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Cerebral small vessel disease, including whitematter hyperintensities (WMH) and lacunes of presumed vascular
origin, is common in elderly people and is related to cognitive impairment and dementia. One possible mecha-
nism could be the disruption of white matter tracts (both within WMH and normal-appearing white matter)
that connect distributed brain regions involved in cognitive functions. Here,we investigated the relation between
microstructural integrity of the white matter and cognitive functions in patients with small vessel disease. The
Radboud University Nijmegen Diffusion tensor and Magnetic resonance Cohort study is a prospective cohort
study among 444 independently living, non-demented elderly with cerebral small vessel disease, aged between
5500 and 85 years. All subjects underwent magnetic resonance imaging and diffusion tensor imaging scanning
and an extensive neuropsychological assessment. We showed that loss of microstructural integrity of the
white matter at specific locations was related to specific cognitive disturbances, which was mainly located in
the normal-appearing white matter (p b 0.05, FWE-corrected for multiple comparisons). The microstructural in-
tegrity in the genu and splenium showed the highest significant relation with global cognitive function and ex-
ecutive functions, in the cingulum bundle with verbal memory performance. Associations between diffusion
tensor imaging parameters and most cognitive domains remained present after adjustment for WMH and
lacunes. In conclusion, cognitive disturbances in subjects with cerebral small vessel disease are related to micro-
structural integrity of multiple white matter fibers (within WMH and normal-appearing white matter)
connecting different cortical and subcortical regions.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Cerebral small vessel disease (SVD) manifests on conventional MR
images (i.e. T1 and FLuid Attenuated Inversion Recovery (FLAIR)) as
white matter hyperintensities (WMH) and lacunes of presumed vascu-
lar origin (Wardlaw et al., 2013). These SVDmarkers are commonly ob-
served in the elderly population. SVD is related to cognitive impairment
and may, in some, ultimately lead to dementia (de Groot et al., 2000;
Vermeer et al., 2003). This is supposedly due to the disruption of impor-
tant white matter (WM) tracts. Despite the high prevalence of SVD (de
Leeuw et al., 2001; Vernooij et al., 2007), relatively few develop evident
cognitive decline or dementia (Vermeer et al., 2003). Other factors,
1 243541122.
.-E. de Leeuw).
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apart from WMH and lacunes, presumably play a role in the transition
from relative intact cognitive performance to severe cognitive decline
in these few individuals. One of these factors could be the (loss of) mi-
crostructural integrity of the largest part of theWM; the on FLAIR imag-
ing normal-appearing white matter (NAWM) surrounding the SVD.
Pathological studies have demonstrated loss ofmicrostructural integrity
in the NAWM (Grafton et al., 1991) that cannot be visualized with con-
ventional imaging, but can be investigated with diffusion tensor imag-
ing (DTI).

DTI provides information on the microstructural integrity of the
WM. DTI measures the local water diffusion profiles by: fractional an-
isotropy (FA), which represents a normalized ratio of diffusion direc-
tionality; mean diffusivity (MD), which reflects the overall magnitude
of water diffusion; axial diffusivity (AD), which reflects the diffusivity
parallel to the WM tracts and radial diffusivity (RD), which is the diffu-
sivity perpendicular to these tracts (Pierpaoli et al., 1996). Loss of
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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microstructural integrity is typically reflected by a reduction in FA and/
or an increase in MD (Sen and Basser, 2005); the latter can result from
different combinations of changes in AD and RD. Few studies in patients
with cerebral SVD demonstrated a relation between higher MD and
lower FA and loss of cognitive function (Della Nave et al., 2007;
Nitkunan et al., 2008; O3Sullivan et al., 2001b; O3Sullivan et al., 2004;
Xu et al., 2010). These studies had, however, small sample sizes and
were not able to properly adjust for possible confounders. One large
population-based cohort study demonstrated relation between micro-
structural integrity of both WMH and NAWM and cognitive function.
However, the regional differences of microstructural integrity were
not taken into account (Vernooij et al., 2009).

We hypothesized that cognitive performance in subjects with SVD
would not only be related to loss of WMmicrostructural integrity with-
in theWMH, but also to specific areaswithin theNAWM.We conducted
DTI using tract-based spatial statistics (TBSS) analyses to investigate the
location of microstructural WM loss related to cognitive disturbances.
Also, additional adjustments for the WMH and lacunes were made to
examine whether the associations in theWMwere primarily explained
by the typical manifestations of SVD on conventional MRI.

