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Abstract

Emerging evidence has identified viral circular RNAs (circRNAs) in human cells infected by viruses, interfering with the immune 
system and inducing diseases including human cancer. However, the biogenesis and regulatory mechanisms of virus- encoded 
circRNAs in host cells remain unknown. In this study, we used the circRNA detection tool CIRI2 to systematically determine the 
virus- encoded circRNAs in virus- infected cancer cell lines and cancer patients, by analysing RNA- Seq datasets derived from 
RNase R- treated samples. Based on the thousands of viral circRNAs we identified, the biological characteristics and potential 
roles of viral circRNAs in regulating host cell function were determined. In addition, we developed a Viral- circRNA Database 
(http://www.hywanglab.cn/vcRNAdb/), which is open to all users to search, browse and download information on circRNAs 
encoded by viruses upon infection.

DATA SummARy
Public virus- infected RNA- Seq data were collected from the National Center for Biotechnology Information (NCBI) Gene Expression 
Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/) and summarized in Tables S1–S3 (available in the online version of this article). 
Raw sequencing data generated from our own laboratory were deposited under NCBI BioProject Accession PRJNA756819 (https://
www.ncbi.nlm.nih.gov/bioproject/PRJNA756819/). We confirm all supporting data, code and protocols have been provided within 
the article or through supplementary data files.

InTRoDuCTIon
Cancer is a genetic disease in which tumour cells grow uncontrollably and invade nearby tissues or spread to other parts of the body 
[1]. According to the Global Cancer Statistics 2020 [2], cancer was the leading cause of disease mortality, with 10 million deaths in 
2020. Female breast cancer has been the most commonly diagnosed cancer with an estimated 0.69 million deaths (6.9 %), followed by 
lung, colorectal, prostate and stomach cancers. Viruses cause a variety of human diseases including malignancies [3]. It is estimated 
that Epstein- Barr virus (EBV) infects 90 % of the world’s population and is related to nasopharyngeal carcinoma (NPC), gastric 
cancer (GC), Burkitt lymphoma (BL), post- transplant lymphoproliferative disorder (PTLD) and natural killer (NK)/T cell lymphoma 
[4, 5]. Kaposi’s sarcoma- associated herpesvirus (KSHV) is a causative agent of primary effusion lymphoma (PEL) and multicentric 
Castleman’s disease (MCD) [6]. Rhesus macaque lymphocryptovirus (rLCV), EBV and KSHV all belong to the gammaherpesvirus 
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family and play a role in the occurrence and development of tumours [7]. Human papillomavirus (HPV), one of the most common 
viruses infecting the reproductive system, with more than 200 subtypes identified, is responsible for most cervical cancers and leads 
to vulvar cancer, penile cancer, vaginal cancer, anal cancer and oropharyngeal cancer [8–10].

Circular RNAs (circRNAs) are produced from pre- mRNA through back- splicing to form a covalently closed loop structure without a 
5′-end cap and 3′-end poly(A) tail [11–13]. Viroids, single- stranded, covalently closed circular RNA molecules, were observed under 
an electron microscope in 1976 [14] and were the first ‘circular- form RNA’ discovered in nature. Of note, viroids are circular RNAs 
which are self- replicating, while circRNAs are classically understood as circular RNA transcripts expressed from genes. Since then, 
some studies have identified several circular transcripts and proposed their underlying mechanisms [11, 15]. Since about 2010, when 
high- throughput sequencing was burgeoning, thousands of circRNAs have been detected as being expressed in eukaryotes [16, 17], 
functionally modulating molecular activities by sponging micro RNAs (miRNAs) [18], interacting with RNA binding proteins (RBPs) 
[12], affecting parental gene expression [19] and encoding polypeptides [20]. Moreover, circRNAs may serve as promising biomarkers 
for human diseases due to their stability, conservation and high abundance in body fluids [21].

In recent years, virus- encoded circRNAs have been reported to be expressed and functional in virus- infected human tissues 
or cell lines [22–28]. These studies presented new research opportunities for understanding viral non- coding RNA and viral 
oncogenesis. EBV circRNAs may act as human miRNA sponges during viral infection, the cell cycle and oncogenesis [29]. 
HPV E7 protein can be translated by N6- methyladenosine (m6A)- modified circE7 to promote cancer cell growth [27], as 
m6A recruits the ribosome to mediate translation initiation from the middle of the genome [30]. However, it remains a major 
challenge to recognize virus- encoded circRNAs and understand their functions in host cells.

According to two independent benchmarking studies on circRNA detection tools [31, 32], CIRI [33], CIRCexplorer [34] and KNIFE 
[35] achieved excellent performance in balancing sensitivity and precision. Moreover, because viral genomes are not well annotated, 
de novo circRNA detection tools (such as CIRI2 [36], find_circ [37] and circRNA_finder [38]) that do not depend on genome 
annotation were considered. In this study we used CIRI2 [36] to systematically identify circRNAs of viral origin based on RNase 
R (a 3′exonuclease that digests linear RNAs)- treated and circRNA- enriched RNA- Seq data from cancer samples.Based on the viral 
circRNAs identified by CIRI2, we analysed and annotated these circRNAs to obtain systematic insight into the characteristics of viral 
circRNAs. We further developed a database for viral circRNAs to facilitate the retrieval of information related to viral circRNAs to 
explore their roles in host cells.

mETHoDS
Analysis workflow
The analysis workflow is outlined in Fig. 1. First, RNase R- treated RNA- Seq samples were collected, and raw reads were preproc-
essed by a quality control pipeline (Step 1). Then, the circRNA detection tool CIRI2 was used to identify viral circRNAs (Step 2). 
Finally, the viral circRNAs were annotated, analysed and stored in the Viral- circRNA database.

