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Abstract: The near-field enhancement and localized surface plasmon resonance (LSPR) on the core-
shell noble metal nanostructure surfaces are widely studied for various biomedical applications.
However, the study of the optical properties of new plasmonic non-spherical nanostructures is less
explored. This numerical study quantifies the optical properties of spherical and non-spherical
(prolate and oblate) dimer nanostructures by introducing finite element modelling in COMSOL
Multiphysics. The surface plasmon resonance peaks of gold nanostructures should be understood
and controlled for use in biological applications such as photothermal therapy and drug delivery. In
this study, we find that non-spherical prolate and oblate gold dimers give excellent tunability in a wide
range of biological windows. The electromagnetic field enhancement and surface plasmon resonance
peak can be tuned by varying the aspect ratio of non-spherical nanostructures, the refractive index of
the surrounding medium, shell thickness, and the distance of separation between nanostructures.
The absorption spectra exhibit considerably greater dependency on the aspect ratio and refractive
index than the shell thickness and separation distance. These results may be essential for applying
the spherical and non-spherical nanostructures to various absorption-based applications.

Keywords: electromagnetic field enhancement; localized surface plasmon resonance; plasmonic
nanostructures; aspect ratio; refractive index; shell thickness; distance of separation

1. Introduction

Plasmonic core-shell nanoparticles are one of the most powerful optical and thermal
contrast agents in the field of biomedicine [1–4] with a lot of attention drawn towards
cancer treatment [5–7]. The strong interaction of these metal nanoparticles (MNPs), with
the incident electromagnetic field allows them to exhibit unique optical properties [8]. The
collective free electron oscillation in the nanoparticles gives rise to the localized surface
plasmon resonance (LSPR) effect, which can result in the enhancement of absorption
and scattering of the incident electromagnetic waves [9–13]. Gold nanoparticles have
gained a lot of attention because of their strong optical absorption capacity and high
resonance wavelength tunability [14]. The maximization of near-field enhancement in the
gold nanoparticles depends strongly on the geometrical aspects, dielectric properties, and
compositional factors [15–19]. Small differences in the geometrical features will lead
to shifts in the optical properties of these nanoparticles, and the resulting resonance
wavelengths can span from visible to near-infrared (NIR) regions. In order to obtain
deeper penetration of light into the human tissues, ideal nanomaterials that can strongly
absorb energy in the optical window have to be developed.

In recent years, the LSPR characteristics of nanospheres and nanorods, among several
other nanostructures, have been studied [20–22]. Researchers have successfully used the
Mie theory and discrete dipole approximation (DDA) methods to investigate the optical
properties of different gold nanostructures [7]. Extensive Mie theory calculations reveal
that the plasmon resonance wavelength maximum shifts almost exponentially as we move
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from a solid gold nanosphere (AuNP) to a gold nanoshell (AuNS) with decreasing shell
thickness [23]. Among all gold nanoparticles, the ultra-thin hollow gold nanoshells (AuNSs)
produced by the synthesis of cobalt (Co) nanoparticles as sacrificial templates induce a
unique tunable absorption band in the near-infrared tissue window of 650–950 nm (NIR-I
window), where tissues are maximally transparent [24–27]. AuNSs demonstrating plasmon
resonance in this tissue window, exhibit strong absorption and scattering characteristics
depending on their morphology and can be useful bioimaging and photothermal ablation
agents [28,29]. The gold shell filled with the aqueous embedding medium should be large
enough to allow prolonged blood circulation time for biomedical applications [30–32].

