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Breast cancer is a heterogeneous disease, and its development is closely associated with
the underlying molecular regulatory network. In this paper, we propose a new way to
measure the regulation strength between genes based on their expression values, and
construct the dysregulated networks (DNs) for the four subtypes of breast cancer. Our
results show that the key dysregulated networks (KDNs) are significantly enriched in critical
breast cancer-related pathways and driver genes; closely related to drug targets; and have
significant differences in survival analysis. Moreover, the key dysregulated genes could
serve as potential driver genes, drug targets, and prognostic markers for each breast
cancer subtype. Therefore, the KDN is expected to be an effective and novel way to
understand the mechanisms of breast cancer.
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INTRODUCTION

According to global cancer statistics in 2020, Breast cancer has become the most common cancer,
with 2.3 million new cases (Sung et al., 2021). As a heterogenetic malignancy, breast cancer can be
classified into four subtypes: Luminal A, Luminal B, Basal-like, and Her2-enriched (Cheang et al.,
2009; Inic et al., 2014). Although significant improvements have been achieved, a better
understanding of genetic changes will lead to better diagnosis and treatment of this disease
(Liang et al., 2021).

The genetic variation of driver genes has been considered as one of cancer’s most critical
intrinsic factors (Akhavan-Safar et al., 2021). Thus, many computational tools have been
developed to identify potential driver genes. For example, MaxDriver developed by Chen et al.
detect driver genes based on the maximum information flow in the heterogeneous network
(Chen et al., 2013). DawnRank can directly prioritize the driver genes at the individual patient
level (Hou and Jian, 2014). And Shi et al. proposed a network diffusion method to identify
driver genes (Shi et al., 2016). Among these tools, DriverNet is probably the most competitive
tool which considers both gene mutation and abnormal expressions of downstream genes
(Bashashati et al., 2012).

Differentially expressed genes (DEGs) analysis is used to identify potential biomarkers or
prognostic markers for breast cancer (Yang et al., 2019). Based on DEGs and the survival
analysis of hub genes in protein-protein interaction network (PPI), Wu et al. identified that
ESR1 and PGR may be potential prognostic markers of ER-positive breast cancer (Wu et al.,
2020). Huan et al. found that estradiol (E2) is a biomarker of breast cancer based on the analysis of
DEGs in the PPI network (Huan et al., 2014). Furthermore, Eskandari et al. constructed a gene
regulatory network by common DEGs to identify the key therapeutic targets for each subtype of
breast cancer (Eskandari and Motalebzadeh, 2019).
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In summary, previous works have started from the single and
independent abnormal expression of genes, but ignored the
importance of changes in the interactions between genes.
Actually, cancer occurs because of abnormal interactions
between genes that lead to their abnormal expressions (Peng
et al., 2012; Gao et al., 2013; Bao et al., 2016; Bao et al., 2020; Chai
et al., 2022). In this paper, we propose a new way to measure the
regulation strength between genes based on their relative
expression values. Then the dysregulated network (DN) can be
determined by the dysregulated interactions between normal and
disease samples. Results show that not only is the key
dysregulated network (KDN) enriched in many potential
breast cancer related-pathways and important driver genes,

but is also closely related to drug targets. Therefore, the
proposed KDN provides a new tool for elucidating the
underlying mechanism and potential drug repurposing for
breast cancer.

MATERIALS AND METHODS

Materials
Both the gene expression dataset and genomic aberration dataset are
downloaded from https://xenabrowser.net/datapages/. Gene
expression dataset includes Luminal A, Luminal B, Basal-like, and
HER2-enriched subtypes. Genomic aberration dataset includes gene-

TABLE 1 | The details of datasets and network.

Datasets Number of genes Number of samples Number of interactions

Gene expression (TCGA-BRCA) Normal — 34,127 99 —

Tumor Luminal A 225 —

Luminal B 123 —

Basal-like 97 —

HER2-enriched 57 —

Genomic aberrations — gene-level copy number alteration 24,776 1081 —

somatic mutation (SNP and INDEL) 40,543 792 —

Influence network — — 9728 — 146171

FIGURE 1 | Overview of the analysis workflow.
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level copy number alteration and somatic mutation (SNP and
INDEL). The somatic mutation dataset is a binary matrix
containing the gene-level non-silent mutation. The influence
network includes directed gene interactions from KEGG,
Reactome, Panther, CellMap, and NCI Pathway Interaction
Databases (Wu et al., 2010). The 29 targeted drugs are
downloaded from https://www.cancer.gov/about-cancer/treatment/
drugs/breast (National Cancer Institute), and their corresponding
targets are obtained from https://clue.io/repurposing-app. Table 1
presents the details of the datasets and network including the number
of genes, the number of samples, and the number of interactions.

METHODS

From the perspective of gene regulatory network, it is the
significantly abnormal interaction between genes that pushes
cells operating from normal state to disease state. Therefore,
analysis of dysregulation may help to reveal more biological
insights than traditional differentially expressed genes (DEGs).
Our motivation is that an upstream gene will have more influence
on its downstream genes if the expression of the former is larger
than that of the latter, and vice versa. Therefore, we define the
regulation strength of gene i to gene j as

rij � log
gi
gj

(1)

where gi and gj is the expression value of gene i and gene j
respectively. In this paper, we name the network composed of the
dysregulated interactions as the dysregulated network (DN).

Then, the average absolute difference of the dysregulated
strength dsij of gene i to gene j can be calculated as

dsij �
∣∣∣∣∣�rDij − �rNij

∣∣∣∣∣ (2)
where �rDij and �rNij denote the average regulation strength in the
disease and normal state, respectively. Further, the dysregulation
score di of gene i is defined as the sum of the dysregulated
strength to all its downstream genes

di � ∑
ni

j�1
dsij (3)

where ni is the number of the direct downstream genes of gene i.
A higher di indicates that gene i regulate more downstream genes
with the higher dsij, otherwise, gene i regulate less downstream
genes with the lower dsij. Finally, based on the key genes and their
dysregulated interactions, the key dysregulated network (KDN) is
obtained.

