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ABSTRACT

High-throughput technologies have led to large col-
lections of different types of biological data that pro-
vide unprecedented opportunities to unravel molec-
ular heterogeneity of biological processes. Never-
theless, how to jointly explore data from multiple
sources into a holistic, biologically meaningful in-
terpretation remains challenging. In this work, we
propose a scalable and tuning-free preprocessing
framework, Heterogeneity Rescaling Pursuit (Hetero-
RP), which weighs important features more highly
than less important ones in accord with implicitly ex-
isting auxiliary knowledge. Finally, we demonstrate
effectiveness of Hetero-RP in diverse clustering and
classification applications. More importantly, Hetero-
RP offers an interpretation of feature importance,
shedding light on the driving forces of the underly-
ing biology. In metagenomic contig binning, Hetero-
RP automatically weighs abundance and composi-
tion profiles according to the varying number of sam-
ples, resulting in markedly improved performance of
contig binning. In RNA-binding protein (RBP) bind-
ing site prediction, Hetero-RP not only improves
the prediction performance measured by the area
under the receiver operating characteristic curves
(AUC), but also uncovers the evidence supported
by independent studies, including the distribution of
the binding sites of IGF2BP and PUM2, the binding
competition between hnRNPC and U2AF2, and the
intron–exon boundary of U2AF2 [availability: https:
//github.com/younglululu/Hetero-RP].

INTRODUCTION

Rapidly evolving high-throughput technologies have en-
abled biologists to progressively collect large amounts of

genomic data with unprecedented diversity and high reso-
lution. For example, The Cancer Genome Atlas (TCGA)
project and Encyclopedia of DNA Elements (ENCODE)
project have provided open access to genomic, transcrip-
tomic and epigenomic information from a diverse group of
samples. Potential data include, but not limited to, genome
and protein sequences (1), single nucleotide variants (SNV)
(2) and gene ontologies (3). Integrative analysis of such a
wealth of heterogeneous data has motivated growing inter-
ests, giving rise to enhanced reliability of novel discover-
ies and improved understanding towards molecular hetero-
geneity of biological processes. Thus far, integrative anal-
yses are carried out in pervasive clustering and classifica-
tion studies. The former captures underlying patterns of the
data and groups them into biologically interpretable groups,
such as metagenomic contig binning (4). And the latter in-
fers general properties of the data from a few annotated ex-
amples, such as RNA-binding protein (RBP) binding site
prediction (5).

One common idea of integrating different types of data is
to concatenate the feature vectors representing the data, as
illustrated in Figure 1(A). Despite its simplicity, due to the
unbalanced scales, data with a large number of features tend
to have larger influence on the final outcome than others.
One potential remedy is to normalize the data inversely pro-
portional to its corresponding feature size, however, mean-
ingful features from larger data may be diluted and become
even weaker than unwanted features from smaller data. An-
other common practice of data integration projects multiple
data types onto the same latent feature space (7). However,
different data sources usually exhibit some unique features
that are not shared by others, thus the enforcement of a joint
space can potentially miss essential complementary infor-
mation from the different data sources. In general, despite
extensive studies, integrative studies pose significant chal-
lenges.

In this paper, we introduce Heterogeneity Rescaling Pur-
suit (Hetero-RP), a scalable and tuning-free preprocessing
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Figure 1. Illustration of Hetero-RP on a toy example. (A) Each object o1, ···, o5 is represented by its corresponding feature vector, containing features
indexed from f1 to f10, with colors indicating different data sources. ‘positive-links’ and ‘negative-links’ are in green solid line and red dash line, respectively.
(B) The input to Hetero-RP contains two parts, the data matrix based on the concatenated feature vectors and the signed graph encoding both ‘positive-
links’ and ‘negative-links’. (C) Hetero-RP rescales each dimension of features, but keeps the overall scale fixed. (D) The applications of Hetero-RP widely
cover both clustering and classification domains.

framework for integrative genomic studies, to rescale fea-
tures from multiple data sources so that important features
are weighted more highly than less important ones. The
rationale to determine the weights of different features is
based on the implicitly existing auxiliary knowledge related
to the problem of interest. We demonstrate the effectiveness
of Hetero-RP in two clustering and classification applica-
tions: metagenomic contig binning and RBP binding site
prediction. The objective of metagenomic contig binning is
to cluster contigs in metagenomic samples so that contigs
from the same genome are binned together. Additionally,
two contigs may map to the same reference genome or there
are multiple paired-end reads linking the two contigs. To
utilize the auxiliary information on contig pairs, we intro-
duce the concept of ‘positive-links’ between pairs of con-
tigs supported by strong evidence of being binned together.
Adversely, two contigs mapped to phylogenetically distant
genomes are most unlikely to belong to the same bin. Thus
we introduce the concept of ‘negative-links’ between pairs
of contigs not belonging to the same bin. With a plethora
of such auxiliary information available, we determine the
weights of the different features. Similarly, the objective of
RBP binding site prediction aims to predict whether RBPs
bind to specific nucleotide positions of target RNA or not.
With the existence of class labels provided by the training
data, two nucleotide positions may share the same labels or
different labels. To utilize the auxiliary information on la-
bel information, we introduce ‘positive-links’ between pair-
wise nucleotide positions indicating those sharing the same
class label from the training data, and ‘negative-links’ oth-
erwise. In addition, the auxiliary knowledge not only im-
plicitly exists for exploration, but can be acquired actively
and interactively as well. With human aid, interactive anno-
tation gathered from experts can further promote the per-
formance in both clustering (8) and classification (9).

