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Abstract: Patients bitten by Naja atra who are treated with bivalent freeze-dried neurotoxic antivenom
in Taiwan have an improved survival rate but develop necrotic wound changes. The World Health
Organization (WHO) has suggested using the minimum necrotizing dose (MND) of venom as a
method of evaluating the neutralization effect of antivenom. The aim of this study was to evaluate
the effectiveness of antivenom for the prevention of necrosis based on the MND and clarify which
component of the venom of N. atra induces necrosis. The neurotoxins (NTXs) were removed from the
crude venom (deNTXs), and different concentrations of deNTXs were injected intradermally into the
dorsal skin of mice. After three days, the necrotic lesion diameter was found to be approximately
5 mm, and the MND was calculated. A reduction in the necrotic diameter of 50% was used to identify
the MND50. Furthermore, both phospholipase A2 (PLA2) and cytotoxins (CTXs) were separately
removed from the deNTXs to identify the major necrosis-inducing factor, and the necrotic lesions
were scored. All mice injected with deNTXs survived for three days and developed necrotic wounds.
The MND of the deNTXs for mice was 0.494 ± 0.029 µg/g, that of the deNTXs-dePLA2 (major
component retained: CTXs) was 0.294 ± 0.05 µg/g, and that of the deNTX-deCTX (major component
retained: PLA2) venom was greater than 1.25 µg/g. These values show that CTX is the major factor
inducing necrosis. These results suggest that the use of the deNTXs is necessary to enable the mice
to survive long enough to develop venom-induced cytolytic effects. CTXs play a major role in
N. atra-related necrosis. However, the MND50 could not be identified in this study, which meant that
the antivenom did not neutralize venom-induced necrosis.
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Key Contribution: In this study, we highlighted an animal mode which can survive long enough
to reproduce the necrotic wound as human. We clarified which was the major necrosis-inducing
component of the venom and assessed the neutralization ability of antivenom based on the minimum
necrotizing dose (MND).

1. Introduction

Naja atra, a member of the Elapidae family, is a medically significant venomous snake
that is common in Central Taiwan [1]. Patients bitten by N. atra are treated with bivalent
antivenom-freeze-dried neurotoxic antivenom in Taiwan [2]. Local injuries are more com-
mon than neurologic toxicity after bites from many Naja species, including Naja nigricollis,
Naja mossambica, Naja nigricincta, Naja pallida, Naja nubiae, and Naja katiensis [3–5]. Among
patients bitten by N. atra, 65.6% progress to skin necrosis, and 42.1% develop necrotizing
soft tissue infections [1,6]. Even when patients receive antivenom, skin necrosis still occurs,
and debridement surgery is usually suggested 3.5 days after snake bite [6]. Studies have
investigated the mechanism for N. nigricollis [7,8] and N. atra [9], although there has been
less research on the latter species.

Snakebite-related local toxicity is usually thought to be due to the action of phospho-
lipase A2 (PLA2), cytotoxins (CTXs, also called cardiotoxins) and snake venom metallo-
proteinases (SVMPs) [10–12]. PLA2 disrupts the plasma membrane of muscle fibers and
induces a signaling cascade, including a calcium influx and mitochondrial dysfunction,
resulting in muscle cell damage [13,14]. CTXs are unique to the Elapidae family and induce
extensive local injuries by disrupting the plasma membranes of different cells [5,15]. SVMPs
are the major component of the venom of most Crotalinae and Viperinae species [16] and
are less abundant in the venom of Elapidae species [10,17]. The venom of N. atra comprises
neurotoxins (NTXs), PLA2, CTXs, and high-molecular-weight proteins (HMWPs) [18]
which included Atrase B [19], Atragin [20], kaouthiagin-like [20], and L-amino acid oxi-
dase (LAAO) [21]. In Taiwan, the composition of the venom of N. atra varies across its
geographic range, particularly between Western and Eastern Taiwan [18]. The average
component ratio of the crude venom of N. atra is as follows: NTXs, 22%; PLA2, 15.4%;
CTXs, 56.2%; and other components, 6.5% [11,18]. Therefore, PLA2 and CTXs are suspected
of being the major causes of the local injuries induced by N. atra bites.

