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Drought is one of the most ecologically and economically devastating natural phenomena
affecting the United States, causing the U.S. economy billions of dollars in damage, and
driving widespread degradation of ecosystem health. Many drought indices are
implemented to monitor the current extent and status of drought so stakeholders such
as farmers and local governments can appropriately respond. Methods to forecast
drought conditions weeks to months in advance are less common but would provide
a more effective early warning system to enhance drought response, mitigation, and
adaptation planning. To resolve this issue, we introduce DroughtCast, a machine learning
framework for forecasting the United States Drought Monitor (USDM). DroughtCast
operates on the knowledge that recent anomalies in hydrology and meteorology drive
future changes in drought conditions. We use simulated meteorology and satellite
observed soil moisture as inputs into a recurrent neural network to accurately forecast
the USDM between 1 and 12 weeks into the future. Our analysis shows that precipitation,
soil moisture, and temperature are the most important input variables when forecasting
future drought conditions. Additionally, a case study of the 2017 Northern Plains Flash
Drought shows that DroughtCast was able to forecast a very extreme drought event up to
12 weeks before its onset. Given the favorable forecasting skill of the model, DroughtCast
may provide a promising tool for land managers and local governments in preparing for
and mitigating the effects of drought.
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INTRODUCTION

Drought is one of the most pervasive natural disasters affecting the United States. A single drought
event can cause more than one billion dollars in damages and lead to the shift or degradation of entire
ecological regimes (Crausbay et al., 2017; Smith 2020). Intensification of warm and dry
meteorological anomalies across the country has strained crops and pastures (Boyer et al., 2013;
Li et al., 2019), accelerated the spread of invasive pests and pathogens (Jactel et al., 2012), and driven
extreme wildfire conditions, causing more frequent and severe wildfires than at any point in the last
2000 years (Holden et al., 2018; Higuera et al., 2021). Despite the broad socioeconomic and ecological
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impacts, the onset, extent, and duration of drought are difficult to
define because different stakeholders have varying degrees of
tolerance and resilience to these events (Slette et al., 2019). For
example, meteorological, ecological, agricultural, hydrologic, and
socio-economic droughts are all caused by a different
combination of environmental and economic factors, making
it difficult to create a single holistic definition of drought (Wilhite
and Glantz 1985; IPCC, 2021). A further complication is the
recent emergence of flash drought in the literature (e.g., Mo and
Lettenmaier 2015; Otkin et al., 2018; Chen et al., 2019;
Pendergrass et al., 2020). Flash droughts are characterized by
their rapid onset, which tends to be driven by anomalously high
temperatures, high evapotranspiration (ET), low precipitation,
and low soil moisture (Otkin et al., 2018). Although less common
than typical droughts, flash droughts can pose a significant risk, as
they have driven widespread crop and livestock losses leading to
notable economic and ecological damage (Otkin et al., 2018; He
et al., 2019).

Several methods exist to monitor the status and progression of
drought. For example, the Evaporative Demand Drought Index,
Palmer Drought Severity Index, and Standardized Precipitation
Evapotranspiration Index are common indices that use
precipitation and ET data to estimate the intensity of
hydrological and meteorological drought (Palmer 1965;
Vicente-Serrano et al., 2010; Hobbins et al., 2016). In the U.S.,
one of the most popular means of monitoring drought is the
United States Drought Monitor (USDM). The USDM uses a
combination of meteorological data and expert opinion to
produce weekly maps of categorical drought severity for the
U.S., ranging from D0 (abnormally dry) to D4 (exceptional
drought; Svoboda et al., 2002). While these indices are useful
for monitoring the current status of drought, they do not provide
information about future drought conditions. The ability to better
forecast drought conditions weeks to months in advance would
give stakeholders greater lead time in planning, preparing, and
allocating critical resources for more effective drought mitigation.
Further, the ability to forecast drought even a week in advance
could significantly improve flash drought response, given their
characteristic rapid onset (Otkin et al., 2018; Pendergrass et al.,
2020). While there is no agreed upon definition of flash drought,
it is becoming a common research topic and has many working
definitions (Lisonbee et al., 2021). For example, studies have
defined flash drought as rapid changes in the USDM that are
sustained for four or more weeks (e.g., Chen et al., 2019;
Pendergrass et al., 2020), while others define it as rapidly
evolving anomalies in soil moisture (e.g., Liu et al., 2020;
Sehgal et al., 2021) or evapotranspiration (Christian et al., 2019).

Methods for effective drought forecasting are possible because
future drought status correlates with antecedent soil moisture,
ET, and meteorological conditions. For example, anomalous
decreases in soil moisture are generally reflected in degraded
vegetation greenness and productivity weeks to months after soil
drying occurs (Liu et al., 2011, 2016). Therefore, signs of drought
may not become apparent until long after drought conditions
begin. For example, Liu et al. (2011) found that when soil
moisture reaches below normal conditions, it takes between 10
and 20 days for this decline to reflect in the plant production.

Similarly, Liu et al. (2016) found that relationships between soil
moisture and vegetation leaf area are significantly correlated up to
2 months after soil moisture anomalies begin. This lagged
vegetation response to drought conditions is also outlined in
Otkin et al. (2018), which shows that when paired with above
average atmospheric vapor pressure deficit (VPD) and below
average precipitation, the following three conditions can precede
the onset of a drought: decreasing soil moisture content due to
enhanced ET; decreasing ET due to low root zone soil moisture;
deteriorating vegetation and ecological health.