Upon coupling of two identical core-shell nanoparticles to form a dimer, plasmonic
modes with high field enhancement in the gap of nanoshells occur due to the dipolar mode
coupling of the individual particles [33]. Due to the occurrence of an extremely intense
electric field confinement in the nanogap, the dimer structures are drawing attention in
the optical techniques. Experimental and theoretical advances are currently being made
in the field of plasmonics, specifically the near-field enhancement in core-shell dimer
nanostructures. The low energy absorption and minimal scattering in the NIR-II window
(1000–1700 nm) provide better tissue transmission rate and lower photon scattering for
the incident light, which is highly suitable for biomedical applications and photoacoustic
imaging [34–36]. Compared to the NIR-I window, the larger penetration depth and higher
maximum permissible exposure (MPE) to the laser are clear advantages of working in
the NIR-II window. However, very few studies have been performed in the NIR-II win-
dow because of the lack of photosensitive materials of morphology needed to attain high
photothermal efficiency in this tissue window [37,38]. It is noteworthy that no numerical
investigation of the plasmonic properties of non-spherical dimer nanostructures is explored.
This motivates us to investigate models of prolate and oblate-shaped non-spherical dimer
nanostructures to determine their LSPR peaks and absorption cross-sections. Thus, the
present study aims at scrutinizing aspects affecting the resonance frequency and enhance-
ment factor for the gold-based nanostructures.

In this study, we numerically study the optical properties of core-shell nanoparticle
dimers of spherical and spheroidal (non-spherical) shapes. The finite element modelling
study is performed using a commercial software COMSOL Multiphysics to describe the lo-
calized surface plasmon resonance behaviour in the region of separation of the dimer nanos-
tructures. This study compares the optical properties obtained using the non-spherical
prolate and oblate dimer nanostructures with those of the spherical dimer nanoshells.
The effects of varying the aspect ratio, refractive index of the surrounding medium, shell
thickness while maintaining a constant outer radius, and distance of separation between
nanostructures are studied. The results clearly show that a wide range of tunability of
the LSPR peaks in the NIR windows can be obtained for the non-spherical prolate and
oblate nanostructures when compared to the spherical nanoshell dimer. The remainder of
this study is organized by first including the theoretical equations and numerical method.
Secondly, the validation of the numerical method and the effect of the aspect ratio on the
LSPR is investigated for the gold nanostructures. Thirdly, the dependence of LSPR on the
refractive index of the surrounding medium is studied for the spherical and non-spherical
gold nanostructures by using different refractive indices for the surrounding medium.
Finally, we solve the absorption cross-section and electromagnetic field enhancement factor
by varying the shell thickness and distance of separation between core-shell nanostructures.

2. Numerical Method

The numerical study of the optical properties of plasmonic nanostructures using the
finite element method (FEM)-based solver is one of the best alternative methods for the
complex analytical solution to problems involving multiple nanostructures. The schematic
diagrams of core-shell plasmonic dimer nanostructures with a gold shell and a core made of
an aqueous medium are depicted in Figure 1. We perform a 3D modelling and simulation
study based on FEM using a versatile commercial software package COMSOL Multiphysics.
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The optical properties of core-shell structured nanoparticles are calculated using the wave
optics module in COMSOL Multiphysics. The spherical and non-spherical dimers are
illuminated by an incident plane wave propagating along the z-axis and the electric field
polarization along the x-axis with the background electric field Eb = E0 exp(−jk0z). Here,
E0 is the incident electric field, which is set to unity in this numerical study, and k0 is the
free space wave number. Assuming that the electric field is time harmonic, the electric field
distribution E is computed using the Helmholtz equation and represented as follows [39]:

∇×
(

µ−1
r ∇× E

)
− k2

0

(
εr − j

σ

ωε0

)
E = 0, (1)

where µr is the relative permeability, which is taken as unity, ω is the frequency of the
incident light, ε0 is the permittivity of free space, σ is the conductivity, and εr is the relative
permittivity. The relative permittivity, εr = ε/ε0 , is a frequency-dependent complex
dielectric quantity for the gold shell, henceforth symbolized as εAu in this study. Moreover,
as the thickness of the thin metal shell becomes comparable to the mean free path of
conduction electrons (~42 nm), the size effect of bound electrons and interband transition
must also be taken into consideration when calculating the dielectric constant of metal
shell [40]. Thus, the complex dielectric function of gold εAu is introduced by using the
Drude–Lorentz model as follows [41]:

