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Abstract
Background  Hepatocellular carcinoma (HCC) is one of the most aggressive malignant tumors, with a poor long-term prog-
nosis worldwide. The functional deregulations of global transcriptome were associated with the genesis and development 
of HCC, but lacks systematic research and validation.
Methods  A total of 519 postoperative HCC patients were included. We built an interactive and visual competing endogenous 
RNA network. The prognostic signature was established with the least absolute shrinkage and selection operator algorithm. 
Multivariate Cox regression analysis was used to screen for independent prognostic factors for HCC overall survival.
Results  In the training set, we identified a four-gene signature (PBK, CBX2, CLSPN, and CPEB3) and effectively predicted 
the overall survival. The survival times of patients in the high-score group were worse than those in the low-score group 
(p = 0.0004), and death was also more likely in the high-score group (HR 2.444, p < 0.001). The results were validated in 
internal validation set (p = 0.0057) and two external validation cohorts (HR 2.467 and 2.6). The signature (AUCs of 1, 2, 
3 years were 0.716, 0.726, 0.714, respectively) showed high prognostic accuracy in the complete TCGA cohort.
Conclusions  In conclusion, we successfully built a more extensive ceRNA network for HCC and then identified a four-gene-
based signature, enabling prediction of the overall survival of patients with HCC.

Keywords  Hepatocellular carcinoma · Overall survival · Competing endogenous RNA · Least absolute shrinkage and 
selection operator · Global transcriptome
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OS	� Overall survival
DFS	� Disease-free survival
NGS	� Next-generation sequencing
GEO	� Gene expression omnibus
SYMH	� Sun Yat-sen Memorial Hospital
GO	� Gene ontology
KEGG	� Kyoto encyclopedia of genes and genomes
DAVID	� Database for annotation, visualization, and 

integrated discovery
RS	� Risk score
HR	� Hazard ratio
CI	� Confidence interval
AFP	� α-Fetoprotein
TNM	� Tumor-lymph node-metastasis
BCLC	� Barcelona Clinic Liver Cancer

Introduction

According to the 2018 global cancer statistics, there are 
841,080 new liver cancer cases and more than 780 thousand 
deaths per year worldwide, and China accounts for nearly 
half of the total number of cases and deaths [1, 2]. Approxi-
mately 70–90% of all primary liver cancers are hepatocel-
lular carcinoma (HCC) [3, 4].

The treatment of HCC has made encouraging progress 
over the past few decades and primarily consists of surgical 
resection, chemotherapy, molecular targeting treatment, and 
liver transplantation [5]. However, surgery remains the most 
effective treatment; it has markedly improved the overall sur-
vival (OS) of HCC patients, although the long-term survival 
rate is still low. Approximately 60% of patients experience 
recurrence or distant metastasis within 5 years [3]. Regard-
ing the poor prognosis, many experts have identified several 
prognostic factors, including patient basic features (e.g., age 
and gender) and tumor-related factors (e.g., tumor grade), 
that can be used to predict the OS of HCC patients who have 
undergone surgery [6, 7]. However, effective prognostic fac-
tors are still lacking.

Although several studies have highlighted valuable bio-
markers, these studies had limitations, including their inclu-
sion of single-center cohorts, small populations, and single 
molecular markers. More importantly, most studies failed 
to validate their findings via another independent cohort, 
meaning that the results could not be generalized. Thus, few 
biomarkers have been utilized in clinical practice.

The competing endogenous RNA (ceRNA) hypothesis 
describes a novel regulatory mechanism by which mRNAs 
and long noncoding RNAs talk to each other using micro-
RNA response elements (MREs) as letters to form a regula-
tory network across the whole transcriptome, which plays 
a significant role in cancer research [8, 9], such as in oral 

carcinoma [10] and cholangiocarcinoma [11]. Accordingly, 
there is a great need to explore the regulatory relationships 
between lncRNAs-miRNAs-mRNAs during HCC initia-
tion and progression. Wang et al. identified a prognostic 
signature based on the expression profiles of six genes for 
the OS of HCC patients based on independent screening of 
Cox-penalized regressions [12]. To the best of the authors’ 
knowledge, there is still no report of the involvement of 
lncRNAs in the transcriptional regulation of miRNAs and 
mRNAs in the field of HCC with large-scale, high-through-
put sequencing data.