2. Methods and materials

2.1. Study population

The Radboud University Nijmegen Diffusion tensor and Magnetic
resonance imaging Cohort (RUNDMC) study prospectively investigates
the risk factors and clinical consequences of brain changes among 503
non-demented elderly with cerebral SVD. The selection procedure of
the participants and study protocol were described previously in detail
(van Norden et al., 2011). In short, on the basis of established research
criteria SVD was defined as the presence of lacunes and/or WMH on
neuroimaging (Erkinjuntti, 2002). Symptoms of SVD include acute
symptoms, such as TIAs or lacunar syndromes, or subacute manifesta-
tions, such as cognitive andmotor (gait) disturbances and/or depressive
symptoms (Roman et al., 2002). Inclusion criteria were: (a) age be-
tween 50 and 85 years; and (b) cerebral SVD on neuroimaging. The
main exclusion criteria were dementia (American Psychiatric Associa-
tion, 2000), (psychiatric) disease interfering with cognitive testing or
follow-up, WMH or SVD mimics and MRI contraindications or known
claustrophobia. Consecutive patients referred to the Department of
Neurology between October 2002 and November 2006 were selected
for participation. Participants were selected for participation in the
study by a three-step approach. After reviewing the medical history,
1004 individuals were invited by letter. Of those 1004, 7these numbers
seem odd the way they are displayed. Is this correct??27 were eligible
after contact by telephone and 525 agreed to participate. In 22 individ-
uals exclusion criteria were found during their visit to our research cen-
ter, yielding a response of 71.3% (503/705). For the present study, 59
subjects were additionally excluded because of territorial infarcts
(n = 55) and inadequate quality of the MRI image (n = 4), resulting
in a final population of 444 participants. All participants signed an in-
formed consent form. The Medical Review Ethics Committee region
Arnhem-Nijmegen approved the study.

2.2. Measurement of cognitive function

Cognitive function was assessed by a standardized neuropsycholog-
ical test battery andhas been described in detail elsewhere (vanNorden
et al., 2011). Performance across tests was made comparable by
transforming raw test results in z-scores. We calculated compound
scores for seven cognitive domains. Global cognitive function was eval-
uated by the Mini Mental State Examination (MMSE) and the cognitive
index. The cognitive index is a compound score that was calculated as
the mean of the z-scores of the 1-letter subtask of the Paper–Pencil
Memory Scanning Task, the mean of the reading subtask of the Stroop
test, the mean of the Symbol–Digit Substitution Task and the mean of
the added score on the three learning trials of the Rey Auditory Verbal
Learning Test and the delayed recall of this last test (Vermeer et al.,
2003). Verbal memory is a compound score of the mean of two z-
scores from the Rey Auditory Verbal Learning Test; one for the added
scores of the three learning trials of this test, and one for the delayed re-
call of this test. Visuospatialmemory is a compound score of themeanof
the z-scores of the immediate recall trial and the delayed recall trial of
the Rey3s Complex Figure Test. Psychomotor speed was calculated as
the mean of the z-scores of the 1-letter subtask of the Paper–Pencil
Memory Scanning Task, the reading subtask of the Stroop test and the
Symbol–Digit Substitution Task. Fluency was calculated from the
mean of the z-scores of both verbal fluency tasks. Concept shifting was
calculated as the z-score of the third subtask of the Stroop. Attention is
a compound score of the z-score of the total time of the Verbal Series At-
tention Test (de Groot et al., 2000).

2.3. Magnetic resonance imaging scanning protocol

MRI scans of all participantswere acquired on a single 1.5-TMRI. The
protocol included, among other sequences, the following whole brain
scans: 3D T1 magnetization-prepared rapid gradient echo (MPRAGE)
sequence (TR/TE/TI 2250/3.68/850 ms; flip angle15°; voxel size
1.0 × 1.0 × 1.0 mm), a fluid-attenuated inversion recovery (FLAIR) se-
quence (TR/TE/TI 9000/84/2200 ms; voxel size 1.0 × 1.2 × 5.0 mm,
interslice gap 1 mm) and DTI sequences (TR/TE 10,100/93 ms; voxel
size 2.5 × 2.5 × 2.5 mm; 4 unweighted scans, 30 diffusion weighted
scans with b-value 900 s/mm2).