εAu = εAu−exp +
ω2

p

ω(ω + iγbd)
−

ω2
p

ω(ω + i(γbd + γsd))
, (2)

where εAu−exp is the bulk dielectric function for gold [42], and ωp, γbd, and γsd are the
plasma frequency, bulk damping, and damping due to surface scattering, respectively [41].
The damping due to surface scattering is added to the bulk damping in Equation (2) to
obtain the corrected dielectric function for the shell material and is given by [43]:

γsd =
Av f

leff
. (3)

Figure 1. Schematic diagrams of the spherical and non-spherical core-shell nanostructures (top row:
spherical, middle: prolate, bottom: oblate). a and b are the semi-principal axes of the nanostructures,
d is the distance of separation between the outer surfaces of the nanostructures, tAu is the Au shell
thickness, and r is the core radius for the spherical Au nanoshell (AuNS). k is the incident plane wave
along the z-axis, and E is the electric field polarization along the x-axis.
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Here, the phenomenological dimensionless fitting parameter A ranges from 0 to 1
describing the nature of surface scattering and is taken as unity in all simulations [44]. v f is
the Fermi velocity of carrier electrons in the gold shell

(
1.40× 106 ms−1), and the effective

mean free path of the electrons leff in the shell is taken to be equal to the thickness of the
gold shell tAu. Perfectly matched layers (PMLs) together with a scattering type boundary
condition are used to absorb the waves outgoing from the finite-sized computational field
that emulates an infinite domain.

The relative absorption and scattering ability of the core-shell nanostructures can
be obtained by defining the absorption and scattering cross-sections, σabs and σsca, as
follows [45,46]:

σabs =
1
I0

y
QrdV, (4)

σsca =
1
I0

x
(n·Ssca)dS, (5)

where Qr is the power loss density in the nanostructures, n denotes the normal vector
pointing outward from the surface of the nanostructures, Ssca stands for the Poynting vector(

Wm−2
)

, V and S are the volume and surface area of the nanostructures, respectively,

and I0 = ε0nE2
0/2 represents the intensity of the incident wave of amplitude E0 in the

surrounding medium of refractive index n. The enhancement of the incident electromag-
netic field in the AuNSs by several orders of magnitude, leads to numerous absorption
and scattering-based applications, such as surface enhanced Raman scattering [47], tip-
enhanced Raman spectroscopy [48], or drug delivery. I0 = ε0nE2

0/2 indicates that the
local field intensity of the incident wave at a specific point is proportional to the square
of the electric field amplitude. The electromagnetic local field enhancement factor (LFEF)
at a particular position (r0) in the vicinity of the nanostructures can be given as the ratio
of the electric field amplitude at that position

(
E(r0)

2
)

to the electric field amplitude of

the incident wave
(
E2

0
)
. Taking into account the dependency of LFEF on the frequency

(ω0) of the incident wave, the LFEF as a function of the position and frequency can be
represented as LFEF(r0, ω0). In addition, the incoming incident wave at ω0, while emitting
a scattered photon, causes the strong mutual excitation between the dipoles of molecules
and nanostructures at the Raman scattered frequency (ωR). This gives rise to the local
field enhancement at the Raman frequency, and the enhancement factor can be represented
as LFEF(r0, ωR). The total electromagnetic enhancement factor (EF) can be expressed by
the fourth power relation and can be given as [49]:

EF = LFEF(r0, ω0)LFEF(r0, ωR) =
|E(r0, ω0)|2

|E0(r0, ω0)|2
|E(r0, ωR)|2

|E0(r0, ωR)|2
≈ |E(r0, ωR)|4

|E0(r0, ω0)|4
. (6)

Here, the first enhancement is due to the coupling of plasmons and incident pho-
tons, and the second enhancement is due to the coupling of plasmons and emitted pho-
tons [50,51]. The fourth power relation is obtained by taking into consideration an as-
sumption that the Raman scattered frequency is close enough to the frequency of incident
wave (ωR ≈ ω0).

