be wary of attempting to use devices of this nature

to provide guidance on energy intake or balance without prior knowledge of their accuracy,

particularly as our data illustrate substantial individual variability of estimates. The applied

importance of the accuracy of energy expenditure estimates for energy balance has recently

been highlighted by McCaig and colleagues (2016). These authors have demonstrated that the

framing of a set bout of exercise (50 kcal vs 265 kcal) affects subsequent intake, with higher

energy expenditure information providing greater “licence to eat” [45].

There are some considerations that should be highlighted when interpreting our work.

Aligned with the suggested predominant users of these devices, we have examined a relatively

young, healthy and active population [7,46]. We have established “out of box” performance for

these devices, it is therefore possible that some additional calibration that is available on some

devices with prolonged wear (e.g. the Apple watch claims to improve accuracy of estimation

with greater use) may improve accuracy. For the laboratory validation element, several of these

devices were used in a specific exercise mode that reflected indoor use. As of yet, the relative

importance of specific modes is unknown and this requires clarification so users know how

the level of interaction with their wearable influences device accuracy. Additionally, due to the

nature of the devices tested, it is not possible to conclusively establish if there is a lag in the

devices picking up specific activities, so protocols involving longer activity durations may be

required. Further studies should examine the performance of these devices in other target

groups, using a longer period of free-living and ideally with doubly labelled water as a criterion

energy expenditure measure.

We acknowledge that absolute estimation of energy expenditure may be less important to

some individuals. If the purpose of a device is to self-monitor physical activity, as long as the

same monitor is used consistently and it provides the same result for a given activity, absolute

expenditure may be less relevant. Whilst total expenditure is the most important metric for

individuals whose concern is weight, this represents only one of several health harnessing
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aspects of physical activity [47]. However, inaccurate energy expenditure estimation does not

maximise the potential utility of these devices and ideally they should be both reliable and

accurate.

Most commercial devices provide features such as activity profiling, feedback and motiva-

tional cues that may be of benefit in enhancing motivation [4] and are currently being exam-

ined in a number of intervention contexts [37,48]. From the perspective of activity profiling

and feedback, we recorded metrics relating to “active time” that each consumer device pro-

vided (see S3 Table for summary). Estimates ranged from 818 ± 88 min (Apple, “Total Active

Time”) to 70 ± 59 min (Fitbit, “Active Minutes”) illustrating that individuals already attempt-

ing to establish physical activity status against a plethora of physical activity benchmarks [49]

may easily be confused by such variable estimates for ostensibly similar outcomes. This dis-

crepancy for similar outcomes was also apparent for the two devices that provided a metric

for resting energy expenditure (Apple: 2181 ± 414 kcal/d and Jawbone 1494 ± 230 kcal/d).

Unfortunately, none of the commercial devices tested readily allowed exporting of the raw

energy expenditure data for detailed interrogation that might be useful for research/health

applications.

Our data shows that when it comes to activity tracking, a greater number of sensors does

not automatically guarantee more accurate energy expenditure estimation. Regrettably, at

present, as independent authors (and indeed the research community as a whole) we can say

very little about potential reasons for the results we obtain when examining devices of this

nature. Perhaps understandably, manufacturers do not release the algorithms used in estima-

tion of energy expenditure. However, as suggested by van Hees and colleagues (2016) there are

a number of steps manufacturers could take such as providing detailed specifications of sen-

sors, or documentation of algorithms etc. that would allow greater evaluation of these devices

[50]. While it is potentially optimistic to expect this degree of cooperation between manufac-

turers and the research community, it is imperative that the public are at least provided with

information as to the validity of these devices.

So, what could be done in order to increase the utility of these devices for use by practition-

ers and the public? In the future, accreditation and/or regulation of these devices (as has been

suggested for mHealth apps [51]) within predefined boundaries of accuracy based upon stan-

dardised testing protocols should improve the quality of devices. These independent criteria

could be similar to those the National Institute of Science and Technology issue for numerous

other measurement devices in the United States, or “British Standard” marks in the United

Kingdom. While other authors have suggested 10% as an appropriate equivalency relative to a

criterion measure [11], more work is needed to establish a consensus acceptable error bound-

ary for devices of this nature. Alternatively, in a similar way to efficiency ratings for household

devices, activity trackers could be graded to allow the end user to incorporate accuracy as a

consideration when purchasing devices.

Conclusions

Some consumer multi-sensor devices such as the Apple Watch and Fitbit Charge HR provided

reasonably good estimates of energy expenditure both in the laboratory and during free-living

conditions. However, this was not the case across all devices and certainly these consumer

monitors do not all produce similar results (i.e., they are not equivalent). It is also clear that

devices with more sensors do not necessarily produce better energy expenditure estimates

than simple previous-generation accelerometry-only devices. We propose that independent

quality standards should be developed to verify claims regarding energy expenditure

Accuracy of consumer multi-sensor activity monitors
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estimation from consumer wearables or manufacturers should be required to provide accuracy

‘ratings’ at the time of going to market.
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