2.4. Conventional magnetic resonance imaging analysis

WMH were manually segmented on FLAIR images and the number
of lacunes was rated according to a standardized protocol (van
Norden et al., 2011). In addition, the visual Fazekas scale was used on
the FLAIR images to rate the severity of changes in the white matter
(Fazekas et al., 1987). All imaging analyses were performed by two
trained raters blinded to clinical information. In a random sample of
10%, interrater variability for total WMH volume yielded an intra-class
correlation coefficient of 0.99. The probability map of the white matter
hyperintensities were created using a method previously described by
de Laat and colleagues (de Laat et al., 2011). In short, we registered
the WMH maps to the T1 images using the transformation matrix
from the registration parameters of skull-stripped FLAIR images to the
T1-images that were obtained using Functional MRI of the Brain linear
image registration tool (http://www.fmrib.ox.ac.uk/fsl/fnirt). Next, we
normalized theWMHmaps non-linearly to the group-specific template
using the transformation parameters of T1 images to the group-specific
template obtained from FunctionalMRI of the Brain non-linear registra-
tion tool (http://www.fmrib.ox.ac.uk/fsl/flirt). Finally, we averaged the
normalized WMH maps to create a probability map of the WMH of
the study population (Fig. 1).

We computed gray (GM) and WM tissue and cerebrospinal fluid
(CSF) probability maps using SPM 5 unified segmentation routines on
the T1 MPRAGE images (Ashburner and Friston, 2005). Total GM, WM
and CSF volumes were calculated by summing all voxel volumes that
had a p N 0.5 for belonging to that tissue class. Total brain volume
(TBV) was taken as the sum of total GM and WM. Intracranial volume
(ICV) was a summation of all tissue classes. To normalize for head
size, TBV was expressed as percentage of total ICV.

2.5. DTI analysis

Tract-based spatial statistics (TBSS) is a relatively new method that
mitigates the limitations of VBM analysis (Smith et al., 2006). This anal-
ysis is restricted to thoseWM voxels that constitute the skeleton (core)
of the brains connectional architecture. This skeleton can be matched

http://www.fmrib.ox.ac.uk/fsl/fnirt
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Fig. 1. The probability distribution of thewhite matter hyperintensities (in red), color-coded in percent (color-bar), thresholded from 5% to 90%. These images are projected onto spatially
normalized (Montreal Neurological Institute stereotactic space). R = right.

Table 1
Baseline characteristics of the study population.

Characteristics n = 444

Demographics
Age (years) 65.3 (8.9)
Male* 243 (54.7)
Only primary education* 44 (10)
CES-D scale 11.2 (9.5)
Mini mental state examination 28.1 (1.6)
Hypertension* 320 (72.1)
Diabetes* 61 (13.7)
Hypercholesterolemia* 194 (43.7)
Smokers, current* 69 (15.5)
Smokers, former* 239 (53.8)
Neuroimaging
TBV, ml 1098.0 (120.6)
ICV, ml 1673.8 (158.2)
WMH volume, ml† 6.4 (3.3; 16.8)
White matter volume, ml 467.4 (65.4)
Lacunes* 102 (23.0)

Data represent N of subjects* (%), mean (SD), or median† (interquartile range).
TBV: total brain volume; ICV: intracranial volume; WMH: white matter
hyperintensities.
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more accurately (compared to whole-brain normalization) across sub-
jects, enabling robust voxel-wise analysis of themicrostructuralWM in-
tegrity across subjects.

Diffusion data were first preprocessed to detect and correct head
and cardiac motion artifacts, using an in-house developed iteratively
re-weighted-least-squares algorithm named ‘PATCH’ (Zwiers, 2010).
FA, MD, AD and RD images were then calculated using DTIFit within
the Functional MRI of the Brain diffusion toolbox, which were fed into
the TBSS pipeline (Smith et al., 2006). The thinning procedure was
conducted on the mean FA image to create a common skeleton, which
represents the core-structure of the WM tract. This skeleton was
thresholded at the FA-value 0.3 to include the major WM tracts and to
account for the inter-subject variability. All normalized FA data were
then projected onto this skeleton. These skeleton projection factors
were then applied to the MD, AD and RD images. These data were
then fed into the voxel-wise cross-subject statistics. In addition, we ob-
tained FA, MD, AD and RD for three parts of the corpus callosum by
performing region-of-interest analyses. The corpus callosum provides
interhemispheric connections between cortical and subcortical regions
and might play an important role in cognitive function (Bloom and
Hynd, 2005).We createdmasks for genu, body and splenium of the cor-
pus callosum by applying theWM atlas (Johns Hopkins University WM
labels, provided by Functional MRI of the Brain Software Library (FSL))
on themeanFA skeleton. Themaskswere visually inspected andmiscel-
laneous voxels that belonged to other regions, such as the cingulum
bundle, were excluded.