Several existing methods exploit these leading indicators to
forecast changes in drought conditions in the coming weeks and
months. For example, NOAA’s National Center for
Environmental Information (NCEI) and Climate Prediction
Center (CPC) produce large scale maps of drought
improvement or degradation for 1 month lead times, based
upon “subjectively derived probabilities guided by short- and
long-range statistical and dynamical forecasts.” However, these
models do not forecast the potential for drought across the
USDM severity levels (e.g., D0-D4). In addition, they are
based upon meteorological forecasts and do not account for
land surface interactions such as antecedent soil moisture
conditions. Similarly, Otkin et al. (2014) developed a “Rapid
Change Index” that uses anomalies in ET to detect regions of the
contiguous United States (CONUS) where the USDM status will
intensify. Finally, Lorenz et al. (2017a) used anomalies in
precipitation, soil moisture, and ET to detect CONUS regions
where the USDM is most likely to intensify. While these products
are extremely useful in forecasting drought, they exhibit one or
more of the following drawbacks:

1) They do not directly translate to a USDM category (i.e., they
predict that drought will change but not how much drought
will change). This particularly raises problems in forecasting
rapid onset flash droughts, as a flash drought can be defined as
a 2-category increase in the USDM that is sustained for 2 more
weeks (Pendergrass et al., 2020);

2) They only provide forecasts at fixed intervals of 2, 4 and
8 weeks into the future, limiting the ability to track the
possible progression of a drought at finer time scales;

3) They only use input variables that are traditionally assumed to
correlate to future drought conditions such as precipitation,
ET, and soil moisture. While these variables indeed correlate
to future drought conditions, additional variables such as
temperature, atmospheric humidity, and wind speed may
contribute value-added information.

A promising approach to forecast USDM categories is through
machine learning (ML). ML is becoming more common in earth
system modeling and provides a unique means for making a
prediction using complex, non-linear interactions of geospatial
variables (Reichstein et al., 2019). Additional benefits of ML
models include their ability to discover subtle or hidden
patterns in complex geospatial data, and to map variables to
an output without any a priori knowledge of how these variables
interact (Reichstein et al., 2019). Specifically, recurrent neural
networks (RNNs) and convolutional neural networks (CNNs) are
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becoming popular for extracting temporal and spatial
relationships, or patterns, from observational input data and
predicting a desired output. For example, Fang et al. (2017)
used a variety of meteorological data in an RNN framework to
accurately predict soil moisture observed from the NASA SMAP
(Soil Moisture Active Passive) satellite over the CONUS domain.
Additionally, Zhang et al. (2018) used a CNN to fill gaps in
MODIS (Moderate Resolution Imaging Spectroradiometer)
satellite imagery that were missing or degraded due to sensor
errors or cloud cover. Recently, modeling frameworks combining
these two approaches have been developed to account for both
temporal and spatial context when making a prediction. A
compelling example from Chao et al. (2018) combines an
RNN and a CNN to accurately forecast precipitation at
relatively fine temporal and spatial resolutions.

To address gaps in drought forecasting methods and exploit
the power of ML models, this study introduces DroughtCast: an
MLmodel framework trained to forecast future USDM categories
up to 12 weeks into the future using satellite observed and
modeled meteorological input features. The objectives of this
study are to 1) assess the accuracy of the model framework and
determine its ability to make accurate forecasts in years and
spatial locations where it was not trained; 2) investigate the
impact and importance of the remote sensing-based and
modeled meteorological inputs on model forecasts of the
USDM; and 3) examine model forecasts of the 2017 US
Northern Plains flash drought as a regional case study to
quantify how well the model performs in an extreme flash
drought event. The following sections describe the study area
and datasets used to train and run the model, as well as the model
architecture and training and validation process (Materials and
Methods Section); a summary of model performance and

accuracy (Results Section); implications and significance of
model results (Discussion Section); and the major conclusions
of the study (Conclusion Section).

MATERIALS AND METHODS

Study Area
The study area for this paper covers the entire CONUS from June
2003 to January 2020, which is the largest area and period covered
simultaneously by all model inputs. The CONUS study domain is
defined by the input feature record used for model training. The
CONUS domain also spans a wide gradient in landcover, climate
aridity, and terrain types, making it an ideal region for developing
and testing robust drought forecast methods.

Model Inputs
All features used to train and run our model forward are
summarized in Table 1. Model training features are a
combination of satellite observed and modeled meteorological
variables that have been identified as key predictors of drought in
previous studies (Otkin et al., 2018; Pendergrass et al., 2020). All
model input features are clipped to the CONUS domain and
projected to the SMAP 9-km cylindrical equal area (EASE-2)
earth grid (Brodzik et al., 2014) using bilinear interpolation, as the
SMAP data has the coarsest spatial resolution of the remote
sensing-based model input features. USDM data are provided in a
vector shapefile format, which are rasterized to match the data
type of the other model inputs (Ross 2020). The rasterized USDM
maps were then used as both a model input feature and training
data in a recurrent, auto-regressive model. Because USDM data
are available on a weekly basis, all daily or sub-daily datasets are

TABLE 1 | Model inputs used to train and run the DroughtCast model.

Product Description Spatial
resolution

Temporal
resolution

Features References

U.S. Drought Monitor Weekly drought status used as an input feature and
model training data

∼10 km ×
∼10 km

Weekly - USDM Svoboda et al.
(2002)

SMAP Level-4 Soil
Moisture

3-hourly surface (0–5 cm depth) and rootzone (0–1 m
depth) estimates of soil moisture

9 km × 9 km 3-h - Surface Soil Moisture Reichle et al. (2019)
- Rootzone Soil Moisture

SMAP Level-4
Carbon

Daily estimates of GPP calculated using a SMAP water
supply constraint

9 km × 9 km Monthly* - Gross Primary
Production

Jones et al. (2017)
Endsley et al. (2020)

MCD12Q1 Annual land cover 500 m Annual - Land cover Friedl et al. (2002)
SMAP ET Monthly estimates of ET calculated using a SMAP soil

moisture constraint
9 km × 9 km Monthly - Evapotranspiration Brust et al. (2021)

gridMET Daily meteorology interpolated from local weather
stations

4 km × 4 km Daily - Minimum temperature Abatzoglou (2013)
- Maximum temperature
- Minimum relative
humidity
- Maximum relative
humidity
- Vapor pressure deficit
- Precipitation
- Wind speed
- Solar radiation

Multivariate ENSO
Index

Index quantifying the strength of the El Niño Southern
Oscillation

N/A Monthly - MEI Wolter and Timlin
(2011)

*Note: The SMAP L4_C is a daily product, but here we are using the monthly bias-corrected version.
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converted to a weekly timestep by taking the mean of all data for a
given dataset within a week; monthly datasets are linearly
interpolated to a weekly timestep, and annual features are held
constant throughout a forecast based on the calendar year that the
forecast begins (i.e., if a forecast begins in December of 2017,
annual inputs from 2017 are used for the entire forecast even
though much of the forecast takes place in 2018). To balance the
magnitude of model inputs and facilitate model training, all
inputs are converted to normalized anomalies between −1 and
1, calculated as:

normalized � 2p
x −min(x)

max(x) −min(x) − 1 (1)

where x is the value of a given pixel,min(x) is the minimum value
across the domain for the period of record, and max(x) is the
maximum value across the domain for the study period.