3. Results and Discussion

The optical properties of core-shell nanostructures depend strongly on the size and
shape of the nanostructures and their surrounding environment. The spherical, prolate
and oblate-shaped nanostructures are numerically simulated to analyse the interaction of
the incident light with the dimer configurations. The effects of various core-shell dimer
parameters on the optical properties and tuning sensitivity are studied for all three types
of nanostructures. The total radius of the spherical AuNS and the effective radius of the
non-spherical prolate and oblate nanostructures are kept similar throughout this study
for comparisons of the numerically simulated optical properties. The spherical core-shell
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nanoparticle dimer is composed of an inner core with radius r (nm) and a gold shell with
the thickness tAu (nm), having an interparticle distance d (nm). The effective radius of the
non-spherical prolate and oblate nanostructures is given by the term reff =

3
√

abc, where a,
b, and c are the semi-principal axes of the non-spherical nanostructures. In all simulations,
the values of a and c are kept identical (a = c), and the aspect ratios for the non-spherical
prolate and oblate structures are defined as η = b/a and η = a/b, respectively. Note that,
η = 1 represents the case of spherical nanostructures.

3.1. Numerical Validation

In order to validate our numerical approach that consists mainly of FEM using COM-
SOL Multiphysics package (Version 5.6, COMSOL, Inc. Burlington, MA), we simulate
two cases, AuNP and AuNS, whose absorption characteristics are available in the litera-
ture [52]. The absorption cross-sections for a AuNP and a AuNS for the wavelength range
of 450–800 nm are depicted in Figure 2a,b, respectively. The present numerical approach
is validated by comparing the numerically obtained absorption cross-sections with those
of Oldenburg et al. [52] using the Mie theory. Our numerical results for both nanostruc-
tures are in excellent agreement with the theoretical results derived using the Mie theory,
indicating that our numerical investigation is accurate enough for the purpose of this study.
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3.2. Mesh Independence Test 

Figure 2. Validation of the present numerical model: Absorption spectra for the (a) solid gold nanosphere (AuNP)
(rAu = 20 nm) and (b) silica-gold core-shell nanoshell (rc = 20 nm, tAu = 3 nm) as a function of the incident wavelength,
compared to the Mie theory [52]. The nanostructures are surrounded by water with a refractive index of 1.33.

3.2. Mesh Independence Test

A mesh independence test with identical physical and optical parameters but with a
variable number of mesh elements is performed to establish the accuracy of our numerical
study. A tetrahedral meshing scheme is adopted for the modelling of the spherical and non-
spherical nanostructures. The PMLs with a spherical type swept mesh having 5 elements
across the diameter are used to reduce the reflections in the interior, which then provides a
better convergence of the solver and maximizes the absorption of the propagating wave.
For an increase in the total number of elements from N≈ 207622 to≈324052, the maximum
change in the LSPR peak is 0.01%, as shown in Figure 3. By taking into consideration
the computational cost and independence of mesh, the mesh comparable qualitatively to
N ≈ 207622 is employed for all numerical simulations performed in this study.
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Figure 3. Mesh independence test: Absorption cross sections for the spherical (r = 20 nm,
tAu = 3 nm) and non-spherical (reff = 23 nm, η = 3) core-shell nanostructures. The nanostructures
are surrounded by water with a refractive index of 1.33. Here, N is the total number of mesh elements
used in the present study.