RnA-Seq
Total RNA- Seq or RNase R- treated RNA- Seq data are suitable for circRNA identification. To control for false positives, only 
RNase R- treated RNA- Seq samples were taken to identify viral circRNAs. Virus- infected and RNase R- treated RNA- Seq data 
were downloaded from the NCBI GEO [39] and covered six viruses, EBV, KSHV, rLCV, Middle East respiratory syndrome 
coronavirus (MERS- CoV), HPV and hepatitis B virus (HBV) (Table S1). Six poly(A)- selected tumour datasets infected by 
viruses included in our study (Table S2) were downloaded from the GEO database for false discovery rate (FDR) estimation.

Additionally, three RNase R- treated RNA- Seq samples, including two HPV- infected samples from patients with cervical 
cancer and one HBV- infected liver cancer cell line, Hep3B, were generated by our own laboratory. Human cervical cancer 
samples were collected from Tongji University Shanghai East Hospital. The raw and processed sequencing data were submitted 
to the SRA database (https://www.ncbi.nlm.nih.gov/sra) [40] under accession number PRJNA756819.

Impact Statement

Viral circular RNAs (circRNAs) have been recently identified in infected host cells, but recognizing virus- encoded circRNAs and 
understanding their functions in diseases is at an early stage. In this study, we systematically identified thousands of the virus- 
encoded circRNAs in virus- infected cancer cell lines and patients. Furthermore, the biological characteristics and potential 
roles of viral circRNAs in regulating host cell function were determined. Finally, virus- encoded circRNAs were deposited in the 
Viral- circRNA Database. Overall, the findings will provide novel insight into the world of viral physiology and pathology.

https://www.ncbi.nlm.nih.gov/sra
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Fig. 1. An analysis pipeline to identify viral circRNAs from RNase R- treated RNA- Seq data of virus- infected tumour samples. The schematic depiction 
shows the three steps of the workflow, which include data collection and processing, identification of viral circRNAs, and data analysis and construction 
of the Viral- circRNA Database.

RnA quantification, sample preparation, library construction and Illumina sequencing
RNA degradation and contamination were monitored on 1 % agarose gels. RNA purity was checked using a NanoPhotometer spectro-
photometer (IMPLEN). RNA concentration was measured using a Qubit RNA Assay Kit in a Qubit 2.0 Fluorometer (Life Technolo-
gies), and RNA integrity was assessed using the RNA Nano 6000 Assay Kit of the Bioanalyzer 2100 system (Agilent Technologies). 
For circRNA sequencing, ribosome- depleted and RNase R- treated RNA samples were used as input material for the RNA sample 
preparations. Sequencing libraries were generated using the NEBNext UltraTM RNA Library Prep Kit for Illumina (NEB) following 
the manufacturer’s recommendations. Clustering of the index- coded samples was performed on a cBot Cluster Generation System 
using a TruSeq PE Cluster Kit v3- cBot- HS (Illumina) according to the manufacturer’s instructions. After cluster generation, the library 
preparations were sequenced on an Illumina HiSeq platform, and 125 bp/150 bp paired- end reads were generated.

Ninety- six severe acute respiratory syndrome coronavirus- 2 (SARS- CoV- 2)- infected total or rRNA- depleted RNA- Seq samples 
across nine datasets (Table S3) were downloaded from the GEO database for additional analysis.

Processing of raw RnA-Seq data
The quality of sequencing reads was evaluated with FastQC v0.11.6 (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) 
[41]. Raw reads from the RNA- Seq data were processed by removing adapters and low- quality bases using FASTQ v0.21.0 [42] 
with default parameters and by reducing sequence duplication using PRINSEQ- lite v0.20.4 [43] with derep=1.

Identification of viral circRnAs
The clean reads were then aligned to a reference genome of the virus with BWA- MEM using parameter -T 19 recommended 
by the CIRI2 manual. CIRI2 v2.0.6 [36] was applied with default parameters to identify viral circRNAs. The viral circRNA 
with at least two junction reads in its back- splicing site was initially identified. After basic statistics, to control for false 
positives, circRNAs with at least five junction reads were selected for further analysis. CircRNAs with the same back- splicing 
site identified from different samples were integrated as one circRNA.

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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Characterization of viral circRnAs
In the next step, these viral circRNAs were analysed in terms of their host genes, their length, transcription strand, the number 
of junction reads and their expression levels. The expression level of a viral circRNA was measured by the natural logarithm of 
counts per million mapped reads (CPM), which was calculated as follows:  CPM =

( n
N
)
× 106 , where n and N represent the number 

of junction reads and the number of mapped reads, respectively.