In our study, we obtained lncRNA, mRNA and miRNA 
expression profiles and constructed the ceRNA network in 
HCC from the TCGA database. We identified 20 DEmRNAs 
involved in the ceRNA network that alone predicted the OS 
of HCC patients, termed “OS-genes”. Importantly, we con-
ducted an integrated analysis of OS-genes using the logistic 
least absolute shrinkage and selection operator (LASSO) 
penalized regression to generate a four-gene-based signature 
(PBK, CBX2, CLSPN, and CPEB3) associated with OS in 
HCC. Then, we validated this signature using the internal set 
and two external validation cohorts, analyzed it in subgroups 
of HCC patients, and showed that it was an independent 
indicator. Thus, we identified and validated a new candidate 
marker to predict HCC OS by classifying patients into low- 
and high-risk groups.

Materials and methods

Patients and data collection

We downloaded level 3 data, which contained the high-
throughput sequencing data of mRNAs, lncRNAs and miR-
NAs of 374 HCC samples and 50 normal samples from 
the Cancer Genome Atlas (TCGA, https​://porta​l.gdc.cance​
r.gov/). Clinical data, such as prognosis and basic clinical 
information, were downloaded from the Data Coordinating 
Center (Supplementary Table S1).

The HCC patients were randomly assigned to a train-
ing set with N × q samples and an internal validation set 
with N × (1 − q) samples (q = 2/3). To validate our results 
responsibly, we searched for external validation cohorts 
from two independent centers. External validation cohort 1, 
GSE76427 (n = 115), microarray data and patient clinical 
information were downloaded from the Gene Expression 
Omnibus database (GEO; https​://www.ncbi.nlm.nih.gov/
geo/). In addition, we used another external validation cohort 
obtained from Sun Yat-sen Memorial Hospital between Jan-
uary 1, 2010, and June 30, 2010, that included 50 postopera-
tive HCC patients (the SYMH cohort or the qPCR validation 
cohort). All the clinicopathological features of external vali-
dation cohorts were presented in Supplementary Table S1. 

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
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All diagnoses were confirmed by pathology. This retrospec-
tive analysis was approved by the institutional review board 
of Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University.

Identification of DEGs

DEGs, including differentially expressed mRNAs, lncRNAs 
and miRNAs (DEmRNAs, DElncRNAs, and DEmiRNAs), 
were identified among the 354 tumor tissues and 50 normal 
samples. The RNA expression data from TCGA were nor-
malized. We conducted gene identification using the edgeR 
package in software R, which is publicly available through 
Bioconductor (http://www.bioco​nduct​or.org/) [13]. |log2 
fold-change| ≥ 2 and p value < 0.05 were used for selecting 
DEmRNAs and DElncRNAs. We defined and annotated 
DElncRNAs using the Encyclopedia of DNA Elements 
(ENCODE); for DEmiRNAs, the select indicator was |log2 
fold-change| ≥ 1.5 and the p value was < 0.05.

Seed match analysis and constructing the ceRNA 
network

The target mRNAs of DEmiRNAs were predicted by com-
bined utilization in Targetscan database (http://www.targe​
tscan​.org/), miRDB database (http://www.mirdb​.org/) and 
miRTarBase database (http://mirta​rbase​.mbc.nctu.edu.
tw/). Then, we obtained the intersection elements between 
the target mRNAs and DEmRNAs, termed DEmiRNA-tar-
geted DEmRNAs. We predicted the DElncRNAs targeted 
by DEmiRNAs in miRcode (http://www.mirco​de.org/). 
Cytoscape v3.5.0 software was used to build an interactive 
and visual ceRNA network using the Cytoscape user manual 
[14, 15].

Functional enrichment analysis, gene expression 
correlation analysis and survival analysis

We further studied the DEmRNAs using the ceRNA net-
work, and we conducted functional enrichment analysis 
using the Database for Annotation, Visualization, and 
Integrated Discovery (DAVID) [16]. GO biological func-
tions and KEGG pathways were chosen with an enrichment 
score > 1.5 as well as a significance level of p < 0.05. Then, 
we plotted the DERNA survival curves; these curves were 
called OS-genes, OS-lncRNAs and OS-miRNAs, respec-
tively. In addition, 20 OS-gene expression correlations were 
assessed with the Pearson correlation indicator.

Prognostic signature screening and generation

To elucidate significant values for the 20 OS-genes, we used 
the logistic LASSO algorithm to select candidate OS-gene 
combinations that were reliably associated with HCC OS 

in the TCGA training set. LASSO allows the tuning of 25 
parameters by fold cross-validation [17]. The risk score 
(RS) was calculated using the sum of the screened OS-
gene expression values weighted by the coefficients from 
the LASSO regression model. We calculated the prognos-
tic RS for each patient according to the following formula: 
RS = expressiongene1 × βgene1 + ··· + expressiongenen × βgenen (β: 
the regression coefficient derived from LASSO penalized 
regression) [18, 19].