A combination of 15 features derived from the remote sensing
observations and modeled meteorology products listed in Table 1
were used as training features for DroughtCast. The USDM
drought maps were used as both target classes and input
features to provide the model with antecedent information on
drought condition prior to producing a forecast (Svoboda et al.,
2002). We use estimates of surface (0–5 cm) and rootzone (0–1 m)
soil moisture from version 4 of the SMAP Level-4 soil moisture
product (L4SM; Reichle et al., 2019). The L4SM system produces
these soil moisture estimates by assimilating low frequency
(L-band) microwave brightness temperature observations from
the SMAP satellite into the GEOS-5 Catchment Land Surface
Model (CLSM; Koster et al., 2000; Ducharne et al., 2000;
Reichle et al., 2019), which is driven by surface meteorological
data from the NASA Goddard Earth Observing System (GEOS)
weather analysis (Lucchesi 2018). Model inputs of vegetation gross
primary production (GPP) are obtained from the SMAP Level-4
Carbon product (L4C), which uses MODIS vegetation
observations along with SMAP L4SM soil moisture and
temperature data, and GEOS surface meteorology as inputs to a
terrestrial carbon flux algorithm to provide daily estimates of GPP
and net ecosystem CO2 exchange globally (Jones et al., 2017). We
further use ET data derived from a modified MODIS MOD16
algorithm that incorporates SMAP L4SM soil moisture as a water
supply constraint (Mu et al., 2011; Brust et al., 2021).

Because the SMAP satellite was launched in 2015, SMAP data are
only available from March 31, 2015, to present. However,
“NatureRun” (NR) versions of all SMAP products are available
from the beginning of our study period through March 30, 2015.
These NR products use the CLSMwithout the assimilation of SMAP
observations to run the models forward. Although the NR accuracy
is lower than the operational versions of these products, which
benefit from incorporating SMAP observations, the NR error is still
low over the CONUS domain, so they are used here when SMAP
data are not available (Reichle et al., 2019; Endsley et al., 2020; Brust
et al., 2021). There is a small bias between the NR and operational
L4C product climatologies. To fix this issue, we use the bias
correction method described in Wurster et al. (2021) and Endsley
et al. (2020) to align the L4C operational and NR climatologies.

Estimates of daily maximum and minimum relative humidity,
vapor pressure deficit, maximum and minimum air temperature,

wind speed, precipitation, and solar radiation from the gridMet
dataset (Abatzoglou 2013) are used as meteorological inputs for
DroughtCast. Finally, we use a monthly Multivariate El-Niño
Southern Oscillation Index (MEI) as a long-term climatic
indicator (Wolter and Timlin 2011). In addition to these
model inputs, several other ancillary variables that do not
change over the course of a forecast are used as static inputs.
These include the annual MODIS MCD12Q1 landcover product
(Friedl et al., 2002), elevation provided from the gridMet dataset
(Abatzoglou 2013), the day-of-year the forecast is made from, and
pixel-wise averages across the study period of all previously
mentioned model input features.

Model Architecture
To forecast changes in the USDM, we use a Seq2Seq model
architecture (Sutskever et al., 2014). The Seq2Seq architecture is
designed to take sequential data as an input (e.g., a spatially
distributed timeseries of meteorology and hydrology; Model
Training Section) and produce a sequential output (e.g., a
timeseries forecast of the USDM). The Seq2Seq architecture
consists of an encoder and a decoder. The encoder processes a
sequence of features and compresses it into a single context
vector, which is then passed to the decoder. The decoder then
uses the context vector to sequentially produce model outputs. In
DroughtCast, the model encoder and the decoder are both gated
recurrent units (GRUs; Figure 1A; Chung et al., 2014; Zhang
et al., 2020). The GRU uses a timeseries of input features to
sequentially update a hidden state vector, a compressed
representation of all previously observed input features. There
are three steps required to calculate the hidden state at time t.
First, input features at time t and the hidden state from time t-1
are used to derive the reset and update gates:

Rt � σ(XtWxr +Ht−1Whr + br) (2)

Zt � σ(XtWxz +Ht−1Whz + bz) (3)

where Rt is the reset gate, Zt is the update gate, σ is a sigmoid
function that transforms inputs between 0 and 1; Xt are input
features at time t; Ht-1 is the hidden state from the previous
timestep; Wxr, Whr, Wxz, Whz are the input and hidden state
weight matrices for the reset and update gates, respectively; and br
and bz are the bias vectors for the respective reset and update
gates. The reset gate determines values in the hidden state that
should be forgotten, while the update gate determines values in
the hidden state that should be remembered. The reset gate is
then used to calculate the candidate hidden state:

~Ht � tanh(XtWxh + (Rt+Ht−1)Whh + bh) (4)

where ~H is the candidate hidden state; tanh is the hyperbolic
tangent function, which transforms inputs between −1 and 1; and
+ denotes elementwise (Schur) multiplication. The candidate
hidden state contains new hidden state values with irrelevant
values removed from the reset gate. The candidate hidden state is
finally combined with the results of the update gate to produce the
hidden state at time t:

Ht � Zt+Ht−1 + (1 − Zt)+ ~Ht (5)
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The DroughtCast architecture consists of the encoder and
decoder GRUs and a simple neural network (NN) before the
encoder and after the decoder (Figure 1B). Each of these NNs are
comprised of a series of linear, dropout, batch normalization, and
ReLU non-linearity layers (Srivastava et al., 2014; Ioffe and
Szegedy 2015). These layers prevent overfitting and help the
model generalize to data it has not seen before. The NN
before the encoder is meant to build a more complex
representation of input features, while the NN after the
decoder takes the final hidden state and converts it into a
single drought forecast value between 0 and 1. Forecasted
values are then used with the corresponding USDM values to
calculate error and update model parameters (Model Training