3.3. Aspect Ratio of Prolate and Oblate Nanostructures

The spectral characteristics of the spheroidal core-shell nanostructures with prolate
and oblate shapes having an effective radius of reff = 23 nm and a shell thickness of
tAu = 3 nm for different aspect ratios are shown in Figure 4. The core is considered
to be made of an aqueous medium with a refractive index of 1.33. The longitudinal
polarization of light for strongly interacting dimers is considered for both nanostructures,
as shown in Figure 4a,b. As can be seen in Figure 4a, the maximum absorption cross-section
for the prolate spheroid nanostructure is 1.71× 104 nm2 at an aspect ratio η = 2. The
corresponding peak resonance wavelength for this absorption peak is 1095 nm, which
occurs in the lower wavelength range of the NIR-II window. However, as η increases from 2
to 6, a significant increase in the amount of red-shift is observed in the absorption spectrum.
The wavelength corresponding to the peak resonance at η = 6 is located near 1765 nm,
which is away and beyond the NIR-II window. This implies that for the prolate structure,
the LSPR peak can be rigorously red-shifted, specifically providing an extensive range of
tunability in the NIR-II window by changing the aspect ratio. For the sake of comparison
between the spherical and non-spherical Au nanostructures, the absorption cross-section
for the spherical AuNS dimer (η = 1) is also shown in Figure 4a,b (black dashed curves).
It is noteworthy that the intensity of the LSPR peak for the spherical AuNS dimer is higher
than that for the prolate dimer nanostructure. However, it is clear from Figure 4a that the
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position of the LSPR peak for the prolate dimer exhibits excellent tunability in the NIR
windows. In addition, the occurrence of plasmon modes in the shorter wavelength range
is primarily due to the dipolar plasmon resonances and close proximity of the two prolate
nanostructures.
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Figure 4. Absorption cross-sections at different aspect ratios for the (a) prolate and (b) oblate core-shell nanostructures
(reff = 23 nm, n = 1.33). The insets in panels (a) and (b) show the dependence of the LSPR peak position (λmax) on the
aspect ratio. The electric field enhancement |E/E0| at different aspect ratios for the (c) prolate and (d) oblate nanostructures.
The absorption cross-sections and electric field enhancement for the spherical core-shell dimer nanostructures (η = 1) are
also shown for comparison (black dashed curves).

Figure 4b shows the absorption cross-sections at different aspect ratios for the oblate
spheroid. The amount of red-shift in the LSPR position in the longer wavelength range
is much smaller than that for the prolate dimer nanostructure. However, as the aspect
ratio increases, the peak of absorption cross-section is found to remarkably increase, which
is opposite to the absorption cross-section response for the prolate dimer nanostructures.
The LSPR peak for the aspect ratio η = 6 is 1.5 times the value obtained for η = 2 (the
corresponding wavelengths are 1205 nm for η = 6 and 1065 nm for η = 2). Although the
range of the absorption spectrum can be tuned to a certain extent in the NIR-II window
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for the oblate dimer nanostructures, it is not as wide as the range of the prolate dimer
nanostructures for the same aspect ratios. The insets in the two panels (a) and (b) display
the variations of the wavelength corresponding to the LSPR peak with the aspect ratio for
the spheroidal nanostructures. The electric field enhancements, |E/E0|, at different aspect
ratios are presented in Figure 4c,d for the prolate and oblate nanostructures, respectively. A
clear red-shift in |E/E0| on the surface of prolate and oblate nanostructures together with a
decrease in magnitudes can be seen in the panels. The peaks of near-field enhancement
are distributed across a wide wavelength range, with the peak values ranging extensively
from 1.2 to 14.5 in the two biological windows (NIR-I and NIR-II).

3.4. Refractive Index of the Surrounding Medium

The absorption spectrum of a gold-based nanostructure depends on numerous pa-
rameters such as the morphology of nanostructures, incident electromagnetic field, and
refractive index (n) of the surrounding medium [53]. The refractive index of the surround-
ing medium is one of the main factors on which the sensitivity of the LSPR depends. In this
subsection, we investigate the effect of varying the refractive index, n, on the absorption
spectrum to clearly understand the surrounding medium-dependent optical characteristics
of gold nanostructures of spherical and non-spherical shapes. The two spherical AuNSs
(r = 20 nm, tAu = 3 nm) are separated by a distance of d = 1 nm (the distances between
the outer surfaces of the nanostructures) in all simulations. In order to compare the absorp-
tion spectrum of the spherical AuNS dimer to the non-spherical prolate and oblate dimer
nanostructures, the total effective radii (reff) of the non-spherical nanostructures are kept
the same as the total radius of the spherical AuNS, together with an aspect ratio of η = 3.