Prognostic signature validation and evaluation

To validate the robustness of the prognostic signature, we 
generated the RS for each patient in the TCGA internal vali-
dation set and two external validation cohorts. We defined 
the median RS as the cutoff point, and HCC patients were 
divided into low- and high-risk groups. In addition, we used 
the univariate and multivariate Cox regression analyses to 
evaluate the prognostic impact of clinicopathological fea-
tures on OS. We calculated concordance indexes (c-indexes, 
also called HARRELL C-index), respectively. The c-index 
quantified the discrimination between two random patients, 
with a c-index of 0.5 indicating no discrimination and 1 
indicating perfect discrimination. A time-dependent receiver 
operating characteristic (ROC) curve analysis, with 1, 2, 3, 
and 5 years as the cutoff values of time, was also performed 
to compare the true positive and true negative rates of the 
OS prediction [20].

RNA extraction and real‑time quantitative PCR

Fifty pairs of frozen HCC tissue and adjacent normal tissue 
were obtained from Sun Yat-sen Memorial Hospital. Total 
RNA was extracted using TRIzol reagent (Takara, Dalian, 
China). Reverse transcription was performed using Prime-
Script RTase (Takara). The gene expression level was deter-
mined with qPCR with the help of Premix Ex Taq (Takara) 
and was normalized to GAPDH expression levels. We used 
the 2-ΔCT method to calculate expression levels. The prim-
ers were listed in Supplementary Table S2.

Statistical analysis

Univariate and multivariate Cox regressions were performed 
in IBM SPSS Statistics Version 24, which was also used to 
generate hazard ratios (HRs) and 95% confidence intervals 
(CIs). Kaplan–Meier survival curves were used to estimate 
OS in different groups, and the survival differences were 
assessed by a two-sided log-rank test in GraphPad Prism 
5.0. LASSO penalized regression, and ROC curve analyses 
were conducted in software R version 3.3.4 with relevant 
packages, such as package survivalROC, gplots, and glmnet. 

http://www.bioconductor.org/
http://www.targetscan.org/
http://www.targetscan.org/
http://www.mirdb.org/
http://mirtarbase.mbc.nctu.edu.tw/
http://mirtarbase.mbc.nctu.edu.tw/
http://www.mircode.org/
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All statistical tests were two-sided, and a p value < 0.05 was 
considered statistically significant.

Results

Study flowchart and clinical characteristics 
of patients

The study flowchart is presented in Fig. 1. A total of 354 
HCC samples were included and were randomly divided 
into a training set (n = 236) and an internal validation set 
(n = 118). The median OS times of the patients in the TCGA 
training set, the TCGA validation set, the entire TCGA 
cohort, the GSE76427 cohort, and the SYMH cohort were 
1694 (1068–2320), 1852 (883–2821), 1694 (1203–2185), 
2296 (1534–3057) and 768 (554–981) days, respectively.

Differentially expressed genes and construction 
of the ceRNA network

A total of 1993 DEmRNAs were identified, including 1788 
(89.71%) that were upregulated and 205 (10.29%) that were 
downregulated. In addition, we found 1071 differentially 

expressed lncRNAs, including 1014 (94.67%) upregulated 
and 57 (5.32%) downregulated DElncRNAs. However, we 
found only 162 (95.29%) upregulated and 8 (4.71%) down-
regulated DEmiRNAs. We generated a heat map and volcano 
with complete linkage clustering of DEmRNAs, DElncR-
NAs, and DEmiRNAs (Supplementary Figure S1).

To better understand how mRNA expression was regu-
lated by lncRNA through combining miRNAs, we built a 
ceRNA visual network (Fig. 2a). According to seed match 
analysis, we found that 39 DEmRNAs were targets of the 20 
DEmiRNAs, while 83 DElncRNAs interacted with the 20 
DEmiRNAs (Supplementary Tables S3 and S4).

Functional enrichment and survival analyses of key 
ceRNAs

We conducted GO and KEGG pathway analyses using the 
DAVID database for 39 DEmRNAs (Fig. 2b, c). Many can-
cer-related GO items and KEGG pathways were significantly 
enriched, such as those associated with biological processes 
(e.g., cell proliferation and cell cycle) and pathways (e.g., 
hepatitis B and the p53 signaling pathway). Twenty mRNAs 
(OS-genes) (Supplementary Figure S2), one miRNA (miR-
137), and 14 lncRNAs (OS-lncRNAs) (Supplementary Fig-
ures S3) were found to be significantly associated with OS. 