A significantly improved survival rate has been observed among patients bitten by
N. atra who receive antivenom; however, these patients still have a high likelihood of
developing local necrotic wounds [6]. Dermonecrosis in humans caused by the venom
of N. atra is an important clinical problem even in the era of antivenom. Traditionally,
antivenom is evaluated based on the effective dose 50 (ED50), which is based on the lethal
dose 50 (LD50) of crude venom in mice [22,23]. In summary, the effectiveness of traditional
antivenom is evaluated based on the improvement in the survival rate and does not take
into account cytolytic effects. Therefore, the World Health Organization (WHO) suggested
using the minimum necrotizing dose (MND) of venom as a method of evaluating the
neutralizing effect of antivenom [24]. The MND of venom is the smallest dose that, when
injected intradermally into the dorsal skin of mice, leads to the development of a necrotic
lesion 5 mm in diameter [24]. The MND50 is the value used to evaluate the neutralizing
effect of antivenom on venom-induced necrosis [24]. There were other studies focused on
the Naja genus-related local injury [5,7,9]. Our study separated each venom component
performed as previously described [18] and approached with MND, MND50, and tissue
necrosis score to identify the effects of venom and antivenom.

The aim of this study was to evaluate the effectiveness of antivenom with regard to
the prevention of necrosis based on the MND/MND50 and to identify which component of
the venom of N. atra leads to necrosis.
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2. Results
2.1. An Example for the Clinical Observation of Patient Bitten by N. atra

A 51-year-old male who was bitten by N. atra, which was identified by the patient,
received one vial of the bivalent antivenom against B. multicinctus and N. atra and devel-
oped progressive necrosis without any neurologic symptoms two days later (Figure 1). He
underwent debridement several times and remained in the hospital for twenty-two days.
The wound cultures showed infection with Morganella morganii and Enterococcus faecalis,
which were commonly identified in patients who have been bitten by N. atra [25]. Patients
bitten by N. atra developed delayed necrotic wounds, and an appropriate animal mode
was necessary for mice to survive long enough to develop the cytolytic effects.
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Figure 1. A 51-year-old male was bitten over the right thumb distal phalanx by N. atra, which was
identified by the patient. (A) Nine hours post-bite, the fang maker (arrow) was located over the
radial side, and redness was located over the dorsal side of the thumb. (B) Fifteen hours post-bite,
the necrotic change can be noted over the fang marker, and the redness is still noted over the dorsal
side of the thumb. (C) Fifty-seven hours post-bite, the progress of necrosis was noted from the fang
marker and progressing to dorsal side. (D) (Photo credits: Yu-Jen Shih) Ten days post-bite, the patient
received the third time of debridement, and the necrotic tissue was all debrided and removed.

2.2. Characterization of Naja atra Crude Venom and the MND of the deNTXs

The crude venom of N. atra was found to contain NTXs, PLA2, CTXs, cysteine-rich
secretory proteins (CRISPs) and high-molecular-weight proteins (HMWPs) (Figure 2A). We
removed the NTXs (the lethal component) from the crude venom, creating venom devoid
of NTXs (deNTXs) (Figure 2B). All mice that were intradermally injected (Figure 3) with
the deNTXs survived for three days, and necrotic changes were observed, as in human
wounds. Different concentrations of deNTXs were tested, and the MND of the deNTXs in
mice was 0.494 ± 0.029 µg/g (injection volume: 50 µL, mouse weight: 20~22 g).

2.3. CTXs Are the Major Component Causing Necrosis

Furthermore, we removed the CTXs and PLA2 separately from the deNTXs to deter-
mine which component played the most important role in inducing necrosis (Figure 3C).
The MND of deNTXs-dePLA2 (major component retained: CTXs) was 0.294 ± 0.050 µg/g,
and the MND of deNTXs-deCTXs (major component retained: PLA2) was greater than
1.25 µg/g (Table 1). The results showed that CTXs played a major role in the mechanism
generating necrosis.
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HMW, high-molecular-weight proteins. 

 

Figure 3. Male CD-1 mice (10–12 weeks old, 20–22 g) had (A) the dorsal skin hair removed and were 
intradermally injected with different venoms, and then, (B) the necrosis diameter was measured 
after three days. (C) The MNDs of different venoms (deNTXs, blue curve; deNTXs-dePLA2, green 
curve; deNTXs-deCTX, purple curve) were determined with linear interpolation. 