Section). Rather than treating the USDM as an ordinal variable
ranging from D0–D4, we treat it as an integer variable ranging
from 0 (no drought) to 5 (D4—exceptional drought). These
integer values are then divided by five (i.e., the total number
of defined categories) to scale them to real numbers between 0
and 1, the same range as the forecasts produced by the
DroughtCast model. While the USDM drought status is
provided as an ordinal variable, we convert the USDM values
to the continuous scale because we found that model performance
is significantly improved when producing continuous rather than
categorical forecasts (not shown). To convert model outputs to
spatially continuous maps of the domain, model forecasts are
produced on a pixel-by-pixel basis, starting at the top left corner

FIGURE 1 | (A) Architecture of a single Gated Recurrent Unit (GRU) cell, recreated from Zhang et al. (2020). Ht is the hidden state vector for time step t; R is the reset
gate, which computes values of H that should be forgotten; Z is the update gate, which computes values of H that should be remembered; and ~H is the candidate hidden
state, which has irrelevant values from H removed by the reset gate. (B) The full architecture of DroughtCast. In the encoder, the hidden state is sequentially updated with
model inputs X. The final hidden state is then passed into the decoder, which produces a sequence of outputs. These outputs are then passed through a linear
neural network to produce a timeseries of drought forecasts.
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of the domain, and moving to the bottom right corner. Once
forecasts are produced for all pixels in the domain, the vector of
forecasts are reshaped to match the dimensions of the domain.

Finally, we apply one final function to the modeled results
from DroughtCast:

f(x) � { round(xp5), x≤ 0.6
ceil(xp5), x> 0.6 (6)

where f(x) is the modeled forecast for a given pixel containing
forecasts from 1–12 weeks into the future; x is the output
produced by the neural network; round is a function rounding
x to the nearest integer and ceil is a function returning the ceiling
integer of x (e.g., if x equals 4.1, ceil returns 5). The above
Equation 6 partially accounts for more severe (category D3
and D4) droughts being comparatively rare in the model
training record, which can impart a forecast bias toward more
frequent, but less severe drought categories. For example, the
USDM states that for a given location and year, a D3 drought
should occur between 3–5% of years, and a D4 drought should
occur in less than 2% of years (Svoboda et al., 2002). Due to this
scarcity, the model sees relatively few training samples of these
drought classes which may degrade forecast performance for
these more extreme events. The post-processing function simply
rounds-up all model forecasts ranging between 3 and 5 to their
nearest integer value. This processing step was found to
significantly improve model performance in both training and
test sets, while adding very little complexity or additional
computational burden to the model architecture.

Model Training
To train the model, we used a hidden state with 128 parameters,
as a hyperparameter grid search found that these values produced
optimal model forecasts (not shown). To update model
parameters, a minibatch size of 128 pixels across all USDM
images are randomly selected. For a given USDM image at
date d, we then sampled the same set of pixels for all input
features with dates ranging from d-30 weeks to d-1 week, as well as
all USDM targets from dates d to d+11 weeks. Using a
hyperparameter search, we found a 30-weeks history to
provide favorable results while allowing the model to train in
a reasonable amount of time. In each minibatch, DroughtCast
produces 12 forecasts for each sampled pixel. These leading
forecasts are then compared to the ground truth USDM
images from 1–12 weeks into the future using the mean
squared error (MSE) loss function. After the loss is computed,
model parameters are updated via the backpropagation
algorithm. This process is repeated until all possible pixel-
image combinations are exhausted. This training loop is
repeated 50 times or until the loss in the validation dataset
stabilizes and stops decreasing. Data from selected years 2007,
2014, and 2017 were excluded from this process and used as
holdout cross-validation datasets. We selected these holdout
years to represent documented drought anomalies, including a
large drought that occurred in the southeastern CONUS in 2007;
the midpoint (2014) of a long-term drought extending across
California, and the Northern Plains Flash Drought that occurred

in 2017. This left 698 unique USDM images that were sampled
and used for model training. The model training was performed
on an NVIDIA Tesla P4 GPU and took approximately 2 weeks.
After the model was trained, producing a forecast for the CONUS
on a given day takes approximately 1 min on the same GPU.

We trained 10 of the models described above to produce an
ensemble of model forecast estimates. Parameter updates, as well
as the parameters that are turned off in the dropout layers, are not
deterministic, meaning two models trained on the same data
could produce slightly different results. Therefore, the model
ensemble accounts for the stochastic nature of the machine
learning model training and predictions. Pixel-wise median,
maximum, minimum, and inter-quartile range (IQR) summary
statistics were subsequently calculated from the model ensemble
for each grid cell and time step. These summary statistics were
then used to evaluate model performance and uncertainty in all
analyses described below. All of the following error statistics and
maps are derived using the ensemble median unless
otherwise noted.

Model Validation
Spatial and Temporal Generalization Tests
To ensure DroughtCast does not overfit to the training data,
we performed two separate validation tests. The first test is a
spatial generalization test; whereby, model training and test
data are split into distinct CONUS sub-regions.
Supplementary Figure S1 displays the CONUS sub-regions
used for model training and testing. In both the training and
test sets, the MSE and the coefficient of determination (R2)
were evaluated. The ability of the model to generalize to
spatial regions where it was not trained was assessed by
comparing MSE and R2 values between the training data
and the spatial holdouts. In the second test, the MSE and
R2 metrics were calculated for all model estimates occurring
within the 2007, 2014, and 2017 holdout years. The model was
not trained from these annual records, so favorable
performance during the holdout years indicates that the
model is able to generalize forecasts to years it was not
trained on. Additionally, to ensure model forecasts are
consistent with USDM classes, we produced confusion
matrices of categorical model performance for the training,
spatial holdout, and temporal holdout sets for all lead times.

Relative Importance of Model Inputs
To determine the relative importance of model inputs, we ran
each ensemble member forward for the entire study period while
iteratively replacing each of the inputs with uniformly random
values between −1 and 1; i.e., the range each input is normalized
to. We then calculated how much the model error changed when
a given input was replaced with a random value. Finally, the
model inputs were ranked according to their relative importance
in the model forecast. Due to the computational resources needed
to rerun this test for each ensemble member and each model
input across the entire domain, we only performed this test for the
gridMet and satellite-observed features. Similar to Lorenz et al.
(2017a), preliminary analysis found that the antecedent USDM
information was by far the most important feature for producing
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a forecast. Therefore, the USDM data were excluded in all model
holdout test runs to avoid skewing the results.