To understand the sensitivity of absorption spectra of the spherical and non-spherical
nanostructures to the change in the refractive index of the surrounding medium, we per-
form a set of numerical simulations by placing the nanostructures in solvents of different
refractive indices. As shown in Figure 5a, as the refractive index increases from n = 1.33
(water) to 1.49 (toluene), a clear red-shift in the LSPR peak for the spherical AuNS dimer is
observed. The lower energy plasmon modes occurring in the longer wavelength region
(NIR-II window) and the higher energy secondary modes occurring in the shorter wave-
length region (NIR-I window) indicate that they can be easily tuned in the two biological
windows by varying the refractive index of the solvent. Similar kinds of absorption spectra
can be observed for the non-spherical prolate and oblate nanostructures, as depicted in
Figure 5b,c respectively. Besides, the amount of red-shift is significantly greater for the
non-spherical nanostructures as opposed to the spherical nanostructure. The wavelengths
corresponding to the LSPR positions at n = 1.49 for the spherical, oblate, and prolate
nanostructures are 1100 nm, 1220 nm, and 1380 nm, respectively. The plasmon resonance
peaks and their positions for these spherical and non-spherical gold nanostructures exhibit
great dependency on the real part of the dielectric constant of the metal, Re(εAu) [54].
The spectral position of the absorption peak is represented by the following resonance
condition [44]:

Re(εAu) ≈ −2εm, (7)

where εm is the dielectric constant of the surrounding medium, which is equal to n2 [55–58].
This dependency on the refractive index is clearly evident in the absorption spectra obtained
for the spherical, prolate, and oblate nanostructures, as can be seen in Figure 5a–c. The
insets in Figure 5a–c depict the variations of the LSPR peak with the refractive index.
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In order to compare our numerical results with experimentally obtained ones, we
perform numerical simulations of the hollow AuNS monomer and solid gold nanosphere
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monomer with the same dimensions as the experimental study of Sun et al. [59]. Their
comparison is presented in Figure 6a. The relative shift in the peak position, ∆λmax, shows
linear dependency on the refractive index of the surrounding medium. Here, ∆λmax is de-
fined as the relative shift in the peak position from the value of gold nanostructure in water,
of n = 1.33, to indicate its dependency on the refractive index. The nature of the graph shows
that the sensitivity factor is a ratio between the relative shift in the peak position, ∆λmax,
and the change in the refractive index, ∆n (RIU). The sensitivity factors (∆λmax/∆n) given
by the slopes in this figure are calculated as 385 nm/RIU and 66 nm/RIU for the AuNS
and solid Au nanosphere, respectively. These numerically obtained sensitivity factors
are in good agreement with the experimental values, 405 nm/RIU and 62 nm/RIU [59].
In the same manner, the sensitivity factors for the numerically simulated spherical and
non-spherical Au nanostructures are computed and shown in Figure 6b. The relative
shift in the peak position for the dimer nanostructures clearly shows better sensitivity
when compared with the monomer counterparts of solid Au nanosphere and AuNS. The
slopes for the three dimer nanostructures indicate that the prolate spheroid dimers are the
most sensitive nanostructures among the three types, with a slope of 871.45 nm/RIU. This
suggests that a wide range of tunability of LSPR in the NIR-II biological window can be
obtained for prolate spheroid dimers with a sensitivity 1.5 times more than the case of the
spherical AuNS dimers (577.78 nm/RIU). For different surrounding media considered in
this numerical study, the electric field enhancements, |E/E0|, for the spherical, prolate, and
oblate Au nanostructure dimers are depicted in Figure 5d–f, respectively. It is noteworthy
that as the refractive index increases, the maximum of |E/E0| in the lower energy mode
slightly decreases for the non-spherical nanostructures but remains nearly constant for the
spherical AuNS dimer.
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3.5. Au Shell Thickness and Distance of Separation 