Function analysis of viral circRnAs
CircRNAs with junction reads ≥5 and with lengths ≤1 kb and human miRNAs from miRBase [44] were collected to predict 
miRNA–circRNA interactions using miRanda v3.3a [45] and TarPmiR [46]. To control for false positives, strict parameter 
settings were used for the prediction, and only interactions identified by both tools were accepted for further analysis. The 
parameters for miRanda were Max Score ≥160 and Max Energy≤−20 kcal mol–1, and for TarPmiR, they were Binding Prob-
ability=1 and Energy≤−20 kcal mol–1.

To measure the quality of the predicted miRNA–circRNA interactions, the outputs of miRanda including two metrics – Max 
Score and Max Energy – as well as the output of TarPmiR – Energy – were integrated to calculate a combined quality score. 
Max Score, Max Energy and Energy were respectively scaled to between 0 and 1 by min- max normalization. Because lower 
energy means a more thermodynamically stable binding, Max Energy in miRanda and Energy in TarPmiR were inverted 
before scaling. The combined quality score was defined as the average of the scaled outputs of miRanda and TarPmiR, with 
higher scores indicating higher quality. Based on miRNA–circRNA interactions, the Cytoscape 3.9.1 software [47] was used 
to build an interaction network in which the width of edges was determined by the combined quality score.

Furthermore, miRNA–mRNA interactions were retrieved from the miRNA target databases TargetScan [48], miRDB [49] and 
miRTarBase [50]. Finally, Gene Ontology (GO) [51] and Kyoto Encyclopedia of Genes and Genomes (KEGG) [52] pathway 
enrichment analyses were conducted on the overlapping miRNA targets shared by the three databases using the R package 
clusterProfiler v3.18.1 [53]. All the KEGG pathways and GO terms with q- values <0.05 were considered as significant enrichment.

Graphical visualization
The R package circlize v0.4.12 [54] were used to visualize viral circRNAs. Viral circRNAs with abundant isoforms were plotted 
by SpliceV [55]. The coverage curve of circRNAs on the viral reference genomes were generated by Gviz v1.34.1 [56].

Development of the Viral-circRnA Database
The Viral- circRNA Database (http://www.hywanglab.cn/vcRNAdb/) was built on the Django (version 2.2.7) framework and 
run on the Apache 2 web server with MySQL (version 5.7.24) as the database engine. The JavaScript libraries Echarts and 
Highcharts were used for drawing graphs. The database is available online without registration and was optimized for most 
prevalent browsers, such as Chrome.

Statistical analysis
The Benjamini and Hochberg procedure was used to calculate adjusted P- values in GO and KEGG enrichment analyses. The 
Wilcoxon rank- sum test was used to compare the ln(CPM) values between long and non- long circRNAs. All statistical analyses 
were executed in R.

RESuLTS
Data collection and identification of viral circRnAs
To identify circRNAs of viral origin in host cells, we interrogated RNase R- treated RNA- Seq samples from virus- infected cell 
lines and patients with lymphoma, lung adenocarcinoma, cervical carcinoma and gastric carcinoma (Figs. 1 and 2a) from the 
NCBI GEO/SRA database. Among them, 69 % (27 of 39) of samples were from lymphoma patients, including the following 
subtypes: rhesus macaque lymphoma, primary effusion lymphoma, Burkitt’s lymphoma and B cell lymphoma. In addition, three 
supplementary RNase R- treated RNA- Seq samples were generated by our own laboratory, including two HPV- infected samples 
from patients with cervical cancer and one HBV- infected liver cancer cell line, Hep3B. In total, our analysis included 41 cancer 
samples (Table S1) infected with six types of viruses: KSHV, EBV, rLCV, MERS- CoV, HBV and HPV.

Raw reads from the RNA- Seq data were processed by removing low- quality reads and adaptor dimers and by controlling sequencing 
duplication. After clean reads were aligned to the viral genome, the circRNA detection tool CIRI2 was used to identify 3912 viral 
circRNAs (Fig. 1). Among them, 3198 were from MERS- CoV, followed by 590 from KSHV, 102 from EBV, 19 from rLCV and 
three from HPV18 (Fig. 2b). To estimate the FDR, we collected the poly(A)- selected RNA- Seq datasets with at least one dataset 
for each cancer type infected with the viruses in our study (Table S2) and identified the circRNAs with the tool CIRI2. CircRNAs 

http://www.hywanglab.cn/vcRNAdb/
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Fig. 2. Statistical data of viral circRNAs. (a) Pie chart showing the distribution of cancers included in this analysis. The subgraph of the pie chart shows 
the subtypes of lymphoma. (b) The number of viral circRNAs identified from five viruses, MERS- CoV, KSHV, EBV, rLCV and HPV18. (c) The distribution 
of the number of junction reads for detecting viral circRNAs from each sample. (d) The distribution of circRNA expression measured by the natural 
logarithm of CPM. (e) The distribution of viral circRNA length. (f) The number of circRNAs identified across the samples. Graphical representation of EBV 
(g), KSHV (h), MERS- CoV (i) and rLCV (j) circRNAs using the program circlize. The outer circle of the viral genome is arranged in clockwise order, with 
each arch connecting the starting position and ending position of a single circRNA in the inner circle. The gradient colour of the arches corresponds to 
the expression level of circRNAs, characterized by the natural logarithm of the average CPM for each circRNA. Both positive- (red) and negative- (blue) 
strand circRNAs are shown. The purple curve and blue curve in the middle circle indicate the number of viral circRNAs for which each nucleotide is 
covered on the plus strand and minus strand, respectively.

detected in both poly(A)- selected and RNase R- treated samples were considered to be false positives. Therefore, the estimated 
FDR was 0.0043 (17 of 3912).