Fig. 1   Study flowchart. DEGs 
differentially expressed genes, 
LASSO least absolute shrinkage 
and selector operation, SYMH 
Sun Yat-sen Memorial Hospital 
of Sun Yat-sen University
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There was coexpression between 20 OS-genes; for example, 
the coexpression coefficient between CPEB3 and CCNB1 
was − 0.57 (p < 0.001), whereas the coexpression coeffi-
cient between PBK and CCNB1 was 0.8 (Supplementary 
Figures S4I). In the future, the potential mechanisms under-
lying their correlations could be investigated.

Building a predictive signature from the TCGA 
training set

Twenty OS-genes were identified after we combined the 
DEmRNAs selected by the ceRNA network and survival 
analysis. We then used the LASSO regression model to fur-
ther identify an optimal subset of gene-based signatures reli-
ably associated with HCC OS in the TCGA training set. As 
a result, four genes were identified: PBK, CBX2, CLSPN, 
and CPEB3 (Fig. 3). To better clarify the performance of 
our predictive signature for HCC OS, we established RS 
with each gene coefficient weighted by the LASSO model. 
The RS was calculated for each patient in the training set 
as follows: 

RS = (−  0.0922 × expression level of CPEB3) +  
(0.1215 × expression level of PBK) + (0.0128 × expression 
level of CBX2) + (0.0377 × expression level of CLSPN).

Effective prognostic signature in HCC patients

In the training set, 236 HCC patients were assigned to the 
low-score and high-score groups based on the median RS 
value (0.416). Patients in the high-score group exhibited 
worse survival than those in the low-score group as shown 
in Fig. 4a (p = 0.0004). In addition, survival analysis showed 
serum AFP, TNM stage, T stage, N stage, and M stage were 
found to be significantly associated with HCC OS (Supple-
mentary Figure S5). We further investigated various sub-
groups of individual clinicopathological features in HCC 
patients and found that they were significantly correlated 
with OS because of imbalances between the high-score and 
low-score groups with respect to clinical features (Table 1). 
Subgroup analysis of the four-gene signature in the complete 
cohort was performed, and significant correlations between 
RS and OS were maintained in Asians (p < 0.001, Supple-
mentary Figure S6A and S6B) and in patients whose serum 
AFP ≥ 20 ng/ml (p = 0.079, Supplementary Figures S6C and 
S6D), whereas RS value was associated with OS for the two 
subgroups of TNM stage and tumor grade (Supplementary 
Figures S6E-H).

Validating and evaluating the signature

Similar analyses demonstrated that the high-score group 
had a worse OS than that in the low-score group in the 
internal validation set (median OS, 1149  days versus 

2131 days; p = 0.0389) (Fig. 4b). For the entire TCGA 
cohort of 354 patients, OS for the high-score patients 
was shorter than for the low-score patients (median OS, 
1271 days versus 2132 days; p = 0.0016) (Fig. 4c). The 
median OS times for the low-score and high-risk groups 
were 2296 and 1759  days, respectively, although this 
difference was not statistically significant in GSE76427 
external validation cohort (Fig.  4d). This pattern of 
another external validation cohort-SYMH data set was 
similar to that observed in the TCGA cohort (Supplemen-
tary Figure S4A-H). Similarly, patients with a low score 
generally had a better OS than patients with a high score 
and the median OS times of the two groups were 1825 and 
695 days, respectively (p = 0.0476, Fig. 4e).

Cox proportional hazards regression analysis 
in validation cohorts

For the entire TCGA cohort, serum AFP, TNM stage, and 
the signature were significantly associated with HCC OS 
in the univariate analysis. A multivariate regression analy-
sis indicated that TNM stage and signature were independ-
ent prognostic predictors of OS (Table 2). Furthermore, 
multivariate survival analysis showed that the four-gene 
signature could be an independent prognostic factor (HR 
2.467, p = 0.021) in the GSE76427 cohort and was the 
only independent prognostic predictor of OS in the SYMH 
cohort (HR 2.6, p = 0.037) (Table 2).

Comparison with other prognostic factors

Time-dependent ROC curve analysis suggested that the 
four-gene signature was a stable predictor and even con-
tained censored survival data (Fig. 4f–j).