Regional Case Study Forecast of the Northern Plains
Flash Drought
In the summer of 2017, the states of Montana, Wyoming, North
Dakota, and South Dakota experienced a severe flash drought,
characterized by anomalously low precipitation, high
temperatures, and high vapor pressure deficits (Otkin et al.,
2018; He et al., 2019; Jencso et al., 2019; Hoell et al., 2020). In

fact, large portions of these states had never experienced a
category D3 or D4 drought during the period of record used
for this study (Supplementary Figure S2). Consequently, our
model was not trained on a set of data containing rare high
severity drought conditions across this region. To assess model
performance for this drought, we compared the ensemble
forecasts to USDM maps at two different time periods across
the drought’s progression, one before the emergence of D3
drought, and one before the emergence of the more severe D4
drought. A favorable model drought forecast that successfully

TABLE 2 | Error and correlation for the DroughtCast ensemble at all lead times aggregated across the CONUS domain.

Lead time MSE (USDM categories) Correlation (R2)

Training data Spatial holdout
data

Temporal holdout
data (2007,
2014, 2017)

Training data Spatial holdout
data

Temporal holdout
data (2007,
2014, 2017)

1 Week 0.0534 0.0510 0.0567 0.9588 0.9575 0.9510
2 Week 0.0762 0.0753 0.1216 0.9411 0.9368 0.8955
3 Week 0.0870 0.0890 0.1823 0.9328 0.9253 0.8447
4 Week 0.0943 0.0992 0.2376 0.9270 0.9168 0.7994
5 Week 0.1003 0.1074 0.2862 0.9226 0.9099 0.7606
6 Week 0.1051 0.1139 0.3305 0.9185 0.9042 0.7259
7 Week 0.1093 0.1195 0.3717 0.9151 0.8993 0.6941
8 Week 0.1132 0.1247 0.4115 0.9118 0.8947 0.6642
9 Week 0.1171 0.1297 0.4503 0.9084 0.8902 0.6355
10 Week 0.1216 0.1353 0.4880 0.9048 0.8853 0.6081
11 Week 0.1267 0.1411 0.5232 0.9004 0.8798 0.5829
12 Week 0.1351 0.1493 0.5565 0.8934 0.8725 0.5597

Columns labelled “Train” are from all pixels used to train the model; columns labelled “Spatial” are pixels from the same years the model was trained, but from the spatial holdout set
(Supplementary Figure S1); columns labelled “Temporal” are computed using all pixels from 2007, 2014, and 2017, years the model was not trained.

FIGURE 2 | Spatial patterns of model MSE and correlation across the CONUS domain aggregated across all lead times. The top row shows the R2 correlation,
while the bottom row shows the MSE error. The left column was calculated using data from 2007, 2014, and 2017, years that the model was not trained. The right
column was calculated using data from years where the model was trained.
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captures the spatial and temporal progression, and severity of this
extreme event would indicate that the model can produce reliable
flash drought forecasts.

RESULTS

Spatial and Temporal Generalization
Across the entire domain, DroughtCast can accurately forecast
USDM drought up to 12 weeks in advance (Table 2, Figure 2).
Model forecast performance between the spatial holdout pixels is
similar to the performance of the training pixels, while the
performance in the temporal holdout data is slightly lower
(Table 2). Spatially, this pattern is less consistent, as the
temporal holdouts in the western CONUS have similar R2 and
MSE performance relative to the training set, while the eastern
CONUS has slightly degraded performance relative to the
training set (Figure 2). Confusion matrices of categorical
model performance show similar results (Supplementary
Tables S1–S12). As in the MSE and R2 performance seen in
Table 2 and Figure 2, the confusion matrices show that model

performance is best at smaller lead times in the training set and
spatial holdouts, and that misclassifications are more common in
the temporal holdouts and as the lead time increases. In general,
DroughtCast becomes less accurate for longer forecast lead times,
particularly in the temporal holdout data. However, even in the
model holdout years, the model forecast error at the maximum
12-weeks lead time is less than one USDM category and explains
more than half (∼53%) of the variability in the USDM when
aggregated across the CONUS domain (Table 2).

There are no clear regions of the CONUS where the model
performs poorly in the training data. However, in the temporal
holdout data, model MSE is notably degraded in California,
Montana, and particularly in the Southeast (Figure 2). Despite
the apparent degradation in these regions, the model R2

correlation remains high, suggesting that the model estimates
may be consistently off by approximately one category in these
regions (Figure 2). Despite these anomalies, the areal coverage of
the estimated drought categories at all lead times closely matches
that of the USDM areal coverage (Figure 3). In the holdout years,
the model tends to underpredict high-intensity droughts (D3 and
D4) and overpredict low-intensity (D0) droughts, particularly as

FIGURE 3 | Areal coverage of drought categories across the CONUS for the study period. The top row shows the USDM drought, while the following rows show
the forecasted distribution with 2-, 4-, 8-, and 12-weeks lead times, respectively.
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the forecast lead time approaches 8–12 weeks. An example can be
seen in Figure 4, where model forecasts at 8 and 12 weeks show
expanded category D0 and D1 drought in much of Colorado,
Wyoming, and Montana relative to the USDM. However,
Figure 4 also illustrates the model’s ability to accurately track
the intensification and reduction of drought. For example, the
model captures the slight expansion of category D3 drought in
California and Nevada, the persistence of D4 drought in
California, and the shrinking of category D3 and D4 drought
around Texas and Oklahoma.

The DroughtCast model ensemble successfully forecasts
historical drought events such as the 2012 Central Plains
drought, the dominant drought anomaly in the study
record, across all lead times (Figure 3). Persistent, multi-
year, severe drought over the southwestern CONUS
throughout 2014 is also successfully forecasted at all lead
times (Figures 3, 4). Additionally, the model forecasts are
equally capable of detecting regions of the CONUS where
drought does not occur (Figures 3, 4). Together, these
patterns demonstrate the model’s capacity to capture
different drought types occurring across diverse CONUS
climate regimes.