Lengths and expression levels of viral circRnAs
The number of junction reads of circRNAs in each sample varied from two to 34 232, and 70 % (4139 of 5924) of the circRNAs 
had at least five junction reads (Fig. 2c), suggesting their reliability as true positives. Based on the number of junction reads, the 
expression levels of viral circRNAs were measured as CPM. Of note, the expression levels of 45 % (2694 of 5924) of the circRNAs 
were greater than 1, and 12 % (714 of 5924) reached up to 10, showing that a small portion of circRNAs had relatively high 
expression levels (Fig. 2d). For circRNAs with the same back- splicing site identified from different samples, we integrated them 
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as one circRNA. The statistics also showed that 50 % (1963 of 3912) of circRNAs ranged from 200 to 500 bp in length, which 
was in line with the characteristics of circRNAs. Interestingly, 8 % (311 of 3912) of circRNAs had almost head- to- tail joining of 
viral genomes with lengths ≥10 kb (Fig. 2e). Among 3912 viral circRNAs, 2602 were only identified in one sample, 738 across 
two samples, 515 across three samples, 36 across four samples and 21 across at least five samples, suggesting that the circRNAs 
identified across more samples are more likely to be true positives (Fig. 2f). However, the circRNAs only identified in one sample 
were not necessarily false positives due to the limited sample size.

To further control for false positives, we selected circRNAs with at least five junction reads covering the back- splicing sites as 
high- confidence viral circRNAs for the following analysis. As a result, the estimated FDR of these circRNAs declined to 0.0023 
(six of 2612). We created circular diagrams to display back- splicing sites (inner circle) and coverage of junction reads (middle 
circle) collectively on the viral genome (outer circle) (Fig. 2g–j). In the inner circle, the starting position and ending position of 
a circRNA are connected by a curve, with red and blue representing the positive strand and negative strand, and darker colours 
implying higher expression. EBV circRNAs were ubiquitously highly expressed (Fig. 2g). In the middle circle, circRNAs expressed 
from the positive strand and negative strand are shown in purple and blue, respectively, with the y- axis representing the coverage 
of junction reads. In EBV (Fig. 2g), KSHV (Fig. 2h) and rLCV (Fig. 2j), the circRNAs were primarily expressed on the positive 
strand. However, in MERS- CoV (Fig. 2i), more circRNAs were expressed on the negative strand. Moreover, in EBV, MERS- CoV 
and rLCV (Fig. 2g, i, j), interestingly, there were some arrow- pointing circRNAs with back- splicing sites almost joining across 
the entire genome in a head- to- tail manner, demonstrating the long- range cyclization of genomic RNAs.

Host genes of viral circRnAs
To observe the host genes from which viral circRNAs were transcribed, we annotated the circRNAs (junction reads ≥5) by 
connecting their genomic positions to loci of viral genes (Fig. 3). The results showed that one viral gene could produce multiple 
circRNA isoforms, with the viral genes RPMS1/A73/BARF0 and EBNA in EBV (Fig. 3a), K7 and ORF68/ORF69 in KSHV 
(Fig. 3b), orf1ab in MERS- CoV (Fig. 3c) and RPMS1 in rLCV (Fig. 3d) expressing the most circRNAs. For example, in EBV 
(Fig. 3a, e), 21 circRNA isoforms were transcribed from RPMS1, followed by 13 from A73, 12 from BARF0 and 10 from EBNA. 
However, because A73 and BARF0 have overlapping genome loci with RPMS1, some circRNAs are shared by these genes. In 
KSHV, 124 circRNA isoforms were transcribed from K7 (Figs 3b and S1a). Similarly, we observed an obvious peak at K7 (Fig. 2h), 
indicating abundant expression of K7 circRNAs in KSHV. Moreover, 459 circRNAs were transcribed from orf1ab, a gene covering 
approximately 60 % of the genome in MERS- CoV (Figs 3c and S1b). Two types of gammaherpesviruses, RPMS1 and rLCV, share a 
highly conserved transcript repertoire [57]. Remarkably, RPMS1 in EBV produced the most circRNA isoforms, and its orthologue 
in rLCV produced 10 different isoforms (Figs 3d and S1c). The circRNAs expressed from EBV RPMS1 have been reported to be 
relevant to tumour proliferation, apoptosis, invasion and metastasis [58]. Our combined results were in line with previous reports 
on viral circRNAs, such as circRNAs transcribed from RPMS1 [22, 26, 28], EBNA [26], BHRF1 [26], LMP2 [22, 26] and BHLF1 
[26] in EBV; K7 [22, 25] and vIRF- 4 [22, 23, 25] in KSHV; and RPMS1 and EBNA in rLCV [23]. These circRNAs are worthy of 
further investigation to explore their potential functions in cancers.