Figure 1 shows an overview of the analysis workflow for this
study. First, we construct the DN based on gene expression data
and influence network. Then, we identify the KDN of each
subtype. Finally, we conduct pathway enrichment analysis,
driver genes analysis, drug targets enrichment analysis, and
survival analysis for the obtained KDN.

Identifying Driver Genes through DriverNet
Driver genes can be manifested through the outlying expression
of genes in influence network. So, Bashashati et al. (Bashashati
et al., 2012) developed a computational framework called
DriverNet to identify the potential driver genes effectively. In
DriverNet, a bipartite graph is constructed through genomic
aberrations matrix, outlier matrix, and influence network.
And, based on the bipartite graph, DriverNet could rank the
genes according to the number of events (outliers). Then, a set of
potential driver genes is obtained.

RESULTS AND DISCUSSION

The Dysregulated Network
For each subtype, the dysregulated interactions are determined
with p − value≤ 10E − 4 and ds≥ 2 by Limma package in R.
Table 2 presents the four dysregulated networks (DNs),
including the number of genes, the number of interactions, the
average degree, and the average betweenness of genes. Only about
50% of the genes and 20% of the interactions from the
background influence network constitute the DN. The average
degree (≈ 8) and betweenness (≈ 8000) indicate the DN is highly
interconnected.

Figure 2A shows the heatmap of the dysregulated
interactions in the four breast cancer subtypes. The
interactions are ordered according to their observed
frequency in subtypes. We color the interaction red when
the disease state has a higher average regulation strength of
interactions, and green otherwise. Black at the bottom
represents that the interactions are not significantly
dysregulated in the corresponding subtype. About 50% of
the dysregulated interactions are shared by the four
subtypes, and the overlapped interactions have the same
dysregulation pattern. The abnormal regulation in these
gene pairs may form the common mechanisms of the four
subtypes. On the other hand, about 10% of the dysregulated
interactions appear in only one subtype which may
characterize the different phenotypes of the four subtypes at
network level. Therefore, the corresponding DN may

TABLE 2 | Overview of the DNs.

Subtypes Number of genes Number of interactions Average degree Average betweenness

Luminal A 4971 18,771 7.28 6875
Luminal B 5847 26,853 9.29 8374
Basal-like 5573 23,307 8.36 8304
HER2-enriched 5679 24,483 8.62 8412
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contribute to the development of the four subtypes of breast
cancer.

As the regulation strength measures the dysregulated
interactions, it is natural to ask if the dysregulated
interactions are essentially caused by differentially expressed
genes (DEGs). To examine the impact of DEGs
(p − value≤ 10E − 4 and FC≥ 1.5) on the dysregulated
interactions (p − value≤ 10E − 4 and ds≥ 2), Figure 2B
shows the percentage of interactions with 0, 1, and 2 DEGs
in the background network (gray color). And the percentage of
dysregulated interactions in each group is shown with red
color. Obviously, most of the dysregulated interactions,
40%–65%, come from the group with just one DEG; only a
few come from the other groups. In sum, the DN only contains
about half of the DEGs. Given that gene i regulates gene j, their
interactions may not be significantly abnormal if their

expressions change in the same way, even if one or two of
them are DEGs. On the other hand, the interactions may be
significantly abnormal if their expressions change inversely,
even if both are not significantly differentially expressed.
Therefore, dysregulated interactions can reveal the
regulation abnormality of subtypes, which is hard for DEGs
to detect.

Figure 2C shows the scatter plot of the dysregulation score di
of gene i and its outdegree in the DN. First, the dysregulation
score is linearly proportional to the outdegree: genes with larger
outdegree tend to have larger dysregulation scores. These genes
may play important roles in the DN. Secondly, only a few genes
have extraordinarily large dysregulation scores. In order to
determine the key genes in the DN, we sort them in
descending order according to their dysregulation score. Then,
the dysregulation score is normalized by the total score of all

FIGURE 2 | The dysregulated network (DN) of breast cancer. (A) The heatmap of the dysregulated interactions in the four breast cancer subtypes. (B) The
percentage of interactions with 0, 1, and 2 DEGs (gray color) and dysregulated interactions (red color) in the background influence network. (C) The scatter plot of the
dysregulation score and out-degree of genes in the DN. (D) The relationship between the cumulative dysregulation score and the number of genes in the DN.
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genes and Figure 2D shows the curve of the accumulative
normalized dysregulation score, which is sorted by gene order.
This curve grows rapidly at first and then increases slowly as the
cumulative score reaches 60%. The genes contributing to the 60%
cumulative dysregulation score only include about 5% of genes in
the DN (306, 274, 189, and 267 genes for Luminal A, Luminal B,
Basal-like, and HER2-enriched subtypes respectively). In this
paper, we refer to the network of these key genes and their

dysregulated interactions as the key dysregulated
network (KDN).

Key Dysregulated Genes are Enriched in
Critical Breast Cancer-Related Pathways
To investigate the biological functions of the KDN, we conduct a
pathway enrichment analysis on key dysregulated genes with

TABLE 3 | Top 30 enrichment pathways of key genes and enrichment pathways of DEGs.