In addition, the signature may achieve a more stable 
value in 2 years-OS prediction (Supplementary Tables S5). 
As shown in Supplementary Table S6, the signature incor-
porating four-genes expression achieved stable c-indexes 
in predicting HCC OS in the training and various valida-
tion sets (including internal and external validations).The 
signature was also significantly more specific and sensitive 
than other clinicopathological risk factors for the entire 
TCGA cohort and the two external validation cohorts 
(Supplementary Figure S7A-C). To develop a more reli-
able predictive model, we combined two independent 
prognostic factors; as a result, the four-gene signature and 
TNM stage (AUC 0.668, p < 0.05) had a more sensitive 
predictive value in the entire TCGA cohort (Supplemen-
tary Figure S7D). The combination of signature and TNM 
staging (or BCLC staging) had a higher AUC than the 
signature alone, although the difference was not significant 
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for the GSE76427 cohort (Supplementary Figure S7E). 
However, for the SYMH cohort, there was no difference 
between the AUCs for the signature alone and the combi-
nation (Supplementary Figure S7F).

Discussion

More and more evidence demonstrates that genetic altera-
tions and disorders in the signaling pathways are of signifi-
cance in tumorigenesis and the progression of HCC, mean-
ing that molecular markers are equally important in the 
prediction of HCC OS. Certainly, many molecular markers 
have been identified to predict HCC OS. Jin et al. found 
that SUOX (sulfite oxidase), as an independent prognostic 
factor of HCC, showed better associations with OS and 
TTR if combined with serum AFP in different cohorts 
[21]. Tao et al. found that BTBD7 expression combined 
with microvessel density could better predict HCC progno-
sis by Cox regression analysis [22]. However, most of the 
recent research has focused on single gene expression, a 
specific protein, lncRNAs or miRNAs. However, informa-
tion is now rapidly emerging on the vital functional role of 
the molecular network in HCC initiation and progression, 
indicating that we should analyze the prognosis markers 
as a whole. But sometimes we have high-dimensional data. 
At the time, lasso regression was the selective method for 
improving prediction accuracy. Lasso has two important 
characteristics, one is feature selection: automatic selec-
tion of features, it will learn to remove features without 
information and precisely set the weights of these features 
to zero, especially for high-dimensional data. Another 
one is interpretability: models are easier to explain, for 
example, we can find the independent variables that pro-
vide the most important information in the model when 
we have a lot of independent variables [23–26]. Li et al. 
identified 13 differentially expressed miRNAs in the serum 
of HER2 + MBC patients with distinct responses to tras-
tuzumab using miRNA microarrays and constructed a 
four-miRNA signature to predict survival using a LASSO 
model [27]. Backes et al. [28] used multivariable Lasso 
regression to develop models to identify patients most 

likely to benefit from adjuvant surgery by projecting their 
case–control data towards the entire cohort. Transcriptome 
profiling revealed an integrated signature, incorporating 
15 mRNAs and three lncRNAs, was a powerful predictor 
of early relapse and had a better OS prediction than TNM 
staging in colon cancer [29].

In the present study, we conducted a comprehensive 
analysis of whole transcriptome resequencing data and its 
involvement in the prediction of HCC OS. First, we identi-
fied DEGs, including a total of 1993 differentially expressed 
mRNAs (DEmRNAs), 1071 differentially expressed lncR-
NAs and 170 DEmiRNAs. After building a ceRNA visual 
network, we found 39 DEmRNAs, 83 DElncRNAs and 20 
DEmiRNAs. Some of them were reported to be cancer-
related genes, such as CCNB1 [30], EZH2 [31, 32], AXIN2, 
[33] and FOXF2 [34]. We also found several significant 
HCC-associated lncRNAs in our ceRNA network, such 
as HOTAIR [35, 36] and HOTTIP [37]. Interestingly, we 
noticed that lncRNA LINC00221 interacted with 12 miR-
NAs. Thus, LINC00221 may serve as a key regulator. Next, 
we studied its specific biological functions and regulatory 
mechanisms in HCC. Notably, miR-137 was associated 
with HCC OS, and in the network, we found that its cor-
responding mRNA was PTGS2, a key oncogene in HCC 
[38]. Its candidate corresponding lncRNAs were HOTTIP, 
CLLU1, and GPC6-AS1. In the future, we will conduct an 
in-depth study of the regulatory mechanisms underlying the 
miRNA137-PTGS2-lncRNA network.