Gammaherpesviruses such as EBV are involved in conversion of the infection state between latent and lytic phases. During 
much of its lifecycle, EBV remains silenced in the latent state to escape the host’s immune system, with only latent genes being 
expressed. During lytic infection, EBV switches to an active state, leading to extensive gene expression with the production of 
infectious viruses [59]. To evade immune recognition, EBV establishes different latent gene expression patterns consisting of 
EBNA, LMP, BART and an untranslated RNA called EBER [60]. As most of the EBV samples in our analysis were in a latent 
state [26], we observed that the major EBV circRNAs were transcribed from latent genes, such as EBNA, LMP and RPMS1/A73/
BARF0 (Fig. 3a), indicating that these circRNAs might mediate immune escape similar to their linear transcripts. By comparison, 
most KSHV samples were in a lytic state, so KSHV circRNAs were primarily transcribed from lytic genes such as K7, ORF68 and 
ORF69, and only a small proportion of them were from latent genes, including ORF71, ORF72, ORF73 and K12 [61] (Fig. 3b). 
Significantly, K7, as the gene producing the most isoforms in KSHV, shares its locus with a long non- coding polyadenylated 
nuclear (PAN) RNA, which is the most abundant viral transcript during lytic replication [62]. Together, the expression of viral 
circRNAs is dependent on the infection state when host genes are activated. Therefore, as a supplement to linear transcripts, viral 
circRNAs may regulate the molecules of both viruses and infected cells because of their circular conformation and complementary 
sequence with linear RNAs to finally escape antiviral sensing of the host immune system in the latency state and manufacture 
more viruses in the lytic state.

Viral circRnAs as miRnA sponges
It is well known that endogenous circRNAs can function as miRNA sponges in eukaryotes [18]. To observe whether viral 
circRNAs can act as sponges to bind the miRNAs of the infected host cells, we used the miRNA target prediction tools miRanda 
(v3.3) [45] and TarPmiR [46] to predict the interactions between circRNAs and host miRNAs. We implemented this analysis on 
the circRNAs (length <1 kb and junction reads ≥5) and host miRNAs from the comprehensive miRNA database miRBase [44]. 
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Fig. 3. Viral genes originating from EBV (a), KSHV (b), MERS- CoV (c) and rLCV (d). The number of circRNAs that overlap with each viral gene is shown in 
the bar plot, which reflects the number of circRNA isoforms transcribed from each gene. (e) Graphical representation of EBV circRNAs with abundant 
isoforms made by SpliceV. Orange arrows demonstrate the genome structure of each virus. Genome regions outlined with black solid lines depict 
different circRNA isoforms generated from those regions.

Based on the strict parameter settings (see Methods), our analysis identified 89 miRNA–circRNA pairs with 21 unique human 
miRNAs that were predicted by both tools.

To identify the important miRNAs with strong interaction to viral circRNAs, we integrated the outputs of miRanda including two 
metrics – Max Score and Max Energy – as well as the output of TarPmiR – Energy – to calculate a combined quality score of the 
interaction. Then we built a network in which wide edges represented a high quality score, and we focused on those hub miRNAs 
with multiple connections to circRNAs. The results showed that hsa- miR- 6848–5p interacted with 21 KSHV circRNAs (Fig. S2a); 
hsa- miR- 3085–5p (Fig. S2b), hsa- miR- 6858–5p (Fig. S2c) and hsa- miR- 8063 (Fig. S2d) respectively interacted with 18, 10 and nine 
MERS- CoV circRNAs; and hsa- miR- 6747–5p interacted with four MERS- CoV circRNAs and one KSHV circRNA (Fig. S2e). More 
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importantly, five MERS- CoV circRNAs interacting with hsa- miR- 6747–5p had very high quality scores showing wide edges in 
the sub- network (Fig. S2e), providing more solid evidence for the potential role of hsa- miR- 6747–5p in viral circRNA regulation. 
Other miRNAs with more than two interactions were shown in Fig. S2(f–k). According to the literature, hsa- miR- 8063 was found 
to inhibit pancreatic cancer progression through inducing inhibition on ZFP91 [63], to suppress the epithelial–mesenchymal 
transition of lung cancer cells by regulating its target gene MAGAT3 [64], and to induce cell migration through inhibition of the 
tumour suppressor FOXN2 [65]. Hsa- mir- 4745–5p was strongly dysregulated in Parkinson’s disease (PD) and can be directly 
regulated by HNF4a [66], which was identified as a longitudinal PD blood biomarker [67]. Hsa- mir- 4745–5p was also observed 
to be upregulated in patients with colorectal cancer [68]. These all suggest there are potential interactions between host miRNAs 
and viral circRNAs, and some miRNAs deserve further investigation for their potential role in the regulation of viral pathology.