Pathway p-value

Top 30 enrichment pathways
of key genes

Luminal A Luminal B Basal-like HER2-enriched

Pathways in cancer 5.55E-40 4.90E-43 1.31E-35 4.20E-45
PI3K-Akt signaling pathway 1.05E-38 4.04E-34 8.13E-24 9.65E-41
Relaxin signaling pathway 1.33E-33 2.68E-31 7.43E-17 6.93E-31
Ras signaling pathway 4.66E-25 1.69E-32 6.26E-16 1.11E-27
Chemokine signaling pathway 4.28E-27 1.81E-19 2.28E-15 4.21E-21
Dopaminergic synapse 8.82E-26 3.41E-21 2.33E-14 7.04E-21
Focal adhesion 3.62E-20 1.07E-19 7.65E-14 2.66E-21
MAPK signaling pathway 9.99E-23 6.18E-26 9.58E-14 1.71E-24
Human cytomegalovirus infection 5.45E-20 1.14E-20 1.77E-13 3.04E-21
Human papillomavirus infection 5.06E-21 2.51E-17 4.80E-13 1.49E-18
Cholinergic synapse 3.94E-17 1.51E-13 1.32E-12 1.88E-16
Kaposi sarcoma-associated herpesvirus infection 2.30E-15 2.17E-19 2.12E-12 2.12E-14
Hepatitis B 5.04E-22 3.71E-20 2.79E-12 7.95E-20
cAMP signaling pathway 5.31E-18 4.87E-14 4.07E-12 3.65E-18
Circadian entrainment 7.08E-16 4.90E-12 3.27E-15 6.26E-14
Human T-cell leukemia virus 1 infection 3.46E-15 7.47E-14 5.72E-12 3.89E-16
Proteoglycans in cancer 9.06E-28 2.45E-22 9.00E-12 3.86E-17
Estrogen signaling pathway 1.45E-13 2.33E-12 7.87E-12 5.46E-16
Lipid and atherosclerosis 1.82E-15 5.79E-15 2.82E-11 1.17E-14
Thyroid hormone signaling pathway 2.68E-12 8.07E-15 5.89E-11 1.35E-12
IL-17 signaling pathway 1.59E-18 1.76E-14 6.83E-11 2.90E-14
Amphetamine addiction 9.51E-18 6.48E-12 6.34E-11 3.03E-15
Parathyroid hormone synthesis, secretion and action 5.32E-18 3.33E-11 5.24E-11 1.51E-19
AGE-RAGE signaling pathway in diabetic complications 8.22E-19 1.86E-19 2.35E-09 5.15E-18
Breast cancer 1.56E-16 1.50E-19 2.40E-09 3.57E-15
Human immunodeficiency virus 1 infection 4.08E-10 3.67E-15 7.31E-09 3.66E-13
Gastric cancer 1.55E-13 2.84E-17 2.44E-08 4.72E-14
Melanogenesis 1.48E-17 1.12E-10 2.77E-08 1.81E-12
Cocaine addiction 1.30E-12 5.58E-10 2.90E-08 7.37E-15
Rap1 signaling pathway 2.55E-20 6.69E-22 3.80E-08 1.64E-21
Growth hormone synthesis, secretion and action 5.34E-23 3.08E-18 3.81E-08 1.67E-22
Oocyte meiosis 7.24E-10 8.85E-08 1.64E-13 4.16E-10
Melanoma 1.99E-09 7.96E-14 2.66E-07 2.25E-11
Oxytocin signaling pathway 3.98E-13 3.26E-07 6.92E-10 5.36E-07
Osteoclast differentiation 1.09E-11 2.93E-17 8.64E-07 4.48E-11
Prolactin signaling pathway 3.78E-15 2.65E-15 1.95E-06 6.51E-14
Longevity regulating pathway 1.78E-20 8.69E-11 3.44E-06 1.13E-12
Morphine addiction 1.47E-08 4.55E-06 4.84E-10 1.32E-07
TNF signaling pathway 7.43E-23 9.76E-16 7.15E-06 1.93E-14
ErbB signaling pathway 2.21E-16 1.93E-14 1.62E-05 4.70E-12
Prion disease 1.29E-04 1.02E-11 4.29E-06 1.70E-14
Insulin resistance 7.64E-19 5.24E-13 1.16E-03 5.36E-09
Proteasome — 5.97E-13 1.41E-12 6.89E-17
Parkinson disease — 1.95E-05 8.59E-10 1.15E-09

Enrichment pathways of DEGs
Cell cycle 2.32E-02 2.25E-14 1.44E-24 6.49E-13
Progesterone-mediated oocyte maturation 5.08E-03 1.20E-04 1.76E-07 1.47E-04
Oocyte meiosis — 2.38E-07 3.89E-09 3.19E-06
Cellular senescence — 3.39E-02 3.94E-05 —

Human T-cell leukemia virus 1 infection — 5.87E-05 — —

Homologous recombination — — 3.03E-03 —
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p − value≤ 0.05. We also take the same analysis of the top 300
differentially expressed genes (DEGs) obtained by Limma
package. Table 3 lists the top 30 enriched pathways by key
genes and DEGs. Key genes are significantly enriched in many
well-known breast cancer-related pathways including Pathway in
cancer, Ras signaling pathways, MAPK signaling, Estrogen
signaling, Breast cancer, Prolactin signaling pathways, etc.
However, the top 300 ordinary DEGs are only enriched in
very few pathways which are not the critical ones in breast
cancer. This comparison suggests that the genes in the KDN
are more biologically related to breast cancer than DEGs.