Subsequently, we identified a four-gene-based signa-
ture (weighted combination of PBK, CBX2, CLSPN, and 
CPEB3) and effectively predicted OS in HCC patients using 
LASSO penalized regression. PBK (PDZ-binding kinase) 
phosphorylates MAPKp38 and plays a crucial role in the 
activation of lymphoid cells. Phosphorylated PBK interacts 
with TP53, leading to TP53 destabilization and decreased 
expression following doxorubicin-related DNA damage 
[39, 40]. CBX2 (Chromobox protein homolog 2) was com-
posed of multi-protein PRC1-like complex, which inhibited 
the transcriptional activities of many genes, including the 
HOX genes [41]. Although CBX2 has been less-studied in 
cancer research, the molecular profile of CBX2 suggested 
that it plays an oncogenic role [42]. CLSPN, which moni-
tors the integrity of DNA replication forks, was essential 
for checkpoint-regulated cell cycle arrest in response to UV 
irradiation-induced DNA damage [43]. Choi et al. reported 
that CLSPN positively affected the survival of cancer cells 
and negatively affected the metastasis model in response 
to radiation [44]. CPEB3 (cytoplasmic polyadenylation 
element-binding protein 3) contains an intron-encoded self-
cleaving ribozyme that is structurally and biochemically 
associated with human HDV ribozymes, regulating its own 
translation [45]. CPEB3 suppresses Stat5b-dependent EGFR 
gene transcription in neurons [46]. All four genes may serve 

Fig. 2   The ceRNA network of lncRNAs–miRNAs–mRNAs and func-
tional analysis for DEmRNAs in HCC. To better understand how 
mRNA expression was regulated by lncRNA through combining 
miRNAs, we built a ceRNA visual network including 39 DEmRNAs, 
83 DElncRNAs, and 20 DEmiRNAs from the TCGA database (a). 
Red represents upregulated DEGs, and blue represents downregulated 
DEGs. Foursquares: miRNAs, balls: mRNAs, diamonds: lncRNAs. 
To better elucidate the underlying pathways and biological mecha-
nisms involved in the ceRNA network, we conducted GO (b) and 
KEGG pathway analyses (c) using the DAVID database for 39 DEm-
RNAs. DEmRNAs differentially expressed mRNAs

◂
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as key regulatory genes for cell behaviors and functions, but 
their abstract functions have not yet been elucidated in HCC. 
In the future, we will conduct an in-depth study of the regu-
latory mechanisms for four genes (PBK, CBX2, CLSPN, and 
CPEB3) based on their ceRNA network clarified in present 
study.

Although we constructed an OS-related predictive model 
based on OS-related data, we surprisingly found that the 
model may also serve as a tool to forecast disease-free sur-
vival (DFS) to some extent (data are not shown), low score 
represents a long DFS, while high-score means that patient 
may suffer a poor DFS, but more cohort studies are needed 
to confirm this.

OS for HCC is multifactorial and cannot be only deter-
mined by gene expression. HCC development is driven by 

the interaction of genetic predisposition, environmental fac-
tors (metabolic syndrome, alcohol, and aflatoxin B1) and 
viruses (HBV and HCV). Hepatocarcinogenesis is a multi-
step process, and driving forces in hepatocyte transforma-
tion, HCC development and progression are chronic inflam-
mation, DNA damage, epigenetic modifications, senescence 
and telomerase reactivation, chromosomal instability, and 
early neoangiogenesis [47]. In the recent years, genome-
wide technologies and next-generation sequencing have 
enabled the identification of molecular signatures to clas-
sify subgroups of HCCs and stratify patients according to 
prognosis. Unraveling the patterns of genomic alterations in 
HCCs is pivotal towards identifying targeted therapies [48, 
49]. We tried to build a model based on genomic alterations 
which was associated with OS, and help us better formulate 

Fig. 3   Construction of the integrated prognostic signature in the 
training set. a LASSO coefficient profiles of the 20 OS-genes. The 
vertical blue dotted lines are plotted at the value selected in b. b 
Selection of the tuning parameter (lambda) in the LASSO model by 
tenfold cross-validation based on minimum criteria for OS; the lower 
X axis shows log (lambda), and the upper X axis shows the average 
number of OS-genes. The Y axis indicates partial likelihood devi-
ance error. Red dots represent average partial likelihood deviances 

for every model with a given lambda, and vertical bars indicate the 
upper and lower values of the partial likelihood deviance errors. The 
vertical black dotted lines define the optimal values of lambda, which 
provides the best fit. c, d Prognostic classifier analysis. c The RS dis-
tribution and survival time of each patient; 236 patients were divided 
into low- and high-risk groups according to the median RS value. d 
Heat map of the mRNAs in the prognostic signature. RS risk score
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Fig. 4   Survival analysis and ROC analysis of the four-gene-based 
prognostic signature in independent cohorts. Comparison of overall 
survival times between the low- and high-risk groups in the five data 
sets. Time-dependent ROC curve comparison of the five data sets; 