Relative Importance of Model Inputs
Across all lead times and the entire CONUS domain,
precipitation is the most important input feature for the
model USDM drought forecasts (Figures 5, 6). Of the satellite
observed inputs, surface soil moisture and rootzone soil moisture
are the most important predictors, respectively, while GPP and
ET consistently rank lower (11th or 12th) in importance.
However, the relative importance of the predictors shifts with
longer lead times. For example, at lead times of 1, 2, and 3 weeks,
VPD and rootzone soil moisture rank as the third and fourth
most important input features, respectively (Figure 5). However,
these features become less important at longer lead times. The
opposite pattern is seen with minimum temperature and solar
radiation. At 1-week lead time, minimum temperature and solar
radiation are the sixth and seventh most important features,

respectively, but they rise to become the second and third most
important predictors by the 12-weeks lead time.

At all lead times, GPP, ET, maximum temperature, and wind
speed rank among the least important features in forecasting
future drought (Figure 5). Although these features rank poorly
when aggregated across the entire domain, a map of feature
importance across the CONUS shows that each of these features
ranks higher in specific regions of the domain (Figure 6). For
example, ET and GPP are approximately the seventh or eighth
most important predictors in Montana and Wyoming, while
maximum temperature and wind speed show similar ranking
in California and the southeastern CONUS. Similar to the results
displayed in Figure 5, precipitation is the most important feature
for the entire CONUS domain, with minimum temperature,
surface soil moisture, and solar radiation having similar, but
secondary importance. While these features rank highly for the
majority of the domain, their importance does vary between the
eastern and western CONUS. For example, surface and rootzone
soil moisture have greater ranking in the western CONUS and
lower ranking in the eastern CONUS, while the opposite is true
for solar radiation and minimum temperature.

Northern Plains Flash Drought Case Study
Anomalously dry and warm conditions in Montana, North
Dakota, South Dakota, and Wyoming began to manifest in
May and June of 2017 (He et al., 2019). Following these
conditions, much of this region was under D0, D1 or D2
drought for much of May and June, and the first designation
of category D3 drought in any of the states was on June 20th,
2017. Accordingly, our first forecast of the 2017 drought uses data
up to June 13th to determine whether DroughtCast can properly
capture the associated increase in drought intensity. Figure 7A
shows the USDM status in a 12-weeks forecast, in addition to the
DroughtCast ensemble median and maximum. The model
median does not capture the emergence of category D3
drought except for a small portion of eastern Montana at the
8-weeks forecast mark. However, the median forecast does
capture the expansion of drought conditions across the

FIGURE 4 | Example of model forecasting ability in a holdout year. This forecast was generated using the 30 weeks of data leading up to May 6th, 2014. Using this
data, DroughtCast produces a forecast for each week, 1–12 weeks into the future. The top row shows the USDM drought, while the bottom row shows the model
forecast for the same weeks, with lead times (2, 4, 8, 12 weeks) displayed in parentheses.
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domain. While the ensemble median does not forecast the
emergence of category D3 drought, the maximum of the
ensemble does. At all forecast lead times, the ensemble
maximum closely matches the USDM analysis of category D3
drought, but does not forecast the emergence of extreme D4
drought that emerges at the 8-weeks lead time mark (Figure 7A).

We produced another 12-weeks forecast after flash drought
conditions began, but prior to the emergence of category D4
drought, which first appeared on July 18th, 2017. Accordingly, the
resulting forecast uses input features leading up to July 11th.
Here, the model median successfully captures the recession of
category D3 drought across Montana and western North Dakota
but fails to capture the emergence of category D4 drought
(Figure 7B). The ensemble maximum, however, does capture
the emergence and persistence of category D4 drought for the
entire 12-weeks forecast, but does not forecast the D4 drought to
be as spatially extensive as the USDM analysis. While neither the

median nor maximums of the ensemble perfectly forecast the
drought, a combination of the two provides a reliable estimate of
where the flash drought both intensified and moderated over the
course of the extreme event. For example, the ensemble median
captured the maintenance of D1 and D2 drought in eastern
Montana in the Dakotas throughout the forecast period, while the
maximum captured the emergence of D4 drought prior to its
designation by the USDM.

DISCUSSION

Spatial and Temporal Generalization
The results from this study indicate that DroughtCast performs
well from both the training data, as well as the spatial and
temporal holdouts. However, the model results are better in
the spatial holdouts relative to the temporal holdouts, which

FIGURE 5 | Relative importance of model input features by lead time. The y-axis represents the importance rank (1 �more important, 12 � less important), and the
x-axis represents the forecast lead time (in weeks). The feature abbreviations are as follows: evapotranspiration (ET), gross primary production (GPP), precipitation (PPT),
maximum relative humidity (RHMax), minimum relative humidity (RHMin), rootzone soil moisture (RZSM), surface soil moisture (SFSM), solar radiation (SRAD), maximum
temperature (TMAX), minimum temperature (TMIN), vapor pressure deficit (VPD), wind speed (WS).
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may be due to spatial autocorrelation in the input features and the
relatively small sample size of the spatial holdouts relative to the
training data. Because DroughtCast operates on a per pixel basis,
it doesn’t account for interactions or similarity between adjacent
pixels. Previous studies have used smoothedmodel inputs derived
using a Gaussian kernel (Lorenz et al., 2017a) or used model
architectures such as CNNs that account for spatial relationships
between pixels (Chao et al., 2018). Despite this limitation, the
spatial holdouts are still very accurate, including MSE
performance within 1 USDM category and R2 correlation
exceeding 50% for the longest (12-weeks) forecast lead time
when aggregated across the CONUS domain.