Furthermore, we take an enrichment analysis of the top 20
genes in the KDN. Figure 3 shows the relation of the top 20 key
genes and their enriched pathways by p − value≤ 0.05. Green and
red colors denote driver genes and non-driver genes respectively.
Yellow and purple colors denote common cancer pathways and
breast cancer specific pathways. Surprisingly, even the top 20 key
genes are significantly enriched in some breast cancer specific
pathways. Among them, the breast cancer pathway contains four

subpathways and connects with many important signaling
pathways, such as MAPK pathway, PI3K-Akt pathway, Notch
signaling pathway, Wnt signaling pathway, P53 signaling
pathway, Cell cycle pathway, etc. For the Estrogen signaling
pathway, Tang et al. reported that Estrogen-triggered signaling
cascades play an important role in the initiation and development
of most human breast cancer (Song and Santen, 2006). In
addition, Kitajima et al. also reported that Estrogen and its
receptor can regulate the development and progression of
breast cancer in most cases (Shin-Ichi et al., 2010). For the
Prolactin signaling pathway, a 20-years prospective study has
shown that Prolactin can promote proliferation and cell motility
in later stage breast tumor development (Tworoger and
Hankinson, 2006; Tworoger et al., 2013). For the Human
papillomavirus infection pathway, HR-HPV DNA infection
exists in breast cancer tissue, thus closely related to the
occurrence and development of breast cancer (Wang et al.,
2009). And, these pathways have crosstalk with other common
cancer pathways (Chen and Wang, 2012; Sato, 2013). For

FIGURE 3 | The relation of the top 20 key genes and their enriched pathways.
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example, Pathways in cancer, Focal adhesion (Ocak et al., 2010;
Gari et al., 2016; Gu et al., 2018; Gong et al., 2019), Cell cycle,
FoxO signaling pathway (Mohd et al., 2017; Gong et al., 2020),
Choline metabolism in cancer, Oxytocin signaling pathway
(Cassoni et al., 1994; Pequeux, 2002; Wang et al., 2020), ErbB
signaling pathway (Liu et al., 2008; Aline et al., 2015), and JAK-
STAT signaling pathway (Hernández-Vargas et al., 2011; Wang
et al., 2018; Na and Balko, 2019).

Based on the biological functions, the driver genes
(Bashashati et al., 2012) in common top 20 key genes are
highly associated with breast cancer subtypes. As shown in
Figure 3, EGR1, EP300, FOS, JUN, FOXA1, PLK1, ESR1, and
E2F1 are the driver genes for corresponding subtype. As a
tumor-suppressor gene in breast cancer, overexpression of
EGR1 in breast tumor cells markedly reduces transformed
growth and tumorigenicity (Huang et al., 1997; Ronski et al.,
2010). EP300 is recruited by the estrogen receptor alpha, a
hormone inducible transcription factor, to mediate the mitogen
effect of the ovarian steroid estrogen, which is a strong risk
factor for breast cancer development (Wirtenberger et al., 2006).
The FOS family is one of the AP-1 transcription factors, which
regulated many proteins involved in breast cancer invasion
(Milde-Langosch et al., 2004). Activated JUN is
predominantly expressed at the invasive front in breast
cancer and is associated with proliferation and angiogenesis
(Vleugel et al., 2006). FOXA1 can influence the expression of a
large number of genes in breast cancer associated with metabolic

processes, regulation of signaling, and the cell cycle (Wolf et al.,
2005). PLK1 mediates estrogen receptor (ER)-regulated gene
transcription in human breast cancer cells. And PLK1-
coactivated genes include classical ER target genes such as
Ps2, Wisp2, and Serpina3 and are enriched in developmental
and tumor-suppressive functions (Wierer et al., 2013). ESR1
encodes estrogen receptor-α, which is a major biomarker in the
development of breast cancer (Yang et al., 2021). E2F1
expression is regulated by the estrogen receptor α (ERα) to
mediate tamoxifen resistance in ERα-positive breast cancer cells
(Montenegro and Cancer, 2014). And E2F1 can drive the
metastasis of breast cancer (Hollern et al., 2019).

Driver Genes are Enriched in the Key
Dysregulated Network
At the genomic level, driver genes are considered to be one of the
most important factors in cancer initiation and progression. The
driven mutations in the genome provoke abnormal function at
protein level and impact the expression of the downstream genes.
Therefore, driver genes, as an intrinsic driven regulation
mechanism, should also play a critical role in the obtained
DN. We apply DriverNet to identify driver genes, and it
identifies 205, 154, 249, and 147 driver genes for Luminal A,
Luminal B, Basal-like, and HER2-enriched subtypes respectively.
We find that about 90% of the determined driver genes are
observed in the dysregulation network.

FIGURE 4 | Driver gene analysis. (A) Venn diagrams of the key genes and driver genes. (B) The average number of events of key driver genes and other driver
genes. (C) KDN with driver genes in green color.
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As the key genes in DN constitute most of the dysregulation
consequences, we are interested in the driver genes in the KDN.
Figure 4A shows the Venn diagrams of the key genes and the
identified driver genes in the four subtypes. In the KDN, about
20–30% of the genes are driver genes. That is, the KDN is
enriched with a larger portion of driver genes. Furthermore,
Figure 4B shows the driver genes’ average number of events
as defined by DriverNet (Bashashati et al., 2012), whether they are
in the KDN or not. The former’s average number of events is
obviously higher than that of the latter, which demonstrates that
key driver genes explain more abnormal expressed genes in the
patient group than the latter.

In Figure 4C, green and red denote whether they are driver
genes; black and gray denote whether the interactions originate
from driver genes. The KDNs are highly connected in the central
part which include some driver genes and their downstream
genes, while the peripheral part is relatively sparsely connected
which includes only non-driver genes. Therefore, we may

hypothesize that these driver genes in the central part
constitute the core tumorigenesis genes. Their mutations are
the major causal factors to the corresponding subtypes. These
driver genes first exert their abnormal effects on their direct
downstream genes. And the downstream genes propagate the
abnormal signals to other peripheral genes. Finally, the
interactions between genes in the KDN contribute to the
initiation and development of different breast cancer subtypes.