To further explore the functions of viral circRNAs, we used three miRNA target databases, TargetScan [48], miRDB [49] and 
miRTarBase [50], to retrieve the target genes of the 21 miRNAs above. This analysis led to the identification of 638 miRNA–mRNA 
interactions and 604 target genes. Enrichment of target genes based on KEGG pathway and GO analyses showed significantly 
enriched pathways and functions (Fig. 4). The top 10 enriched KEGG pathways showed a strong correlation with viruses and 
cancer (Fig. 4a), suggesting that viral circRNAs in tumour samples participate in viral infection and tumorigenesis. GO- enriched 
terms provided clues to how viral circRNAs play regulatory roles in the infected host cells. Viral circRNAs may regulate the 
cell cycle and protein structure and localization (Fig. 4b) through transcription repressor activity (Fig. 4c). In addition, cellular 
component terms, including nuclear envelope and nuclear speck, were enriched (Fig. 4d). Overall, the enriched functions were in 
line with the roles of viruses, indicating that some viral circRNAs function as host miRNA sponges to regulate infected host cells.

negative strand bias of viral circRnAs in coronavirus
There were 3198 viral circRNAs identified in MERS- CoV, accounting for 82 % of the total in this study (Fig. 2b). These circRNAs 
were identified from one study in which the human lung cancer cell line Calu- 3 was infected with MERS- CoV for 6 and 24 h 
in vitro, followed by RNase R- treated RNA- Seq. Our analysis identified dozens of circRNAs in cell lines at 6 h post- infection 
and thousands of circRNAs at 24 h post- infection. This result suggested that fast replication of the virus in the host cells was 
accompanied by the production of abundant viral circRNAs. Therefore, we considered that this cell line provided a good system 
to study viral circRNAs post- infection.

To gain more insight into the characteristics of viral circRNAs, we extracted viral circRNAs from MERS- CoV and observed the 
distributions of junction reads, expression levels and lengths (Fig. S3a–c), which were similar to those identified from the pooled 
viruses (Fig. 2c–e). Then, we focused on MERS- CoV circRNAs (junction reads ≥5) as strict false- positive controls. Interestingly, 
when mapping the junction reads of viral circRNAs onto positive- sense (+) and negative- sense (−) strands of the MERS- CoV 
genome (Fig. 4e), we found that circRNAs were widely expressed across the whole genome and were highly expressed in some 
regions of orf1ab, S, orf3/orf4a/orf4b and N/orf8b. Surprisingly, we observed that there were twice as many circRNAs on the 
negative- sense (−) strand as on the positive- sense (+) strand (Fig. 4e). As a positive- sense ssRNA virus, MERS- CoV utilizes 
full- length replication or discontinuous transcription to generate negative- sense RNA genomes or subgenomic negative- sense 
RNAs, which serve as a template for the synthesis of positive- strand RNAs rather than encoding proteins [69]. It is unclear whether 
these negative- sense circRNAs play regulatory roles in the process of positive- sense RNA synthesis.

Since these viral circRNAs were from in vitro experiments, technical factors and biological factors may also impact the process 
of RNA cyclization. To observe whether this negative- strand bias truly exists in positive- sense ssRNA viruses, we collected 
96 SARS- CoV- 2- infected total or rRNA- depleted RNA- Seq samples across nine datasets, instead of collecting the few RNase 
R- treated samples (Table S3), and identified 376 circRNAs. To control for false positives caused by RNA- Seq data without RNase 
R treatment, we narrowed down the circRNAs to those with junction reads ≥5, leading to 140 circRNAs for further analysis. The 
results showed that a negative- strand bias was still observed for viral circRNAs identified in SARS- CoV- 2 (Fig. 4f). Together, 
these findings in MERS- CoV and SARS- CoV- 2 reveal that positive- sense ssRNA viruses produce more abundant circRNAs 
encoded from the negative strand.

Long-range cyclization of the viral genome and subgenome
Although the lengths of circRNAs are hundreds of bases in most cases, in our analysis, after selecting circRNAs with at least five 
junction reads, there were still 9 % (191 of 2199) of the circRNAs in MERS- CoV and 5 % (two of 43) of those in EBV that were 
longer than half of the genome. This result suggested an interaction between 5′-terminal sequences and 3′-terminal sequences, 
causing a crosslink between two ends of the genome or subgenome, which leads to long- range cyclization.

The cyclization positions of all circRNAs in EBV and MERS- CoV are shown in Fig. 5(a, b). With the short- length grey circRNAs 
near the diagonal as the background, orange and red circRNAs located at the upper left corner were from long- range cyclization, 
covering ≥50 % and ≥90 % of the genome, respectively. We compared the expression levels between RNAs from long- range 
cyclization and short- length circRNAs in EBV (Wilcoxon rank- sum test P=0.018, Fig. 5c) and in MERS- CoV (Wilcoxon rank- sum 
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Fig. 4. Functional analysis and negative strand bias of viral circRNAs. KEGG pathway and GO enrichment analyses of viral circRNA interacting genes. 
Only the top 10 enriched terms of the KEGG pathway (a), biological process (BP) (b), molecular function (MF) (c) and cellular component (CC) (d) are 
shown. The coverage curve of circRNAs on the reference genomes of MERS- CoV (e) and SARS- CoV- 2 (f). Genes with known mapped positions in the 
genome are shown in orange. The pink curve and blue curve show the number of viral circRNAs for which each nucleotide is covered on the plus strand 
and minus strand, respectively.

test P<2×10−16, Fig. 5d) and observed a significantly higher expression of long circRNAs in MERS- CoV (Fig. 5d). Long- range 
cyclization was also observed in the SARS- CoV- 2 samples described above (Fig. 5e and Wilcoxon rank- sum test P=0.049, Fig. 5f).