Spatially, the model degradation in the temporal holdout tests
was primarily located in the southeastern CONUS. This
degradation coincides with an extreme drought event that
occurred in the southeast in the spring and summer of 2007
(Lorenz et al., 2017a). Similar to the 2017 Northern Plains Flash
Drought, this was a very extreme drought event with a magnitude
that rarely occurred in the southeast for the remainder of the
study period. For large portions of the southeastern states, the
vast majority of category D3 and D4 drought to occur in the study
period was in 2007 (Supplementary Figure S3), meaning the
model saw relatively few severe category drought examples from
this region in the training data. Additionally, the drought event

was preceded by almost 2 years of less-than-normal precipitation,
but the extensive D3 drought didn’t begin until almost a year after
these anomalous conditions. Because these drought conditions
did not begin until 2007, the model likely never effectively learned
the underlying relationship between the preceding persistent low
precipitation and subsequent high intensity drought in the
CONUS southeast, resulting in a sub-optimal forecast of this
extreme regional event. Despite the lower model performance in
this region, the resulting MSE of the model forecast was still
within two USDM categories in the southeast region (Figure 2).

Relative Importance of Model Inputs
As expected, precipitation is the most important feature for all
CONUS regions and across all lead times, followed by surface and
root-zone soil moisture. Interestingly, rootzone soil moisture
becomes a less important predictor at longer lead times, which
contrasts with expectations of the slower evolving rootzone
having longer soil moisture “memory” than the surface and
being a better proxy for plant-available soil water (Reichle
et al., 2019; Brust et al., 2021). As such, it is expected that
rootzone soil moisture would be a more important feature in
forecasting long term drought than surface soil moisture.
However, Lorenz et al. (2017a) also found that surface soil
moisture was slightly more important in forecasting future

FIGURE 6 | Relative importance of model input features by spatial location aggregated across all model lead times. Red colors represent higher input feature
importance for a given area, while blue represents less important input features. The feature abbreviations are as follows: evapotranspiration (ET), gross primary
production (GPP), precipitation (PPT), maximum relative humidity (RH Max), minimum relative humidity (RH Min), rootzone soil moisture (RZSM), surface soil moisture
(SFSM), solar radiation (SRAD), maximum temperature (TMAX), minimum temperature (TMIN), vapor pressure deficit (VPD), wind speed (WS).
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changes in the USDM than rootzone soil moisture. A possible
explanation for this behavior in the current study is that the
SMAP satellite only measures soil moisture in the top layer
(∼0–5 cm depth) of the soil column, whereas the L4SM
rootzone soil moisture is not directly observed by SMAP
(Reichle et al., 2019), which may result in relatively less
accurate L4SM rootzone estimates compared to the quality of
the L4SM surface soil moisture. Moreover, there is also redundant
information in the two features, where the model may recognize

the redundancy and assign less weight to the rootzone soil
moisture.

Redundant information in the model inputs may also account
for the relatively low importance assigned to the ET and GPP
inputs. Despite the high correlation between drought conditions
and both GPP and ET (He et al., 2019), and the successful use of
ET in other drought forecasting methods (e.g., Otkin et al., 2014),
these features had relatively little influence within our modeling
framework. Both ET and GPP are highly correlated with

FIGURE 7 | USDM andmodel forecasts of the 2017 Northern Plains Flash Drought. (A) Drought evolution early in the flash drought, with forecasts generated using
data up to June 13th, 2017. (B)Drought evolution during the peak of the flash drought, with forecasts generated using data up to July 11th, 2017. In both figures, the first
row shows the USDM on a given date, the second row shows the ensemble median, and the third row shows the ensemble maximum. The columns show the USDM
and model forecasts at 2-, 4-, 8-, and 12-weeks lead times.
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meteorological variables such as precipitation, solar radiation, soil
moisture, and vapor pressure deficit (Peng et al., 2019; Brust et al.,
2021). Therefore, the low importance of these parameters could
reflect their high level of redundancy, with the model only using a
small amount of the additional information that they carry. The
lower GPP and ET importance may also reflect the coarse
monthly aggregation of these parameters compared with the
other input features delineated at weekly timescales. However,
it is important to note that ET and GPP both contributed to the
favorable model performance, particularly in the western
CONUS (Figure 6).

Forecast of Northern Plains Flash Drought
DroughtCast successfully captured the expansion and
intensification of the 2017 flash drought, even though the 2017
holdout year was excluded from the model training. While the
model ensemble median was less effective in forecasting the
emergence of the D3 and D4 drought categories, the ensemble
maximum forecast was more effective in predicting these regional
drought extremes. The difficulty in forecasting these high
category droughts is exacerbated by the paucity of D3 and D4
drought occurrence in these states during the study period. While
portions of Montana, South Dakota, and Wyoming experienced
severe D3 and D4 conditions during the historical 2012 Central
Plains drought (Hoerling et al., 2014), these extremes were
missing from other areas of Montana and North Dakota
during the 2003–2020 study period (Supplementary Figure
S2). Despite this limitation, the general pattern, magnitude,
and progression of the 2017 flash drought were captured by
the model ensemble maximum forecast, with generally better
performance at shorter lead times and lower performance from
the ensemble median forecast in representing the more extreme
drought categories from this anomalous event. These results
indicate that the model ensemble maximum may provide a
more suitable USDM drought forecast given the projected
intensification of climate extremes with global warming (IPCC,
2021), but it may also bias model forecasts toward greater drought
extremes.

Despite never being trained on category D3 or D4 drought in
northern Montana or North Dakota, the DroughtCast ensemble
maximum forecasts effectively predicted these severe categories
before their emergence. In addition to forecasting the emergence
of D3 and D4 drought, the ensemble maximum model
predictions forecasted a rapid 2-category intensification of the
USDM within a 2-week period that persisted for another 2 weeks
(Figure 7). The resulting pattern meets the flash drought criteria
of USDM intensification proposed by Pendergrass et al. (2020)
and Chen et al. (2019) and indicates that the DroughtCast
ensemble maximum predictions successfully forecasted the
2017 Northern Plains Flash Drought.