Breast Cancer Drug Targets are Enriched in
the Key Dysregulated Network
From the perspective of the targeted therapy, the targets of drugs for
breast cancer should be closely related to the KDN. Figure 5A shows
the Venn graph of the targets of 29 breast cancer targeted drugs and
the key genes. Only a few targets, such as ESR1, ESR2, EGFR, ERBB2,
etc. are observed in the KDN. Table 4 lists these targets which are
targeted by 10 drugs. As most drugs’ number of targets ranges

FIGURE 5 |Drug target analysis. (A) The Venn graph of the targets of 29 breast cancer drugs and genes in the KDN. (B) The enrichment scores of 29 breast cancer
targeted drugs.

TABLE 4 | The drug targets in key genes.

Subtypes Drug targets

Luminal A ESR1, NR3C1, PRKCG, EGFR, PRKCA, ESR2, PRKCZ, PRKCB
Luminal B ESR1, NR3C1, PRKCG, EGFR, PRKCA, ESR2, PRKCZ
Basal-like ESR1, NR3C1, PRKCG, MAPT, PGR, BCL2, ERBB4
HER2-enriched ESR1, NR3C1, PRKCG, EGFR, PRKCA, ESR2, PRKCZ, ERBB2, MAPT, PGR, BCL2, CYP2A6
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between 2 and 3, we use their first order neighboring genes to
determine the enrichment score. The enrichment score is defined
as the negative logarithm of the p-value of the hypergeometric test.
Figure 5B shows the enrichment scores of the 29 drugs. Drugs solely
for breast cancer are on the left, while those that can also treat other
cancers are on the right. Obviously, most of the drugs are significantly
enriched in the DN. In each DN, these enrichment scores are greater
than 2. This demonstrates that the targets of these 29 drugs are closely
related to the KDN.

To take a further look at the neighbors of targets not observed
in the KDN, we find that some neighbors are the targets of other
drugs in the KDN. For example, ESR1 and ESR2, targets of
Soltamox (Tamoxifen Citrate) and Faslodex (Fulvestrant), are
both neighbors of the other six drug targets, such as Nerlynx
(Neratinib Maleate), Tykerb (Lapatinib Ditosylate), Abraxane
(Paclitaxel), Cyclophosphamide, Megestrol Acetate, and
Taxotere (Docetaxel). ESR1 is also a neighbor of CYP19A,
which is the target of Arimidex (Anastrozole), Aromasin
(Exemestane), and Femara (Letrozole). That is, most drug
targets, even if not observed in the KDN, are closely
associated with it. Thus, we may hypothesize that the KDN
may serve as a critical level point for drugs to exert their effect
and to intervene in the abnormal state of the cellular system.

The Top Dysregulated Genes may Serve as
Potential Biomarkers for Survival Analysis
We apply KM-plotter to conduct the survival analysis of the top 10
dysregulated genes (http://kmplot.com/analysis/index.php?p=
service&cancer=breast). For Luminal A, Luminal B, Basal-like, and
HER2-enriched subtypes, 2277, 465, 846, and 315 samples are used
respectively.Figure 6 shows the results of the survival analysis with the
smallest log-rank p-value of gene for each subtype. All p-values are less
than 0.05. This indicates that these dysregulated genes can be used as
potential prognostic markers of breast cancer subtypes.

CONCLUSION

From the perspective of biological networks, cancer is a result of the
abnormal interactions between genes. In this paper, we propose a

simple way to measure the regulation strength of genes based on their
relative expression values. And thenwe construct the key dysregulated
network (KDN) for the four subtypes of breast cancer. Our results
show that the KDN is significantly enriched in critical breast cancer-
related pathways as well as driver genes; closely associated with drug
targets; and have significant differences in survival analysis. The key
dysregulated genes can also serve as potential driver genes, drug
targets, and prognosticmarkers for subtype identification. In addition,
our results indicate that the key dysregulation analysis is more
powerful than the traditional DEG analysis. Therefore, the KDN
can be applied to other cancer studies, such as the identification of
driver genes, drug repurposing, and so on.
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FIGURE 6 | Survival analysis (Kaplan-Meier plots) of dysregulated biomarkers. biomarkers High values are shown in red and low values are shown in black.

Frontiers in Genetics | www.frontiersin.org February 2022 | Volume 13 | Article 8560759

Huo et al. Dysregulated Network of Breast Cancer

http://kmplot.com/analysis/index.php?p=service&cancer=breast
http://kmplot.com/analysis/index.php?p=service&cancer=breast
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


REFERENCES

Akhavan-Safar, M., Teimourpour, B., and Kargari, M. (2021). GenHITS: A
Network Science Approach to Driver Gene Detection in Human Regulatory
Network Using Gene’s Influence Evaluation. J. Biomed. Inform. 114, 103661.
doi:10.1016/j.jbi.2020.103661

Aline, A. C., Pierre, H., Gérard, C., and Amar, B. J. F. I. P. (2015). Role of ErbB
Receptors in Cancer Cell Migration and Invasion, Front. Pharmacol., 6. 283.
doi:10.3389/fphar.2015.00283

Bao, Z., Li, X., Zan, X., Shen, L., Ma, R., and Liu, W. (2016). Signalling Pathway
Impact Analysis Based on the Strength of Interaction between Genes. IET Syst.
Biol. 10, 147–152. doi:10.1049/iet-syb.2015.0089

Bao, Z., Zhu, Y., Ge, Q., Gu, W., and Bai, Y. J. I. A. (2020). Signaling Pathway
Analysis Combined with the Strength Variations of Interactions between Genes
under Different Conditions, 1.