Hetero-RP aims to seek better weights of features that
match up with the auxiliary knowledge containing ‘positive-
links’ and ‘negative-links’, particularly tailored for hetero-
geneous data from multiple sources. Unlike conventional
feature selection, Hetero-RP makes no assumptions of fea-
ture independence (10–12). Likewise, Hetero-RP does not
enforce the majority of features to be ‘irrelevant’, instead it

assumes that the fraction of features without unit weight is
small. These interpretable weights enable us to characterize
the driving forces of the underlying biology.

We demonstrate the effectiveness of Hetero-RP using
metagenomic contig binning and RBP binding sites predic-
tion as examples. In metagenomic contig binning, Hetero-
RP automatically weighs abundance and composition pro-
files according to the varying number of samples, resulting
in markedly improved performance of contig binning on
both simulated and real datasets. In RBP binding site pre-
diction, a combination of Hetero-RP with state-of-the-art
methods improves the prediction performance measured by
the area under the receiver operating characteristic curves
(AUC) substantially in 28 out of 31 real datasets by an
average of 5.9%. Better still, the interpretable feature im-
portance learned by Hetero-RP uncovers the evidence sup-
ported by independent studies, including the distribution of
the binding sites of IGF2BP and PUM2, the binding com-
petition between hnRNPC and U2AF2, and the intron–
exon boundary of U2AF2.

MATERIALS AND METHODS

Let O = o1, o2, · · · , on be the set of n objects that possibly
indicate metagenomic contigs for binning, RBP interaction
sites for prediction, etc. Each object is represented by a fea-
ture vector, for features from a single data source or con-
catenation of multiple data sources. Mathematically, each
data source i with feature dimensionality pi on the same
set of n objects is represented by a data matrix Xi ∈ R

pi ×n .
When the number of data sources m > 1, we stack them

together byX = (
X1
· · ·
Xm

). X ∈ R
p×n is the stacked data matrix

illustrated in Figure 1(B) and p�p1 + p2 + ··· + pm, where p1,
p2, ···, pm are the feature dimensionality of each data source,
respectively. Then the feature vector of oi is denoted as X· i,
for i = 1, 2, ···, n.

We encode ‘positive-links’ and ‘negative-links’ by an
undirected signed graph G = (O,P,N ), where O is the set
of objects, and P and N consist of ‘positive-links’ and
‘negative-links’, respectively. G can be represented by an ad-
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jacency matrix A ∈ R
n×n , where Aij = 1 if there is a ‘positive-

link’ between oi and oj, Aij = −1 if there is a ‘negative-link’
between oi and oj, and Aij = 0 otherwise. With these nota-
tions, Hetero-RP aims to find a p-dimensional vector W =
[w1, w2, ···, wp] for overall p features, so as to minimize the in-
consistency between the signed graph G and the feature-wise
rescaled data matrix diag(W)X where diag( · ) diagonalizes
the vector into a diagonal matrix.

min
W

L(W) =
∑
i, j

Ai j
∥∥diag(W)X·i − diag(W)X· j

∥∥2

= tr(diag(W)XLXTdiag(W)),

s.t. W ≥ 0, and
∑

i

Wi = p

(1)

where L = D − A denotes the Laplacian matrix (13) of adja-
cency matrix A and D indicates the diagonal matrix whose
dii entry equals the sum of the i-row (or column due to sym-
metry) of A. In the above formulation, inconsistency de-
creases when object pairs joined by positive-links are pulled
closer after data matrix is rescaled. To avoid trivial solu-
tions, we enforce W to be nonnegative and conserved in
sum, i.e.

∑
iWi = p, as shown in Figure 1(C).