Figure 6. (a) Variations of the relative shift in the peak position (with respect to that for water, n = 1.33), ∆λmax,
with the refractive index of the surrounding medium for the Au nanoshell (rc = 25 nm, tAu = 4.5 nm) and solid Au
nanosphere (rAu = 25 nm), compared with the experimental study of Sun et al. [59]. (b) Variations of the rela-
tive shift in the peak position, ∆λmax, with the refractive index for the spherical (r = 20 nm, tAu = 3 nm) and non-
spherical (reff = 23 nm, η = 3) core-shell Au nanostructures. The straight lines in panels (a) and (b) represent the slopes of
the data for the nanostructures.

3.5. Au Shell Thickness and Distance of Separation

To further investigate the structure-dependent absorption characteristics of the spheri-
cal and non-spherical gold nanostructures, the thickness of the Au shell is considered as a
parameter in this subsection. Figure 7 presents the absorption cross-sections at different
shell thicknesses for the spherical and non-spherical dimer nanostructures while keeping
the effective radius of the nanostructures and distance of separation fixed at reff = 23 nm
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and d = 1 nm. In order to see the effect of shell thickness, seven different shell thicknesses,
ranging from 1 nm to 5 nm, are selected. The most distinctive feature in the three types of
dimer nanostructures is that as the thickness of Au decreases, there is a clear red-shift in
the LSPR peaks in the NIR-II window. This obvious red-shift with decreasing thickness
can be attributed to an increase in the Au–Au shell interaction, which results in a greater
energy separation between higher and lower energy modes [60]. For a shell thickness of
1 nm, the maximum red-shift for the spherical dimer nanostructure is 1591 nm, whereas
those for the prolate and oblate nanostructures are 2095 nm and 1794 nm, respectively. The
LSPR peaks of the lower energy modes in the longer wavelength region are mainly due
to the dipole modes, and the higher energy modes occurring in the shorter wavelength
region are due to the plasmon resonant coupling of quadrupole modes. A strong red-shift
in the absorption peak for the lower energy resonance occurring in the longer wavelength
region corresponds to the plasmon hybridization in the hollow core and outer shell of
the dimer nanostructures. This plasmon hybridization in the Au nanostructures gives
rise to the antisymmetrically coupled higher energy (antibonding) plasmon mode and a
symmetrically coupled lower energy (bonding) plasmon mode [61].
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The evolution of LSPR in the core-shell dimer nanostructures with spherical and
non-spherical shapes is numerically investigated and depicted in Figure 8.
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Figure 8. Absorption cross-sections at different distances of separation (d = 0.5 nm to 5 nm) for the (a) spherical
nanostructure (r = 20 nm, tAu = 3 nm), (b) prolate, and (c) oblate Au core-shell dimer nanostructures (reff = 23 nm, η = 3).
The electric field enhancement factors, |E/E0|, for the (d) spherical, (e) prolate, and (f) oblate nanostructures.
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An experimental investigation on the AuNSs using water as the inner core and
surrounding material was performed previously [26]. Here, we study the effect of the sepa-
ration distance (d) between the outer surfaces of spherical (r = 20 nm, tAu = 3 nm) and
non-spherical (reff = 23 nm, η = 3) dimer nanostructures. The total effective radius (reff)
for the prolate and oblate structures is kept the same as the outer radius of the spherical
AuNS. Figure 8a–c shows the absorption cross-sections for the spherical, prolate, and
oblate Au nanostructures, respectively. As the separation distance between the nanoshells
decreases from d = 5 nm to 0.5 nm, there is a red-shift in the absorption cross-section
peak for the three nanostructures. A significantly stronger interaction of the individual
nanostructures due to the dimer configuration with a much smaller distance of separation
gives rise to a larger red-shift in the absorption cross-section peak. The most red-shift into
the NIR-II window occurs for the least separation distance d = 0.5 nm with λmax equal to
1082 nm, 1355 nm, and 1152 nm for the spherical, prolate, and oblate Au nanostructures,
respectively. In particular, two distinct resonance peaks are observed in the absorption
spectra, one in the longer wavelength region (NIR-II window) and the other in the shorter
wavelength region (NIR-I window), as can be seen in Figure 8a–c. The resonance peaks
with higher magnitudes in the longer wavelength region occur due to the coupling of the
bonding modes in the dimer structure, whereas the peaks with very low magnitudes in the
shorter wavelength region are a result of the coupling of the anti-bonding modes of the
individual spherical and non-spherical nanostructures [62]. As the distance of separation
decreases from d = 5 nm to 0.5 nm, the higher energy quadrupole modes in the shorter
wavelength region are red-shifted by a small amount, which is in good agreement with
previous studies [63,64].