Bashashati, A., Haffari, G., Ding, J., Ha, G., Lui, K., Rosner, J., et al. (2012).
DriverNet: Uncovering the Impact of Somatic Driver Mutations on
Transcriptional Networks in Cancer. Genome Biol. 13, R124. doi:10.1186/gb-
2012-13-12-r124

Cassoni, P., Sapino, A., Negro, F., and Bussolati, G. (1994). Oxytocin Inhibits
Proliferation of Human Breast Cancer Cell Lines. Virchows Arch. 425, 467–472.
doi:10.1007/BF00197549

Chai, C., Wu, H. H., Abuetabh, Y., Sergi, C., and Leng, R. (2022). Regulation of the
Tumor Suppressor PTEN in Triple-Negative Breast Cancer. Cancer Lett. 527,
41–48. doi:10.1016/j.canlet.2021.12.003

Cheang, M. C. U., Chia, S. K., Voduc, D., Gao, D., Leung, S., Snider, J., et al. (2009).
Ki67 index, HER2 Status, and Prognosis of Patients with Luminal B Breast
Cancer. J. Natl. Cancer Inst. 101, 736–750. doi:10.1093/jnci/djp082

Chen, A. A., and Wang, J. J. C. J. O. P. (2012). Estrogen Signaling Pathway in
Cancer. 28, 570–576.

Chen, Y., Hao, J., Jiang, W., He, T., Zhang, X., Jiang, T., et al. (2013). Identifying
Potential Cancer Driver Genes by Genomic Data Integration. Sci. Rep. 3, 3538.
doi:10.1038/srep03538

Eskandari, E., and Motalebzadeh, J. J. C. G. (2019). Transcriptomics-based
Screening of Molecular Signatures Associated with Patients Overall Survival
and Their Key Regulators in Subtypes of Breast Cancer, 239.

Gao, Y.-m., Xu, P., Wang, X.-h., and Liu, W.-b. (2013). The Complex Fluctuations
of Probabilistic Boolean Networks. Biosystems 114, 78–84. doi:10.1016/j.
biosystems.2013.07.008

Gari, H. H., Degala, G. D., Ray, R., Lucia, M. S., and Lambert, J. R. (2016). PRL-3
Engages the Focal Adhesion Pathway in Triple-Negative Breast Cancer Cells to
Alter Actin Structure and Substrate Adhesion Properties Critical for Cell
Migration and Invasion. Cancer Lett. 380, 505–512. doi:10.1016/j.canlet.
2016.07.017

Gong, J., Lu, X., Xu, J., Xiong, W., Zhang, H., and Yu, X. J. J. O. C. P. (2019).
Coexpression of UCA1 and ITGA2 in Pancreatic Cancer Cells Target the
Expression of miR-107 through Focal Adhesion Pathway, 234.

Gong, L., Tang, H., Luo, Z., Sun, X., Tan, X., Xie, L., et al. (2020). Tamoxifen
Induces Fatty Liver Disease in Breast Cancer through the MAPK8/FoxO
Pathway. Clin. Translational Med. 10, 137–150. doi:10.1002/ctm2.5

Gu, C., Wang, X., Long, T., Wang, X., Zhong, Y., Ma, Y., et al. (2018). FSTL1
Interacts with VIM and Promotes Colorectal Cancer Metastasis via Activating
the Focal Adhesion Signalling Pathway. Cell Death Dis 9, 654. doi:10.1038/
s41419-018-0695-6

Hernández-Vargas, H., Ouzounova, M., Calvez-Kelm, F. L., Lambert, M. P.,
Mckay-Chopin, S., Tavtigian, S. V., et al. (2011). Methylome Analysis
Reveals Jak-STAT Pathway Deregulation in Putative Breast Cancer Stem
Cells. Epigenetics 6, 428–439. doi:10.4161/epi.6.4.14515

Hollern, D. P., Swiatnicki, M. R., Rennhack, J. P., Misek, S. A., and Andrechek, E. R.
(2019). E2F1 Drives Breast Cancer Metastasis by Regulating the Target Gene
FGF13 and Altering Cell Migration. Sci. Rep. 9, 10718. doi:10.1038/s41598-019-
47218-0

Hou, J. P., and Jian, M. J. G. M. (2014). DawnRank: Discovering Personalized
Driver Genes in Cancer. Genome Medicine. 6, 56.doi:10.1186/s13073-014-
0056-8

Huan, J., Wang, L., Xing, L., Qin, X., Feng, L., Pan, X., et al. (2014). Insights into
Significant Pathways and Gene Interaction Networks Underlying Breast Cancer

Cell Line MCF-7 Treated with 17β-Estradiol (E2). Gene 533, 346–355. doi:10.
1016/j.gene.2013.08.027

Huang, R.-P., Fan, Y., De Belle, I., Niemeyer, C., Gottardis, M.M., Mercola, D., et al.
(1997). Decreased Egr-1 Expression in Human, Mouse and Rat Mammary Cells
and Tissues Correlates with Tumor Formation. Int. J. Cancer 72, 102–109.
doi:10.1002/(sici)1097-0215(19970703)72:1<102:aid-ijc15>3.0.co;2-l

Inic, Z., Zegarac, M., Inic, M., Kozomara, Z., Djurisic, I., Inic, I., et al. (2014).
Difference between Luminal A and Luminal B Subtypes According to Ki-
67, Tumor Size, and Progesterone Receptor Negativity Providing
Prognostic Information. Clin. Med. Insights Oncol. 8, 107–111. doi:10.
4137/CMO.S18006

Liang, Y., Ye, F., Wang, Y., Li, Y., Li, Y., Song, X., et al. (2021). DGUOK-AS1 Acts as
a Tumor Promoter through Regulating miR-204-5p/IL-11 axis in Breast
Cancer. Mol. Ther. - Nucleic Acids 26, 1079–1091. doi:10.1016/j.omtn.2021.
10.018

Liu, N., Zhang, J., Zhang, J., Liu, S., Liu, Y., and Zheng, D. (2008). Erbin-regulated
Sensitivity of MCF-7 Breast Cancer Cells to TRAIL via ErbB2/AKT/NF-kappaB
Pathway. J. Biochem. 143, 793–801. doi:10.1093/jb/mvn032

Milde-Langosch, K., Röder, H., Andritzky, B., Aslan, B., Hemminger, G.,
Brinkmann, A., et al. (2004). The Role of the AP-1 Transcription Factors
C-Fos, FosB, Fra-1 and Fra-2 in the Invasion Process of Mammary
Carcinomas. Breast Cancer Res. Treat. 86, 139–152. doi:10.1023/b:brea.
0000032982.49024.71

Mohd, F., Wang, H., Uma, G., Little, P. J., Xu, J., and Zheng, W. J. I. J. O. B. S.
(2017). FOXO Signaling Pathways as Therapeutic Targets in Cancer. Int. J. Biol.
Sci. 13, 815–827.