Figure 2. Characterization of Naja atra crude venom and crude venom devoid of NTXs. (A) HPLC
profile of the N. atra crude venom sample and (B) N. atra crude venom devoid of NTXs (deNTXs).
One hundred micrograms of both samples were applied to a Phenomenex Jupiter® C18 column
(250 × 4.6 mm, 5 µm particle size, 300 Å pore size) for analysis. Abbreviation: NTXs, neurotoxins;
PLA2, phospholipase A2; CTXs, cytotoxins also called cardiotoxins; CRISP, cysteine-rich secretory
protein; HMW, high-molecular-weight proteins.
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Figure 3. Male CD-1 mice (10–12 weeks old, 20–22 g) had (A) the dorsal skin hair removed and were
intradermally injected with different venoms, and then, (B) the necrosis diameter was measured after
three days. (C) The MNDs of different venoms (deNTXs, blue curve; deNTXs-dePLA2, green curve;
deNTXs-deCTX, purple curve) were determined with linear interpolation.
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Table 1. Minimum necrotizing dose (MND) in different components of Naja atra.

Name Retained Toxin Concentration
(mg/mL)

Toxin Weight
(µg) MND (µg/g)

deNTXs PLA2, CTX, others 1 0.198 ± 0.012 9.88 ± 0.576 0.494 ±0.029
deNTXs-dePLA2 CTX, others 1 0.118 ± 0.020 5.89 ± 1.005 0.294 ± 0.050
deNTXs-deCTXs PLA2, others 1 >>0.5 >>25 >>1.25

Abbreviations: NTX, neurotoxin; PLA2, phospholipase A2; CTX, cytotoxin also called cardiotoxin. 1: CRISP,
cysteine-rich secretory protein; HMWP, high-molecular-weight proteins.

2.4. Development of Necrosis

After determining the MND, we established a series of low concentrations of deNTXs
to investigate the mechanism underlying the development of necrosis. Mice were injected
intradermally with different concentrations (0.5, 0.33, 0.22, 0.148, and 0.098 µg/g), and the
necrotic changes were observed after 72 h. We removed the necrotic skin and sent it for
biopsy. The necrosis was scored by a veterinary pathologist. The severity of the necrosis
was classified as normal (score of 0), minimal (score of 1), mild (score of 2), moderate
(score of 3), or severe (score of 4) (Table 2). In the biopsy, severe necrosis appears as the loss
of organization and substantial increase in tissue space. The skin biopsies were evaluated
in the individual layers, namely the epidermis, dermis, hypodermis, panniculus carnosus
and adventitia (Figure 4). Even when the dose was less than the MND (0.494 ± 0.029 µg/g),
the deNTXs at 0.098 µg/g still induced necrosis, and the pathology extended deeper than
the dermis. The most severely destroyed layer was the panniculus carnosus and adventitia,
even at the minimum dose (Figure 5 and Supplementary Table S1).

Table 2. Tissue necrosis score.

Necrosis Score Severity Description

0 Normal Within normal limits
1 Minimal Sporadic occurrence
2 Mild Aggregated distribution
3 Moderate Regional distribution
4 Severe Diffuse distribution and lose originality

2.5. Neutralization Ability of the Antivenom

We used two times the MND of the deNTXs as the challenge dose. We mixed this with
different dilutions of antivenoms in vitro and then injected the mixtures intradermally into
each mouse (5 mice per group). We compared the results with those in mice injected with a
challenge dose mixed with saline to identify the MND50, as per the recommendation of the
WHO [24]. The mice injected with the challenge dose mixed with saline developed necrotic
lesions with diameters of approximately 7 mm. The other mice injected with different
dilutions of antivenom (from the original to 1:5 dilution) still had necrotic lesion diameters
that were greater than 5 mm. None of the mice developed necrotic lesion diameters that
were 50% smaller than those in the mice injected with two times the MND mixed with
saline. Therefore, we could not identify the MND50 with this antivenom. The necrotic
lesions were biopsied, and the necrosis was scored in the individual skin layers (Figure 6).
Regardless of the concentration of antivenom, including the original concentration, the
challenge dose of the deNTXs resulted in necrosis throughout all of the layers of the skin,
including severe necrosis in the panniculus carnosus and adventitia.
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Figure 4. The mice were injected intradermally with different venom levels of 0.5, 0.33, 0.22, 0.148,
and 0.098 µg/g after 72 h. We removed the dorsal skin, and biopsy was performed with HE staining.
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injected with deNTXs (0.22 µg/g). A diffuse distribution and loose organizational integrity (necrosis
score of 4) over the panniculus carnosus and adventitia were observed.
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Figure 6. The mice (each group 5 mice) were injected intradermally with a mixture of the challenge dose (two times the
MND of deNTXs) and different dilutions of antivenom (A1, original; A2 1:1; A3 1:2; A4 1:3; A5 1:4 and A6 1:5). After three
days, the veterinary pathologist scored the necrotic lesion layer-by-layer in the dorsal skin.