A database for viral circRnA in host cells
To enable knowledge sharing and reuse, we developed the Viral- circRNA Database (http://www.hywanglab.cn/vcRNAdb/, Fig. 
S4), which provides comprehensive knowledge of viral circRNAs identified in cancer samples to support further exploration of 
their physiological and pathological roles in host cells. The web interface of Viral- circRNA is user- friendly and allows users to 
search (Fig. S4a), browse (Fig. S4b) and download data. The database includes the following information on viral circRNAs: virus 
origin, reference genome, starting position, ending position, length, expression level, host gene, cancer type, RNA- Seq sample and 

http://www.hywanglab.cn/vcRNAdb/
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Fig. 5. Long- range cyclization of the viral genome and subgenome. The scatter plot shows the cyclization positions of circRNAs in EBV (a) and MERS- 
CoV (b). The circRNA, formed by long- range cyclization, is highlighted in red when its length is ≥90 % of the reference genome and in orange when 
its length is ≥50 % but <90 %. Violin plot of ln(CPM) for EBV (Wilcoxon rank- sum test P=0.018) (c) and MERS- CoV (Wilcoxon rank- sum test P<2×10−16) 
(d) circRNAs grouped into long (length ≥50 % of the reference genome) and non- long (length <50 % of the reference genome) groups. (e) Scatter plot of 
the cyclization positions of SARS- CoV- 2 circRNAs. The circRNA, formed by long- range cyclization, is highlighted in red when its length is ≥90 % of the 
reference genome and in orange when its length is ≥50 % but <90 %. (f) Violin plot of ln(CPM) for SARS- CoV- 2 circRNAs grouped into long (length ≥50 % 
of the reference genome) and non- long (length <50 % of the reference genome) groups (Wilcoxon rank- sum test P=0.049).

visualization of the back- splicing position (Fig. S4c). In addition, an overall view of circRNAs produced from a given virus (Fig. 
S4a) and a data summary and basic statistics of the database are available (Fig. S4d). Links to external databases are also provided.

We performed a side- by- side comparison with VirusCircBase [70], a published viral circRNA database, from the perspective of 
sample type, RNA- Seq library, detection tool, etc. (Table S4). There were 3247 overlapped circRNAs which occupy 83 % (3247 of 
3912) and 7 % (3247 of 46440) of the circRNA collection in our database and VirusCircBase database, respectively. Our analysis 
only focuses on tumour samples and carefully controls the false positives, by just taking advantage of RNase R- treated samples 
and employing the circRNA detection tool CIRI2, which has been shown to achieve excellent performance and is appropriate for 
viral genome detection. Therefore, our database provides less but more reliable circRNAs for promoting research in virus- infected 
tumours. More importantly, we provide several fields, including junction reads, supported samples, CPM, average junction reads 
across samples, etc. Users can filter the circRNAs based on their own criteria and download the data.

DISCuSSIon
In this study, we have used publicly available RNase R- treated RNA- Seq data of cancer cell lines and patients from public data-
bases and self- generated data to systematically identify viral circRNAs in the context of cancers. Our study identified 3912 viral 
circRNAs encoded by viruses. Further analysis revealed that 50 % of the viral circRNAs ranged from 200 to 500 bp in length, and 
the circRNAs were intensively transcribed from viral genes such as RPMS1 in EBV and K7 in KSHV. Interestingly, we identified 
some circRNAs with lengths longer than half of the genome, which provides supporting evidence of long- range cyclization of the 
viral genome and subgenome. Moreover, approximately 70 % of viral circRNAs were from negative strands of MERS- CoV (1537 
of 2199) and SARS- CoV- 2 (101 of 140). In addition, we built a viral- circRNA database to support researchers in further exploring 
the functions of viral circRNAs. Recent studies have shown that viruses such as EBV [22, 26], KSHV [24, 25], rLCV [23], HPV 
[27] and HBV [28] encode circRNAs. Increasing evidence suggests that some of them are functional in the infected host cells, 
opening a new field of research on non- coding RNAs. For example, EBV circRNAs may act as human miRNA sponges [29], and 
HPV circE7 could translate oncoprotein E7 [27]. Through systematic identification and characterization of viral circRNAs in host 
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cells, our work has added knowledge of the presence of viral circRNAs, delved into their intriguing characteristics and potential 
functions, and explored their pathogenic role in virus- caused diseases.