2.6. Other measurements

Age, sex and level of education, depressive symptoms and normal-
ized TBV were considered possible confounders. Depressive symptoms
were assessed using the Center of Epidemiologic Studies on Depression
Scale (CES-D) (Radloff, 1977). Functional independence was assessed
using the Barthel Index (range 0–20) (Mahoney and Barthel, 1965).
For assessment of vascular risk factors, structured questionnaires were
used together with measurements of blood pressure taken on separate
occasions. The risk factors included presence of hypertension (mean
blood pressure ≥140/90 mmHg and/or use of anti-hypertensive medi-
cations) (Rosendorff, 2007), diabetes (treatment with antidiabetic
drugs), hypercholesterolemia (treatment with lipid-lowering drugs)
and smoking status.

2.7. Statistical analysis

Baseline characteristics were presented as mean ± standard devia-
tion (SD) and for the skewed parameters the median and interquartile
ranges were calculated.

For the TBSS analyses, we assessed voxel-wise correlations between
the skeletal DTI parameters (FA andMD) and cognitive performance on
several cognitive domains, while adjusting for age, sex, education, de-
pressive symptoms and normalized TBV. To test whether these associa-
tions were independent of WMH and lacunes, we adjusted for WMH
volume and number of lacunes in a second model. For the voxel-wise
statistical analyses, we applied permutation-based statistical interfer-
ence tool for non-parametric approach, with number of permutation
tests set to 5000 (Nichols and Holmes, 2002). Significant clusters
were identified using the threshold–free cluster enhancement with a
p-value b 0.05, corrected for multiple comparisons (Smith and Nichols,
2009).

For the ROI analyses, we computed regression coefficients of the
mean FA, MD, AD and RD of the three ROI in the corpus callosum with
cognitive performance, while adjusting for age, sex, education, depres-
sive symptoms, normalized TBV, white matter hyperintensities and
number of lacunes. Regression coefficients were presented as standard-
ized β-values. Bonferroni corrections were applied.

3. Results

Demographic and neuroimaging characteristics are shown in
Table 1. Mean age of the population (n = 444) was 65.3 years (SD
8.9) and 54.7% were male. Mean WM volume was 467.4 ml (SD 65.4).
The largest part of theWM consisted of NAWM,with amedian percent-
age of 98.6 (IQR 96.4–99.3). According to Fazekas visual rating scale, 10
participants (2.3%) had Fazekas score 0, 296 participants (66.7%) had
Fazekas-score 1, 88 participants (19.8%) had Fazekas score 2 and 50 par-
ticipants (11.3%) had Fazekas score 3. White matter hyperintensities
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were predominately located in the frontal periventricular regions
(Fig. 1). 13 participants (2.9% of the study population) were diagnosed
with mild cognitive impairment.

Fig. 2 shows the relation between FA and the cognitive domains
tested (p b 0.05, FWE-corrected for multiple comparisons). FA in
the frontal, parietal, occipital, temporal but also in the infratentorial
voxels of the skeleton was positively related to the cognitive index,
attention and verbal memory performance. A lower FA in almost all
regions was associated with higher scores on psychomotor speed
and concept shifting (indicating lower performance). We found a
similar distribution for the inverse association with MD and the
cognitive domains. With regard to MMSE, visuospatial memory and
fluency, no significant associations were found for FA and MD. A
significant (p-corrected b 0.01) association was identified in almost
all voxels of the skeleton in the relation between FA and cognitive index
and concept shifting. The strongest significant (p-corrected b 0.01)
relation between MD and psychomotor speed and cognitive index was
Fig. 2. Voxel-wise analysis of the relation between fractional anisotropy and the cognitive index
cept shifting and attention. A) Adjusted for age, sex, education, depressive symptoms and norm
comparisons and B) additional adjustment for white matter hyperintensities and lacunes, depic
tistical maps are superimposed onto the spatially normalized (Montreal Neurological Institute
located in the frontal lobe and the corpus callosum. The relation be-
tween FA and MD and verbal memory was most outspoken along
the whole course of the corpus callosum and the cingulum bundle
(p-corrected b 0.01).