In addition to the model’s ability to forecast this drought
event, it should also be noted that the model forecasts accurately
depict the intensification, mediation and decline of the USDM
across the summer of 2017, consistent with the onset and
amelioration of hydrologic and meteorological drought
conditions. In the months leading up to June of 2020, the
Northern Plains states experienced abnormally low

precipitation and high temperatures, which drove rapid
declines in soil moisture (Jencso et al., 2019). This led to the
designation of D3 drought conditions in Montana and the
Dakotas, which was effectively forecasted by DroughtCast
(Figure 7). These conditions persisted through August, leading
to the emergence of D4 drought, which was also captured by our
ensemble maximum forecast. In August of 2017, the Dakotas
experienced considerable precipitation, recharging the soil water
supply, leading to the eventual decline in USDM drought severity
(Jencso et al., 2019). A final forecast produced on August 29th,
2017, successfully forecasts the decline in USDMmagnitude over
the Dakotas, but the persistence of D3 and D4 drought over
Montana, which did not experience any considerable
precipitation through the month of August (Supplementary
Figure S4).

Model Uncertainties and Future Work
Despite favorable forecasting ability for much of the CONUS
domain, the forecasts produced by DroughtCast have inherent
uncertainty. Reasons for this uncertainty include the human
component of the USDM, which involves a combination of
meteorological and hydrologic data, and expert opinion
(Svoboda et al., 2002). DroughtCast directly incorporates
meteorological and hydrologic information, while the human
element is only indirectly represented from the USDM data used
for model training. The model framework may account for some
of the uncertainty introduced by subjective expert opinion, but
not all of it. However, as the USDM evolves to use more drought
indicators and more robust drought monitoring methods are
developed, our model can glean this information and continue to
improve in its forecasting ability. Further, no set of
meteorological or hydrological indicators will ever be able to
fully capture the complex relationships between the biophysical
changes that occur during a drought and the resulting effects on
ecosystems and economies. This makes the subjectivity of the
USDM essential, as it captures the regionalized impacts of
drought that vary across the CONUS due to differences in
economies, agriculture, and drought tolerance.

Variability in the resulting ensemble of forecasts (e.g.,
Figure 7) reflects the stochastic nature of the model training
process. When training the model, we only updated model
weights based on one minibatch representing 128 pixels of
data at a time, and the dropout in the linear model layers is
applied at random. As a result, the final model weights can vary
based on the ordering of the data it is trained on and the random
dropout. While this process can introduce uncertainty into a
single model, the associated impact may be reduced by the
ensemble of model projections, resulting in more robust model
forecasts with up to 12-weeks effective lead times.

Another source of uncertainty is that the distribution of
USDM categories is non-linear (i.e., the distance between D0
and D1 is not the same as the distance between D3 and D4;
Lorenz et al., 2017b). We attempt to address this issue by
implementing the rounding function outlined in Eq. 6.
However, another option could be to calculate the cutoff
threshold between USDM categories within our model (e.g.,
Beguería and Maneta, 2020). By training the model to
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calculate the points on the continuous scale where drought
categories shift, we could forego the extra calculation outlined
in Eq. 6 and potentially improve the model results. A final
change to our model framework that could improve results is
to better account for features with a strong seasonal cycle.
Features such as temperature and solar radiation tend to have
strong seasonality (i.e., low in the winter, high in the summer).
As such, normalizing these features as we do in Eq. 1 does not
provide context as to how the feature compares to previous
years on a given date. Adding a seasonal average feature,
rather than an annual average, as a model input may provide a
more temporally explicit context for each of these features
(Lorenz et al., 2017a).

The results presented here are meant to serve as a
framework for future model refinements. A number of
methods have recently been developed that could be used
to improve on the results presented here. For example, the
temporal fusion transformer (TFT) was recently developed as
a means of forecasting timeseries data and implicitly
accounting for model uncertainty (Lim et al., 2021).
Additionally, a model framework that accounts for pattern
recognition in both space and time could further improve
model results. The framework implemented by Chao et al.
(2018) would be a good option, as it uses an RNN architecture
similar to that used in DroughtCast, but also implements
spatial convolutions that account for spatial relationships
between adjacent pixels. Additionally, improvements in the
spatial resolution of the model inputs could lead to finer-scale
drought forecasts. Here, we are limited to the relatively coarse
resolution of the SMAP and USDM products. However, the
potential exists for finer scale estimates of drought
commensurate with finer scale model inputs (e.g., Chaney
et al., 2016), enabling localized drought forecasts at the
individual county or farm level to better inform risk
management and mitigation efforts. Model forecasts could
also be improved by using a wider variety and greater number
of input features. For example, lower-order satellite
observations such as Landsat reflectances (e.g., Ketchum
et al., 2020; Moreno-Martinez et al., 2020) or SMAP
brightness temperatures (e.g., Piepmeier et al., 2017; Tong
et al., 2020) could be used as input features rather than
modelled ET, GPP, and soil moisture. Recent studies have
also found terrestrial water storage as measured by the
GRACE satellites to be a useful drought metric (Zhao et al.,
2017). Future studies could potentially use this data to
improve modeled drought forecasts. Finally, dynamical
subseasonal-to-seasonal (S2S) forecasts of precipitation and
temperature (e.g., Hao et al., 2017) could be used as additional
input features to provide the model with information about
possible future meteorological conditions across the domain.
Future model frameworks could be tested by forecasting more
recent drought events in the CONUS such as the 2019 flash
drought in the Southeast or the persistent drought over the
West in 2020 and 2021.

CONCLUSION

This paper introduced DroughtCast, an ML model that forecasts
maps of USDM drought categories up to 12 weeks in advance.
The model ensemble makes skillful predictions for years and
regions where it was not trained, with an average error of less than
one USDM drought category for a 12-weeks forecast in a holdout
test dataset. Although our study is constrained to the CONUS
domain, the model framework is flexible. Given sufficient data,
the model framework could be deployed anywhere in the world
that has a data repository of historic drought condition, high-
resolution meteorology, and soil moisture. Our results show that
of all model training features, precipitation, soil moisture, and
temperature are key for forecasting drought. However, all features
add value to the model forecasting ability and their relative
importance varies across the CONUS. In a case study of the
2017 Northern Plains Flash Drought, DroughtCast successfully
forecasted the emergence of category D3 and D4 drought, and the
forecasts successfully met the definition of a flash drought.

Future studies can advance this framework by exploring finer
spatial resolution training data, alternative ML, or deep learning
model architectures, or expanded model input features such as
S2S forecasts. Despite some shortcomings, DroughtCast has the
potential to make operational drought forecasts that can be used
by land managers, farmers, and government agencies to make
informed and timely decisions about drought risk.
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