3. Discussion

The traditional method of evaluating the antivenom effect with the LD50 and ED50
may not be suitable for the assessment of venom-related cytolytic effects. Mice injected
with the crude venom of N. atra would not survive long enough to develop the necrotic
wounds seen in humans [9]. NTXs are the most lethal component of N. atra venom [12].
NTXs have a strong affinity for the mouse post-synaptic acetylcholine receptor (AchR) and
block neuromuscular function, resulting in acute toxicity, including tremors, rigidity and
even death; this is the main mechanism leading to death [11,26]. We suspected that the
NTXs in the venom of N. atra might have relatively low affinity for human neuroreceptors,
or that there was another mechanism that remained unclear that explained why people
bitten by N. atra develop few neurologic symptoms [6]. In people who have been bitten by
N. atra, the NTXs do not lead to immediate mortality, which gives the other toxins enough
time to cause necrosis. Patients bitten by N. atra developed delayed necrotic wounds, and
the deNTXs were necessary for mice to survive long enough to develop the cytolytic effects.

The LD50 of the crude venom injected intravenously into adult mice was 0.56 µg/g [27].
The NTXs are the lethal component of the crude venom, and the LD50 of the NTXs in-
travenously injected was 0.075 µg/g [12]. After the NTXs were removed, the MND of
the deNTXs was found to be 0.494 ± 0.029 µg/g. Evaluating the neutralizing ability of
antivenom on the LD50 in mice alone is not adequate with regard to necrosis. The MND
identifies the necrotic effect of the venom, and the MND50 refers to the anti-necrosis effect
of the antivenom [24].

Both CTXs and PLA2 are suspected of being the major components of the venom of
N. nigricollis causing dermonecrosis [5]. In this study, we identified that CTXs played a
major role in the mechanism by which the venom of N. atra caused necrosis. CTXs are
less toxic than NTXs, although they have cytotoxic effects that contribute to the lethality
of the venom [12]. There are many subtypes of CTXs, including types I, II, III, and IV,
and all have cytolytic activity [12]. CTXs can penetrate cell membranes by damaging the
phospholipid bilayer [28]. CTXs have a positive charge and easily bind to membranes
and vesicles, which have negative charges, and tighter binding leads to increased cellular
lysis [26]. PLA2 can be classified as belonging to group I (Elapidae) and group II (Viperi-
dae) [29]. In addition, PLA2 is also thought to play a role in local muscle injury. In this
study, significant variation was noted in comparing the MND of deNTXs-dePLA2 (major
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component retained: CTXs) with the MND of deNTXs-deCTXs (major component retained:
PLA2) (0.294 ± 0.050 µg/g vs. greater than 1.25 µg/g). We suspected that necrosis was
mainly caused by CTXs, and there were no significant synergistic effects of CTXs and PLA2.
Similarly, the use of a PLA2 inhibitor did not decrease the necrotic area caused by the
venom of N. nigricollis [5]. However, whether there was a synergistic effect of NTXs could
not be investigated in this study.

The fangs of N. atra are noticeably short [1,30]. We used intradermal injections to
simulate the real-world condition. As observed in the biopsy specimen, the venom was
injected into the intradermal layer, after which the venom penetrated deeper rather than
spreading along the surface. The deNTXs was distributed throughout the soft tissue rather
than remaining localized at the site of injection, and severe damage was observed in the
panniculus carnosus and adventitia, even at low concentrations. The venom may penetrate
the layers and be transported into the circulation by the lymphatic system [31]. This would
explain the development of myotoxicity after the progression of necrosis, even given the
short fang length [5]. As in the study of Iddon et al., even when the venom was injected
intradermally, it penetrated deep into the layers of the skin, which could result in skeletal
muscle injury [7].