For the same aspect ratio η = 3, the peaks of absorption cross-sections are above
4× 104 nm2 for the oblate nanostructure, whereas they are well below 2× 104 nm2 for
the prolate structures, suggesting that the absorption of the oblate structure is more than
twice as large as that of the prolate structure. Interestingly, for the oblate and spherical
nanostructures, the peak of absorption is barely influenced by a change in the distance of
separation. For the prolate structure, on the other hand, the peak shows greater depen-
dence on the distance of separation and, with increasing distance, drastically increases
(1.40× 104 nm2 for d = 5 nm to 0.77× 104 nm2 for d = 0.5 nm). This dependency and
resulting red-shift are due to the strong surface plasmon resonance coupling, indicating a
significant electromagnetic interaction between the dimer nanostructures for the distances
of separation considered in this study. Figure 8d–f shows the electric field enhancement
values, |E/E0|, for the spherical, prolate, and oblate Au dimer nanostructures, respectively.
As can be seen in the figures, as the distance of separation increases, the blue-shift in the
LSPR peak is observed. For the spherical nanostructure, as the distance of separation
increases from 0.5 to 5 nm (see Figure 8f), the electric field enhancement undergoes a slight
decrease and the LSPR peak shifts nearly 175 nm towards the shorter wavelength (1085 nm
for d = 0.5 nm to 910 nm for d = 5 nm).

4. Conclusions

In this paper, we presented a numerical analysis of the absorption cross-sections and
electromagnetic field enhancement of the spherical and non-spherical core-shell dimer
nanostructures by solving the Helmholtz equation, using the complex dielectric function of
gold derived from the Drude–Lorentz model. The study is performed by introducing finite
element modelling in COMSOL Multiphysics with dimer nanostructures encapsulated by
perfectly matched layers (PMLs) and scattering type boundary conditions. The present
numerical model is validated by comparing the numerically obtained absorption cross-
sections with those of Oldenburg et al. [52]. Upon coupling of two core-shell nanoparticles
to form a dimer, the localized surface plasmon resonance (LSPR) peaks are rigorously red-
shifted, specifically providing an extensive range of tunability in the NIR-II window. The
monomer counterpart with the identical morphology does not exhibit this behaviour since
the range of tunability is limited to the NIR-I window. Furthermore, when compared to the
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monomer counterparts of gold nanoshell (AuNS), the relative shift in the peak position for
dimer nanostructures clearly displays superior sensitivity. In addition, the absorption cross-
sections and electric field enhancement at different refractive indices of the surrounding
medium, gold shell thicknesses, and distances of separation between the nanostructures
are discussed in this paper. The slopes of the relative shift in the peak position for the three
dimer nanostructures indicate that the prolate dimers are the most sensitive to change in the
refractive index of the surrounding medium, with a wide range of LSPR tunability in the
NIR-II biological window. The study shows that the LSPR peak position is influenced more
by the thickness of the Au shell than the distance of separation between the nanostructures.
The results reported here can be crucial in biomedical applications for accurately predicting
the optical properties of gold nanostructures.
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