Montenegro, M. F., and Cancer, M. C.-G. J. B. (2014). Promoting E2F1-Mediated
Apoptosis in Oestrogen Receptor-α-Negative Breast Cancer Cells. BMC Cancer
14, 539. doi:10.1186/1471-2407-14-539

Na, L., and Balko, J. M. (2019). Role of JAK-STAT Pathway in Cancer Signaling:
Applications in Precision Medicine. doi:10.1007/978-3-319-95228-4_26

Ocak, S., Yamashita, H., Udyavar, A. R., Miller, A. N., Gonzalez, A. L., Zou, Y., et al.
(2010). DNA Copy Number Aberrations in Small-Cell Lung Cancer Reveal
Activation of the Focal Adhesion Pathway. Oncogene 29, 6331–6342. doi:10.
1038/onc.2010.362

Peng, X., Wang, X., and Liu, W. 2012). "The Influence of the basin Structure of
Boolean Networks on Their Long Range Correlated Dynamics", in: IEEE
International Conference on Systems Biology.

Pequeux, C. (2002). Membrane Conformation and Transduction Pathway of
Oxytocin and Vasopressin in Small Cell Lung Cancer.

Ronski, K., Sanders, M., Burleson, J. A., Moyo, V., Benn, P., andMin, F. J. C. (2010).
Early Growth Response Gene 1 (EGR1) Is Deleted in Estrogen Receptor-
Negative Human Breast Carcinoma. Cancer 104, 925–930. doi:10.1002/cncr.
21262

Sato, T. (2013). Prolactin-Jak-Stat Signaling Pathways in Breast Cancer. Thomas
Jefferson University.

Shi, K., Gao, L., and Wang, B. (2016). Discovering Potential Cancer Driver Genes
by an Integrated Network-Based Approach.Mol. Biosyst. 12, 2921–2931. doi:10.
1039/c6mb00274a

Shin-Ichi, H., Niwa, T., and Yamaguchi, Y. J. C. S. (2010). Estrogen Signaling
Pathway and its Imaging in Human Breast Cancer. 100, 1773–1778.

Song, R. X.-D., and Santen, R. J. (2006). Membrane Initiated Estrogen Signaling in
Breast Cancer1. 75, 9–16.doi:10.1095/biolreprod.105.050070

Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., et al.
(2021). Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and
Mortality Worldwide for 36 Cancers in 185 Countries. CA A. Cancer J. Clin. 71,
209–249. doi:10.3322/caac.21660

Tworoger, S., and Hankinson, S. (2006). Prolactin and Breast Cancer Risk. Cancer
Lett. 243, 160–169. doi:10.1016/j.canlet.2006.01.032

Tworoger, S. S., Eliassen, A. H., Zhang, X., Qian, J., Sluss, P. M., Rosner, B. A., et al.
(2013). A 20-year Prospective Study of Plasma Prolactin as a Risk Marker of
Breast Cancer Development. Cancer Res. 73, 4810–4819. doi:10.1158/0008-
5472.can-13-0665

Vleugel, M. M., Greijer, A. E., Bos, R., van der Wall, E., and van Diest, P. J. (2006).
c-Jun Activation Is Associated with Proliferation and Angiogenesis in Invasive
Breast Cancer. Hum. Pathol. 37, 668–674. doi:10.1016/j.humpath.2006.01.022

Wang, C. J., Gao, H. D., and Wang, L. Y. J. C. J. O. P. S. (2009). Clinical Research of
High Risk Human Papillomavirus Infection in Breast Cancer.

Frontiers in Genetics | www.frontiersin.org February 2022 | Volume 13 | Article 85607510