Some animal studies have investigated the administration of antivenom to prevent
venom-related dermonecrosis [5,7]. In Taiwan, the antivenom administered to patients
who have been bitten by N. atra is a bivalent freeze-dried neurotoxic antivenom (FNAV)
against B. multicinctus and N. atra [2]. The equine antivenom induced by the injection of
crude venom from N. atra may not induce the production of adequate antibodies against
the CTXs. In this study, we determined the MND of the deNTXs, and the MND50 could not
be determined, which meant that the antivenom did not effectively neutralize the CTXs.
In the study by Wu et al., the neutralization efficacy of antivenom was poor for CTXs A2,
4 and 5 [18]. As mentioned above, CTXs play a major role in necrosis. The polyvalent
antivenom generated in horses after a challenge with crude venom cannot neutralize the
CTXs, which might explain why it is ineffective at preventing necrosis. Other antivenoms
also have little to no effect with regard to local damage [9,32,33]. To prevent necrosis after
a patient has been bitten by a snake in the Naja genus, monoclonal antibodies against for
CTXs [18,34,35] or combined treatment with other therapies [36] could be considered in
the future.

The study of Dr. Liu et al. also discussed the venom effect of Naja atra [9]. We both
used the deNTX model to present the human wound in the animal models and concluded
that there was no effective neutralization of the antivenom for the necrotic progression.
In our study, except the deNTX, we analyze the role of CTXs and PLA2 in the necrosis
condition. We clarified that CTXs played the major role in the necrotic changes. We also
highlighted that the venom went deeper to cause necrosis even though the dose was less
than MND and the noneffective of antivenom anti-necrosis based on the tissue biopsy
scored by an animal pathologist.

Limitations

There are several limitations of this study. Although we removed the toxins one-by-
one in this study, we could not rule out the possibility of a synergistic effect of NTXs on
necrosis. The antivenom concentration could not be increased in this animal experiment;
however, in clinical practice, patients may respond to increased doses of antivenom [6].

4. Conclusions

The use of the deNTXs allows mice to survive long enough to develop venom-induced
cytolytic effects. CTXs play a major role in Naja atra venom-induced necrosis. The MND50
could not be identified in this study, which meant that the antivenom did not prevent
necrosis. In the future, management of Naja atra bites may include not only the existing an-
tivenom to improve the survival rate but also the administration of monoclonal antibodies
against the CTXs or combined treatment with other therapies.
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5. Materials and Methods
5.1. Chemical Reagents and Samples

Trifluoroacetic acid (TFA), ammonium bicarbonate (ABC), formic acid (FA), dithio-
threitol (DTT), iodoacetamide (IAM), and Tween 20 were purchased from Sigma-Aldrich
(St. Louis, MO, USA). Sodium hydroxide, DMSO, iodomethane and trichloromethane were
purchased from Merck Millipore (Darmstadt, Germany). Trypsin was purchased from
Promega (15,664 unit/mg, Sequence Grade, WI, USA). Acrylamide, SDS and TEMED were
obtained from Bio-Rad (Hercules, CA, USA). Acetonitrile (ACN) was purchased from J.T.
Baker (Phillipsburg, NJ, USA). Deionized water was generated with a Simplicity Ultrapure
Water System (Millipore, Burlington, MA, USA) with a measured value of 18 MΩ.

5.2. Snake Venom Approach and Analysis

Venom was collected from 10 healthy adult specimens of N. atra. Each specimen was
manually restrained, and the venom was milked. The liquid venom samples were individ-
ually obtained, lyophilized and stored at −80 ◦C until use. Commercial bivalent equine
antivenom intended for clinical usage and antivenin against the venom of B. multicinctus
and N. naja atra (Trade name: Antivenin of B. multicinctus and N. naja atra Antivenin Biva-
lent (lyophilized), 1000 antivenom unit/vial; batch number: 61-06-0010) were produced
from the Taiwan Centers for Disease Control (CDC).