Recent studies into circRNA biogenesis have mainly focused on eukaryotes [71]. Although the functions of most circRNAs in 
eukaryotes are not well explored, the known functions include molecular sponges of miRNAs [18], binding proteins to form 
circribonucleoproteins (circRNPs) [12], regulation of transcription and splicing [19], and regulation of the translation of poly-
peptides [20]. With the increasing evidence of viral circRNAs in human diseases [22, 25, 26], their functions need to be explored 
to improve our understanding of viral pathology. It has been reported that viral circRNAs suppress nasopharyngeal carcinoma 
cell proliferation and metastasis as miRNA sponges, similar to their functions in eukaryotes [58, 70]. To gain insight into such 
functions, first, we predicted target miRNAs of the viral circRNAs and observed their functions by enrichment analysis. The 
enriched functions were associated with cancer development, such as that of breast cancer, gastric cancer and lung cancer (Fig. 4a). 
Cellular component terms included several nuclear components (Fig. 4d). On the one hand, some of the circRNAs in eukaryotes 
accumulate in the nucleus and regulate transcription [19, 72]. On the other hand, it has been reported that the eukaryotic long non- 
coding RNA (lncRNA) MALAT1 localizes in nuclear specks [73] and lncRNA NEAT1 is essential for organization and integrity 
of nuclear paraspecks [74]. Both lncRNAs and circRNAs can act as miRNA sponges [18, 75], so circRNAs may indirectly work in 
nuclear events by competing with lncRNAs. Overall, our results indicated that some viral circRNAs were involved in carcinogen-
esis and may by acting as miRNA sponges and participating in lncRNA/circRNA–miRNA–mRNA regulatory networks, similar 
to eukaryote circRNAs [18]. Second, we investigated the host viral genes that contained the transcribed elements of circRNAs. 
Of note, the host genes for the highly expressed circRNAs or those with multiple circRNA isoforms, such as EBV RPMS1, EBNA 
and LMP2, mostly function in viral infections and evading immune responses (Fig. 3), suggesting that their encoded circRNAs 
may be involved in the viral life cycle. Moreover, as non- coding RNAs, viral circRNAs are non- immunogenic to the adaptive 
immune system. Recent research has shown that artificially designed GFP- tagged circRNAs are not recognized by innate immune 
receptors and do not trigger the type I IFN response [76], and that endogenous circRNAs tend to form 16–26 bp, imperfect RNA 
duplexes and act as inhibitors of dsRNA- activated protein kinase (PKR) related to innate immunity [77]. However, this field is still 
in its early stage. Further investigations are needed to reveal whether the antiviral sensing machine is effective for viral circRNAs.

Additionally, our results showed that in the coronaviruses MERS- CoV and SARS- CoV- 2, there were more circRNAs encoded 
from the negative strand than from the positive stand. The negative- strand bias also existed in miRNA–circRNA interaction 
pairs identified by two miRNA target prediction tools, where 91 % (50 of 55) of MERS- CoV circRNAs predicted to interact with 
miRNAs were on the negative strand. It is well known that for positive- sense ssRNA viruses such as MERS- CoV, the negative- sense 
RNA genomes or subgenomic RNAs serve as templates for the synthesis of positive- strand RNAs [78]. We hypothesize that these 
negative- sense circRNAs may have regulatory roles in the process of positive- sense RNA synthesis and may function as miRNA 
sponges. However, the mechanism of negative- sense circRNAs remains unclear, and future studies are warranted to reveal their 
roles in viral biology and tumorigenesis.

Most circRNAs in humans are hundreds of bases in length. Our analysis showed that some of the identified circRNAs (9 % in 
MERS- CoV, 5 % in EBV) could be generated from both the entire genome and the subgenome, in a long- range form (Fig. 5a, 
b), which indicated long- range cyclization of the viral genome. Interestingly, the analysis based on SARS- CoV- 2- infected total 
or rRNA- depleted RNA- Seq samples produced more convincing evidence of long- range cyclization (Fig. 5e). Moreover, the 
expression levels of RNAs with long- range cyclization were higher than those of short- length circRNAs (Fig. 5d, f). It has been 
reported that in HCV [79], flavivirus [80] and poliovirus [81], a long- range RNA–RNA interaction leads to genome cyclization, 
which is required for virus replication. In addition, in coronaviruses, 5′−3′-end crosstalk is a strategy for negative- strand subge-
nome RNA synthesis [82]. However, the genome cyclization process mentioned above refers to base pairing between 5′−3′-end 
complementary sequences rather than the long circRNAs we detected in this study. These viral circRNAs are independent circles 
that may function as regulatory elements through transcription- regulating sequences (TRS- B), which precede each viral gene 
[69]. Moreover, all of the coronaviruses transcribed subgenomic RNAs that started from the 3′ end but had different ending genes 
on the 5′ end; however, only the 5′-most ORF is translated in a cap- dependent manner [83]. Therefore, coronavirus transcripts 
are relatively long and tend to produce long circRNAs. Note that the synthesis of RNA by coronaviruses is totally different from 
that by eukaryotes, and the biogenesis of their circRNAs cannot be simply attributed to alternative splicing. The specific roles of 
coronavirus circRNAs are worthy of further study.

In this study, we performed rRNA depletion and RNase R- treated RNA- Seq on two HPV- infected patients with human cervical 
cancer and one HBV- infected human liver cancer cell line, Hep3B. Linear RNAs were degraded by exonucleases, and only 
circRNAs were left for sequencing. For the patients with cervical cancer, although no junction reads containing the back- splicing 
sites of circRNAs were found, reads that mapped to the viral genome still supported the presence of viral circRNAs. For instance, 
for the first patient, 98 % (12750 of 13007) of the reads that mapped to HPV genome subtypes were from the HPV71 genome 
(Fig. S5a). For the second patient 48 % (24588 of 50976), 20 % (9976 of 50976) and 15 % (7603 of 50976) of the mapped reads were 
mapped to HPV71, HPV18 and HPV16, respectively (Fig. S5b), showing a mixed infection of multiple HPV subtypes. However, 
no HBV- encoded circRNAs were detected in the HBV- infected cell line Hep3B. Together, this indicates that viral circRNAs were 
produced in HPV- infected patients with cervical cancer.
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