Additional adjustment for WMH and lacunes (Fig. 2B) weakened the
relations between the FA and cognitive index, psychomotor speed, verbal
memory and concept shifting, but remained present (p-corrected b 0.05).
There were no associations between for FA and attention after additional
adjustment for WMH and lacunes. There were no associations between
MD and attention after additional adjustment for WMH and lacunes,
while the associations betweenMD and psychomotor speed and concept
shifting weakened but remained significant. Voxels with the highest
significance for FA in relation to cognitive index, psychomotor speed,
verbal memory and concept shifting were located in the corpus callosum
(p-corrected b 0.01). In addition, FA in the cingulum bundle and corpus
callosum remained highly associated with verbal memory performance
(p-corrected b 0.01).
and verbal memory performance and negatively associatedwith psychomotor speed, con-
alized TBV, depicted by red-yellow color thresholded at p b 0.05 and corrected for multiple
ted by blue color thresholded at p b 0.05 and corrected for multiple comparisons. The sta-
stereotactic space) T1 map.



Table 2
Association between the microstructural integrity of the corpus callosum and cognitive
performance.

Cognitive
index

Verbal
memory

Psychomotor
speed

Concept
shifting

Genu
FA .19* .12 .16* .16*
MD −.19* −.13 −.14* −.11
AD −.12 −.10 −.06 −.01
RD −.19* −.12* −.16* −.14*

Body
FA .14 .13* .09 .15*
MD −.16* −.14* −.10 −.09
AD −.08 −.05 −.05 −.06
RD −.16* −.14* −.10 −.13*

Splenium
FA .19* .09 .18* .19*
MD −.15* −.09 −.13 −.13*
AD −.02 −.04 −.01 −.01
RD −.18* −.09 −.17* −.18*

Standardized β-values adjusted for age, sex, education, depressive symptoms, normalized
TBV, white matter hyperintensities and number of lacunes. FA: fractional anisotropy. MD:
mean diffusivity. AD: axial diffusivity. RD: radial diffusivity.

* p b .05 (Bonferroni corrected).
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As post-hoc analysis we analyzed the corpus callosum in more ana-
tomical detail by segmenting it in three regions (Table 2).We found that
microstructural integrity of genu and splenium of the corpus callosum
related to cognitive index, but also with executive domains, psychomo-
tor speed and concept shifting (p b 0.05 after Bonferroni corrections).
The microstructural integrity of body was associated with verbal mem-
ory. We found no relations between microstructural integrity in corpus
callosum and attention, visuospatial memory, MMSE and fluency. The
associations with MD and cognitive performance were mainly driven
by changes in RD, and not by changes in AD.

4. Discussion

In this study, we examined the relation between themicrostructural
integrity of theWMand cognitive performance in subjectswith cerebral
SVD. We demonstrated that low FA and high MD in multiple regions of
the WM were associated with lower scores on cognitive performance.
The corpus callosum showed the highest significant relationwith cogni-
tive function, especially in the genu and splenium. The microstructural
integrity of the cingulum bundle showed the highest significant relation
with verbal memory performance and the frontal WMwith psychomo-
tor speed.

A limitation is the cross-sectional nature of our study, which limits
causal inference. The RUN DMC study has a longitudinal design and
follow-up is currently being executed to evaluate the effect of progres-
sion of SVD on (changes in) cognitive performance (van Norden et al.,
2011). In addition, we did not intentionally adjust for vascular risk fac-
tors, such as hypertension or diabetes, as they were considered a part
of the causal chain between SVD and cognitive performance. Major
strengths of the study included the large sample size, the single center
design, the use of a single scanner and the high response rate. Further-
more,wemanually segmented theWMH. Extensive neuropsychological
assessment was performed by two investigators and all analyses were
adjusted for potential confounders.

Structural abnormality of the white matter tracts has been found in
Alzheimer3s disease and mild cognitive impairment and has been dem-
onstrated in a population-based cohort and a cohort of healthy adults
(Acosta-Cabronero et al., 2010; Barrick et al., 2010; Damoiseaux et al.,
2009; Vernooij et al., 2008; Zhuang et al., 2010). In patients with SVD,
clinical manifestations of cognitive impairment are usually of a charac-
teristic and fairly homogeneous ‘subcortical’ pattern and include psy-
chomotor slowing due to impaired executive function, deficits of
attention, planning and set-shifting and forgetfulness (Roman et al.,
2002). In this study, we demonstrated that in patients with SVD the
whitematter3smicrostructural integritywas associatedwith thesemea-
sures of cognition.