AUCs at 1, 2, 3 and 5 years were calculated. TCGA training set (a, 
f); TCGA validation set (b, g); entire TCGA cohort (c, h); GSE76427 
cohort (d, i); SYMH cohort (e, j). ROC receiver operating character-
istic
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individual treatment and follow-up management strategies 
which meet the requirements of precision medicine to a cer-
tain extent. We could imagine two HCC patients: X and Y. 
They have the same age, sex, and BCLC stage. However, 
both patients are stratified into same stage of disease, which 
is associated with specific outcomes. As has been widely 
acknowledged, the two patients will probably have different 
prognoses, but the question regarding how to quantify these 
prognoses remains unresolved. In our model, we tried to cal-
culate the total scores of the signature individually based on 
molecular medicine. Different scores correspond to differ-
ent prognosis. If the patients have a higher score, we would 
maintain closer follow-up and medical treatment.

Similar to our investigation, Wang et al. identified a 
prognostic signature based on the expression profiles of six 
genes for the OS of HCC patients, including SRL, TTC26, 
CPSF2, TAF3, C16orf46, and CSN1S1, based on independ-
ent screening of Cox-penalized regressions [12]. Compared 
with previous studies, our study has several strengths. First, 
we used large-scale, high-throughput sequencing data from 
the TCGA database, rather than that from a single medi-
cal center, to avoid heterogeneity among different centers. 
Second, we established a lncRNA–miRNA–mRNA ceRNA 
network among the DEGs in tumor tissues and normal liver 
tissues. Third, we performed an in-depth screening study 
of DEmRNAs that were not only involved in the ceRNA 

Table 1   Relationship between four-gene signature and other clinicopathological features in TCGA cohort

Chi square test was used for comparison between two groups
AFP α-fetoprotein, TNM tumor-lymph node-metastasis, OS overall survival, DFS disease-free survival
*P < 0.05, **P < 0.01

Clinicopathological variables TCGA cohort

Training set (n = 236) Validation set (n = 118) Entire cohort (n = 354)

Low risk High risk P value Low risk High risk P value Low risk High risk P value

Age
 < 60 41 61 0.009** 27 32 0.357 70 91 0.025*
 ≥ 60 77 57 32 27 107 86
Gender
 Female 33 45 0.097 18 19 0.843 51 64 0.14
 Male 85 73 41 40 126 113

Race
 White 68 48 0.005** 31 27 0.378 98 76 0.01*
 Asian 41 62 22 27 64 88

Family History
 Negative 64 71 0.454 26 37 0.03* 92 106 0.081
 Positive 35 31 27 16 62 47

Serum AFP
 < 20 ng/ml 55 36 0.003** 33 18 0.026* 87 55 < 0.001**
 ≥ 20 ng/ml 33 53 17 24 49 77
Vascular invasion
 Negative 72 57 0.104 37 32 0.864 110 88 0.086
 Positive 33 42 15 12 46 56

Fibrosis
 Negative 23 17 0.935 18 14 0.649 40 32 0.929
 Fibrosis 25 20 12 10 37 30
 Cirrhosis 23 20 16 8 39 28

TNM staging
 I–II 89 77 0.003** 47 32 0.015* 138 107 < 0.001**
 III–IV 18 36 9 22 26 59

Tumor grade
 I–II 88 62 < 0.001** 46 25 < 0.001** 137 84 < 0.001**
 III–IV 27 56 13 32 37 91
 Positive 50 59 27 32 75 93



628	 Hepatology International (2019) 13:618–630

1 3

network but also associated with the OS of HCC patients 
based on LASSO regression, in contrast to previous stud-
ies that used only one method to select prognostic markers. 
Fourth, we conducted internal validation and independent 
external validations, thus rendering the results more reliable 
and useful.

Survival analysis showed serum AFP, TNM stage, T 
stage, N stage, and M stage were found to be significantly 
associated with HCC OS. We further investigated various 
subgroups of individual clinicopathological features in HCC 
patients and found that they were significantly correlated 
with OS because of imbalances between the high-score and 
low-score groups with respect to clinical features. Signifi-
cant correlations between signature and OS were maintained 
in Asians and in patients whose serum AFP ≥ 20 ng/ml. The 
four-gene signature was an independent prognostic factor in 

multivariate Cox regression and subgroup analysis, particu-
larly for Asians patients with serum AFP ≥ 20 ng/ml.