Huo et al. Dysregulated Network of Breast Cancer

https://doi.org/10.1016/j.jbi.2020.103661
https://doi.org/10.3389/fphar.2015.00283
https://doi.org/10.1049/iet-syb.2015.0089
https://doi.org/10.1186/gb-2012-13-12-r124
https://doi.org/10.1186/gb-2012-13-12-r124
https://doi.org/10.1007/BF00197549
https://doi.org/10.1016/j.canlet.2021.12.003
https://doi.org/10.1093/jnci/djp082
https://doi.org/10.1038/srep03538
https://doi.org/10.1016/j.biosystems.2013.07.008
https://doi.org/10.1016/j.biosystems.2013.07.008
https://doi.org/10.1016/j.canlet.2016.07.017
https://doi.org/10.1016/j.canlet.2016.07.017
https://doi.org/10.1002/ctm2.5
https://doi.org/10.1038/s41419-018-0695-6
https://doi.org/10.1038/s41419-018-0695-6
https://doi.org/10.4161/epi.6.4.14515
https://doi.org/10.1038/s41598-019-47218-0
https://doi.org/10.1038/s41598-019-47218-0
https://genomemedicine.biomedcentral.com/
https://doi.org/10.1186/s13073-014-0056-8
https://doi.org/10.1186/s13073-014-0056-8
https://doi.org/10.1016/j.gene.2013.08.027
https://doi.org/10.1016/j.gene.2013.08.027
https://doi.org/10.1002/(sici)1097-0215(19970703)72:1<102:aid-ijc15>3.0.co;2-l
https://doi.org/10.4137/CMO.S18006
https://doi.org/10.4137/CMO.S18006
https://doi.org/10.1016/j.omtn.2021.10.018
https://doi.org/10.1016/j.omtn.2021.10.018
https://doi.org/10.1093/jb/mvn032
https://doi.org/10.1023/b:brea.0000032982.49024.71
https://doi.org/10.1023/b:brea.0000032982.49024.71
https://doi.org/10.1186/1471-2407-14-539
https://doi.org/10.1007/978-3-319-95228-4_26
https://doi.org/10.1038/onc.2010.362
https://doi.org/10.1038/onc.2010.362
https://doi.org/10.1002/cncr.21262
https://doi.org/10.1002/cncr.21262
https://doi.org/10.1039/c6mb00274a
https://doi.org/10.1039/c6mb00274a
https://doi.org/10.1095/biolreprod.105.050070
https://doi.org/10.3322/caac.21660
https://doi.org/10.1016/j.canlet.2006.01.032
https://doi.org/10.1158/0008-5472.can-13-0665
https://doi.org/10.1158/0008-5472.can-13-0665
https://doi.org/10.1016/j.humpath.2006.01.022
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Wang, S., Yao, Y., Yao, M., Fu, P., Wang, W., and Communications, B. R. (2018).
Interleukin-22 Promotes Triple Negative Breast Cancer Cells Migration and
Paclitaxel Resistance through JAK-STAT3/MAPKs/AKT Signaling Pathways.
Biochem. Biophysical Res. Commun. 503, 1605–1609. doi:10.1016/j.bbrc.2018.
07.088

Wang, Y., Jiang, X.-Y., and Yu, X.-Y. (2020). BRD9 Controls the Oxytocin
Signaling Pathway in Gastric Cancer via CANA2D4, CALML6, GNAO1,
and KCNJ5. Transl Cancer Res. TCR 9, 3354–3366. doi:10.21037/tcr.2020.
03.67

Wierer, M., Verde, G., Pisano, P., Molina, H., Font-Mateu, J., Di croce, L., et al.
(2013). PLK1 Signaling in Breast Cancer Cells Cooperates with Estrogen
Receptor-dependent Gene Transcription. Cell Rep 3, 2021–2032. doi:10.
1016/j.celrep.2013.05.024

Wirtenberger,M., Tchatchou, S.,Hemminki, K., Schmutzhard, J., Sutter, C., Schmutzler, R.
K., et al. (2006). Associations ofGeneticVariants in the EstrogenReceptorCoactivators
PPARGC1A, PPARGC1B and EP300 with Familial Breast Cancer. Carcinogenesis 27,
2201–2208. doi:10.1093/carcin/bgl067

Wolf, I., Bose, S., Williamson, E., Miller, C. W., and Koeffler, H. P. J. C. R. (2005).
FOXA1 Expression and Activities in Breast Cancer, 65.

Wu, G., Feng, X., and Stein, L. (2010). A Human Functional Protein Interaction
Network and its Application to Cancer Data Analysis. Genome Biol. 11,
R53–R23. doi:10.1186/gb-2010-11-5-r53

Wu, J.-R., Zhao, Y., Zhou, X.-P., and Qin, X. (2020). Estrogen Receptor 1 and
Progesterone Receptor Are Distinct Biomarkers and Prognostic Factors in
Estrogen Receptor-Positive Breast Cancer: Evidence from a Bioinformatic

Analysis. Biomed. Pharmacother. 121, 109647. doi:10.1016/j.biopha.2019.
109647

Yang, K., Gao, J., and Luo, M. (2019). Identification of Key Pathways and Hub
Genes in Basal-like Breast Cancer Using Bioinformatics Analysis. Ott 12,
1319–1331. doi:10.2147/ott.s158619

Yang, W., He, X., He, C., Peng, L., Xing, S., Li, D., et al. (2021). Impact of ESR1
Polymorphisms on Risk of Breast Cancer in the Chinese Han Population. Clin.
Breast Cancer 21, e235–e242. doi:10.1016/j.clbc.2020.10.003

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Huo, Li, Xu, Bao and Liu. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Genetics | www.frontiersin.org February 2022 | Volume 13 | Article 85607511

Huo et al. Dysregulated Network of Breast Cancer

https://doi.org/10.1016/j.bbrc.2018.07.088
https://doi.org/10.1016/j.bbrc.2018.07.088
https://doi.org/10.21037/tcr.2020.03.67
https://doi.org/10.21037/tcr.2020.03.67
https://doi.org/10.1016/j.celrep.2013.05.024
https://doi.org/10.1016/j.celrep.2013.05.024
https://doi.org/10.1093/carcin/bgl067
https://doi.org/10.1186/gb-2010-11-5-r53
https://doi.org/10.1016/j.biopha.2019.109647
https://doi.org/10.1016/j.biopha.2019.109647
https://doi.org/10.2147/ott.s158619
https://doi.org/10.1016/j.clbc.2020.10.003
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

	Analysis of Breast Cancer Based on the Dysregulated Network
	Introduction
	Materials and Methods
	Materials

	Methods
	Identifying Driver Genes through DriverNet

	Results and Discussion
	The Dysregulated Network
	Key Dysregulated Genes are Enriched in Critical Breast Cancer-Related Pathways
	Driver Genes are Enriched in the Key Dysregulated Network
	Breast Cancer Drug Targets are Enriched in the Key Dysregulated Network
	The Top Dysregulated Genes may Serve as Potential Biomarkers for Survival Analysis

	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References