We showed that WM integrity at specific locations was related to
specific cognitive performance. The strongest significant relations be-
tween microstructural integrity and verbal memory performance
were located in the cingulum bundle. This bundle, which connects the
medial temporal lobe and the posterior cingulate cortex, is an important
structure in verbal memory performance (Sepulcre et al., 2008; van der
Holst et al., 2013). We also found verbal memory to be associated with
the anterior parts of the corpus callosum. Episodic memory is partially
dependent on interhemispheric interaction (Christman and Propper,
2001). Loss of microstructural integrity of the corpus callosum can
lead to impaired interhemispheric interaction, resulting in impaired
(verbal) memory performance. With regard to psychomotor speed,
we found that the strongest significant relationwithmicrostructural in-
tegrity was located in the corpus callosum and frontal lobe. The pre-
frontal–subcortical circuits are known to be involved in executive func-
tion, which affects the psychomotor speed (Roman et al., 2002). Corpus
callosum has been related to global cognitive status and, based on a
topographical organization, genu has been related to frontal-lobe-
mediated executive function and attention (Jokinen et al., 2007),
whereas splenium is associated with visuospatial construction (Fryer
et al., 2008), which corresponds with its connection with the parietal,
temporal and occipital regions (Huang et al., 2005). We found no rela-
tions between WM integrity and fluency and MMSE. This might be ex-
plained by the fact that MMSE is a too crude measure not designed for
subcortical damage related function loss and hence not sensitive to de-
tect subtle cognitive changes that correlate with macro- and micro-
structural SVD changes (Pasi et al., 2015).

The whole spectrum of cognitive disturbances in patients with SVD
cannot solely be explained by the degree of WMH and lacunes. Our re-
sults show that the majority of the relations between microstructural
integrity and cognitive performance were located in the NAWM. This
suggests that the microstructural integrity of the NAWM has an impor-
tant role in the cognitive disturbances in our subjects with SVD and
might explain a part of the cognitive impairment beyond the SVD-
visible on conventional MRI. Findings from functional and pathological
studies in combination with our results suggest a disruption of
cortical–cortical and cortical–subcortical connections, and a subsequent
‘disconnection-syndrome’ accounting for cognitive disturbances in pa-
tients with SVD (O3Sullivan et al., 2001a). In concordance with the find-
ings from previous studies (van Norden et al., 2012; Vernooij et al.,
2009), this suggests that microstructural integrity of the NAWM should
also be taken into accountwhen investigating the relation between SVD
and cognitive function and that DTI should be considered part of the im-
aging protocol in future studies on cognitive performance.

The abnormalities inmicrostructural integrity of the NAWMare par-
tially SVD-related, as our results showed that the presence ofWMH and
lacunes weakened the relation between theWM integrity and cognitive
performance. Several explanations could be proposed by which SVD
might influence this relation. First, it may be that these associations
were, at least in part, explained by the presence of the coexisting
WMH and not so much by the loss of integrity of the NAWM. Second,
the structural changes of the NAWM could be caused by the same risk
factors that are involved in the development of SVD, such as hyperten-
sion (Gons et al., 2012). This hypothesis is supported by the finding of
increased blood–brain barrier permeability in the NAWM in subjects
with SVD (Topakian et al., 2010). Finally, the observed association be-
tween themicrostructural integrity of the NAWMand cognitive perfor-
mance could reflect indirect damage to the NAWM by distant effects of
WMH by means of antero-(Wallarian) or retrograde degeneration
(Dziedzic et al., 2010; Thomalla et al., 2004).

In conclusion, our study showed that cognitive disturbances in el-
derly with SVD are related to the microstructural integrity of the
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cerebralWMareaswithWMH and lacunes, but also in NAWM, the larg-
est part of the WM. Our results suggest that loss of microstructural in-
tegrity in the NAWM is part of the SVD-spectrum, which is not visible
on conventional MRI. DTI could therefore serve as an additional tool to
conventional MRI in order to investigate the cognitive consequences
of cerebral SVD. If the predictive value is proven, DTI could possibly
serve a surrogate marker for development of cognitive decline and de-
mentia and could be a starting point for therapeutic trials aiming to pre-
vent disease progression.
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