Inevitably, our study had several limitations. First, the 
multivariable survival analysis contained only basic prog-
nostic factors from the GEO database and was unable to 
suggest other possible clinical factors, such as status of the 
metastatic lesions and performance status of patients. Sec-
ond, as we know, extensive evidence indicates that HCC 
is an extremely heterogeneous tumor at the genetic and 
molecular level, limited by the data of the study, all genes’ 
expression from TCGA, GEO, and SYMH cohorts were 
detected in a piece of HCC tissue from one patient. In the 
future, we will detect the expression of the four genes by 
single-cell whole-genome sequencing or quantitative RT-
PCR analysis in several pieces of HCC specimens from 
one patient, so that we can know whether the four-gene 

Table 2   Univariate and 
multivariate Cox regression 
analyses of four-gene signature 
and other prognostic factors for 
OS in TCGA cohort, GSE76427 
and SYMH cohort

SYMH Sun Yat-Sen Memorial Hospital, AFP α-fetoprotein, TNM tumor-lymph Node metastasis, BCLC 
Barcelona Clinic Liver Cancer, OS overall survival, DFS disease-free survival, NA not available, HR haz-
ard ratio, 95% CI 95% confidence interval
*P < 0.05, **P < 0.01

Overall survival Univariate analysis Multivariate analysis

HR 95% CI P value HR 95% CI P value

Entire TCGA cohort
 Age (≥ 60 vs < 60) 1.207 0.849–1.715 0.295
 Gender (male vs. female) 0.821 0.575–1.174 0.280
 Race (asian vs white) 0.746 0.510–1.091 0.131
 Family history (positive vs negative) 1.176 0.812–1.703 0.392
 Serum AFP (≥ 20 ng/ml vs. < 20 ng/ml) 1.656 1.064–2.578 0.025* 1.280 0.793–2.064 0.312
 Vascular invasion (positive vs negative) 1.400 0.921–2.216 0.115
 Cirrhosis (fibrosis vs negative) 0.807 0.435–1.494 0.495
 (Cirrhosis vs negative) 0.753 0.404–1.402 0.371
 TNM staging (III–IV vs. I–II) 2.520 1.768–3.592 <0.001** 1.885 1.156–3.072 0.011*
 Tumor grade (III–IV vs. I–II) 1.081 0.751–1.554 0.676
 Signature (high risk vs low risk) 1.753 1.231–2.497 0.002** 1.676 1.045–2.686 0.032*

GSE76427 cohort
 Age (≥ 60 vs < 60) 1.786 0.733–4.348 0.202
 Gender (male vs. female) 0.808 0.186–3.520 0.777
 TNM staging (III–IV vs. I–II) 2.340 0.977–5.603 0.056 1.897 0.607–5.932 0.271
 BCLC stage (B + C vs. A) 2.508 1.070–5.879 0.034* 2.061 0.7–6.07 0.189
 Signature (high risk vs low risk) 1.679 0.715–3.946 0.234 2.467 1.068–5.927 0.021*

SYMH cohort
 Age (≥ 60 vs < 60) 0.904 0.355–2.301 0.833
 Gender (male vs. female) 1.371 0.406–4.626 0.611
 Family history (positive vs negative) 1.484 0.549–4.006 0.436
 Serum AFP (≥ 20 ng/ml vs. < 20 ng/ml) 1.016 0.416–2.477 0.973 1.005 0.401–2.515 0.992
 Vascular invasion (positive vs negative) 1.157 0.456–2.936 0.759
 Cirrhosis (positive vs negative) 1.264 0.565–2.828 0.569
 TNM staging (III–IV vs. I–II) 1.257 0.537–2.944 0.598 1.584 0.638–3.932 0.322
 Tumor grade (III–IV vs. I–II) 0.787 0.312–1.986 0.613
 Signature (high risk vs low risk) 2.336 0.983–5.553 0.055 2.6 1.057–6.395 0.037*



629Hepatology International (2019) 13:618–630	

1 3

signature is a reliable and workable OS prediction marker 
for HCC. In addition, we will seek for cooperation with 
other hospital to obtain more patients and tissues for the 
gene model validation.

Conclusions

We constructed a novel lncRNAs–miRNAs–mRNAs 
ceRNA network in HCC based on genome-wide analysis, 
then we identified and validated a new candidate thera-
peutic decision marker based on the ceRNA network that 
yields great promise in the prediction of HCC OS in the 
future.
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