5.3. Preparation of deNTXs, deNTXs-deCTXs, and deNTXs-dePLA2

The lyophilized crude N. atra venom was dissolved in water and centrifuged at
10,000× g for 10 min. The amount of protein in the venom was determined via a BCA
Protein Assay kit (PierceTM, Thermo Scientific). The supernatants were diluted and further
purified by size exclusion chromatography. The purified venom proteins, NTXs, were iso-
lated from the crude venom following the procedure described by Huang et al. [18]. All the
venom protein components other than the NTXs were combined and dissolved in PBS, cre-
ating the deNTXs. The crude venom and deNTXs were loaded onto a Phenomenex Jupiter®

C18 (250 × 4.6 mm, 5 µm particle size, 300 Å pore size) column with an ultraperformance
liquid chromatography (UPLC) system (LC-20ADXR, Shimadzu, Kyoto, Japan) equipped
with a DAD detector (SPD-M20A, Shimadzu, Kyoto, Japan) and autosampler (SIL-20ACXR,
Shimadzu, Kyoto, Japan). The venom components were eluted at 1 mL/min with a linear
gradient of 0.1% TFA in water (Solvent A) and 0.1% TFA in 100% ACN (Solvent B) (2% B for
5 min, followed by 2–10% B for 2 min, 10–16% B for 6 min, 16–28% B for 2 min and 28–65%
B for 37 min) [18]. Protein elution was monitored at 215 nm (absorption wavelength for
peptide bonds). The relative abundance (expressed as the percentage of the total venom
protein) of each protein family was estimated as described by Huang et al. [18].

5.4. Minimum Necrotizing Dose (MND)

According to the WHO Expert Committee on Biological Standardization [24], the
MND of venom is the smallest amount of venom (in µg of dry weight) that, when injected
intradermally into the dorsal skin of lightly anesthetized mice, leads to the development of
necrotic lesions 5 mm in diameter 3 days later. CD1 mice (10–12 weeks old) were obtained
from BioLASCO Taiwan Co. Ltd. (Taipei, Taiwan) and grouped randomly (6 mice/group).
The animal handling protocol was reviewed and approved by the Institutional Animal Care
and Use Committee (IACUC) of the National Defense Medical Center (IACUC-20-112).
One group of mice underwent removal of the fur from the dorsal skin and the intradermal
injection of 50 µL of sterile saline; these mice served as the control group. Next, the mice
in the testing groups underwent removal of the fur from the dorsal skin and a single
intradermal injection of deNTXs (16.5, 20.5, 25.5, 32, and 40 µg). The diameter of the
necrotic area of dorsal skin was measured after 72 h. The MND was determined with
linear interpolation.
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5.5. MND50: Neutralization Efficacy of Antivenom

The MND50 is a measure of the ability of an antivenom to prevent venom-induced
dermonecrosis [24]. The MND50 is identified as the dose of antivenom (in microliters) that
results in a diameter of the necrotic lesion that is 50% smaller than that of the lesion induced
by the injection of venom and saline [24]. Two times the MND of deNTXs was selected
as the challenge dose. The antivenom was bivalent antivenom against B. multicinctus and
N. atra, which was manufactured by the National Health Research Institutes, Miaoli, and
distributed by the Taiwanese Center for Disease Control, Taiwan, R.O.C. [1]. A fixed dose
of venom was incubated with various dilutions of antivenom for 30 min at 37 ◦C. The
positive control was venom incubated with saline instead of antivenom. Then, aliquots of
0.5 mL of the mixtures containing an amount of venom corresponding to two times the
MND were injected intradermally into groups of six CD1 mice (10–12 weeks old).

5.6. Biopsy and Necrosis Score

The mice were intradermally injected with deNTXs (0.5, 0.33, 0.22, 0.148, and 0.098 µg/g)
or 2 times the MND with different dilutions of antivenom (from the original: 1:2, 1:3, 1:4
and 1:5) into the dorsal skin. After 72 h, the mice were euthanized, and the dorsal skin was
removed and sent for skin biopsy with hematoxylin and eosin (HE) staining. Then, the biopsy
was scored by an animal pathologist based on the necrosis (Table 2).

5.7. Statistical Analysis

We report the data as the means ± standard deviations (SDs). Statistical analysis
was performed by t-test, one-way ANOVA and Bonferroni’s multiple comparisons test
using Prism 6 (GraphPad Software, Inc., San Diego, CA, USA). Statistical differences were
considered significant when p was ≤ 0.05.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/toxins13090619/s1, Supplementary Data include: Table S1: Necrosis scores with different
deNTXs doses (each group contained six mice). Table S2: Necrosis scores under a fixed challenge
dose (2MND) mixed with different dilution times of antivenom (AV) (each group contains five mice).
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