Unlike conventional feature selection that assumes most
features are irrelevant, Hetero-RP assumes the majority of
features are useful. Among those useful features, only a
subset of them are more or less informative (weight �= 1)
whereas the rest are neutral (weight =1). In comparison,
conventional feature selection treats features either relevant
(weight =1) or irrelevant (weight =0). To examine whether
the assumption of Hetero-RP holds, for the clustering sce-
nario, the dip test (14) can be used to check if each feature
is multi-modal. If not, that feature is regarded uninforma-
tive and thus excluded. For the classification task, univari-
ate metrics such as t-test can also be applied to score each
feature and the resulting p-values are obtained. Features
whose p-values exceed a certain threshold are not consid-
ered as well. The assumption of Hetero-RP naturally leads
to the regularization of �W = W − 1, the deviation from
unit weight. Thus, Equation (1) changes to the following
quadratic programming problem:

min
W

L(�W) = tr(diag(1 + �W)XLXTdiag(1 + �W)) + λ ‖�W‖2

=
∑

i

Yi (�Wi + 1)2 + λ�W2
i ,

s.t. �Wi ≥ −1, and
∑

i

�Wi = 0

(2)

where the parameter � > 0 shrinks weight towards unit
and towards each other. And Y is the diagonal vector of
XLX, i.e., Yi = (XLX)ii, for i = 1, 2, ···, n. Note that
when ‘negative-links’ are available, Y may no longer re-
main nonnegative. To keep convexity of Equation (2) for
easy optimization, a common practice chooses Yi = max (0,
(XLX)ii), for i = 1, 2, ···, n.

Parameter choice for �

Hetero-RP selects the parameter � in Equation (2) automat-
ically (15) by carrying out the following two steps iteratively

until convergence:

�Ŵ ← arg min
�W≥−1∑

i �Wi =0

∑
i

Yi (�Wi + 1)2 + 2pλ0σ̂ ‖�W‖2 , (3a)

σ̂ ←
√

1
p

∑
i

Yi (�Wi + 1)2, (3b)

where �0 is chosen according to the suggestion of (16) and
has also been used in (17). In particular, �0 = B/(p − 1 +
B2)1/2, where B = tq(1 − p1/2/(2rlog r), p − 1) with tq(�,
d) the �th quantile of a t-distribution with d degrees of free-
dom, and r represents the rank of L (see supplementary ma-
terial for more details).

Insufficient auxiliary knowledge

When ‘positive-links’ and ‘negative-links’ are sparse, Equa-
tion (2) may suffer from ‘overfitting’, unable to provide ex-
pected weight reliably. Therefore, we utilize auxiliary knowl-
edge along with the original data matrix X. Specifically, we
consider a k-nearest neighbor network containing n vertices
where each vertex i corresponds to X· i, the i-th column of
X and k is chosen as

√
n. For each vertex i, i = 1, 2, ···,

n, if vertex j belongs to the k-nearest neighbors of vertex
i, then vertex i and vertex j are connected by edge with

weight M(0)
i j = exp

{
−‖X·i −X· j‖2

2σ 2

}
, where � can be chosen

as 1.06σ̂n− 1
5 and σ̂ is the standard deviation of X (18). We

let Mi j = max(M(0)
i j , M(0)

j i ) for symmetry. Finally, we use the
combined adjacency matrix A + �M, where the parameter
� > 0 controls the trade-off between intrinsic data structure
and auxiliary knowledge. To balance the contribution from
A and M, � is chosen as � = tr((A)TM)/((A)TA), the min-
imizer of arg minγ ‖A− γ M‖2

F , where ‖·‖2
F indicates the

sum of squared error.

RESULTS

Application to clustering: metagenomic contig binning

The next-generation sequencing technologies (NGS) enable
biologists to sequence microbial communities from envi-
ronmental samples directly. Contig binning is a process to
group assembled sequence fragments, also known as con-
tigs, into operational taxonomic units (OTUs), in which
contigs in the same bin belong to closely related genomes
(19). Most available methods rely on the integrated usage
of abundance profiles across multiple metagenomic sam-
ples and tetra-mer composition profiles of contig sequences
(4,20–23).

In brief, binning utilizes two types of data, p1-
dimensional relative abundance profiles X1, and p2-
dimensional composition profiles X2, where p1 is the
dimension of abundance profiles and p2 is the number of
distinct tetranucleotides. In addition, the co-alignment of
contig pairs and paired-end reads linkage are considered as
the auxiliary knowledge that potentially contribute to the
binning performance (4).

We compared our previously proposed method, COCA
COLA (4), with or without using Hetero-RP. The COCA
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COLA used in this paper is an upgraded version, which
takes a non-linear transformation of the input features by
spectral embedding (24) (see supplementary material for
more details). To guarantee a fair comparison, the bin num-
ber is fixed as the estimation from single-copy genes (22). We
not only showed the improvement of COCACOLA after
incorporating Hetero-RP as preprocessing, but also com-
pared the improved performance against three state-of-the-
art methodologically distinct methods: CONCOCT (20),
MaxBin (22) and MetaBAT (23).

We evaluated the gain from Hetero-RP based on both
simulated and real datasets. The simulated ‘species’ dataset
consists of 101 distinct species across 96 samples (20), with
more than 3% sequence differences. Overall n = 37 628 con-
tigs of length at least 1kbps were assembled for binning.
The binning result is evaluated by the Adjusted Rand Index
(ARI), an overall measure taking both precision and recall
into account (see supplementary material for definition).
The real ‘MetaHIT’ dataset contains 264 different samples
from the MetaHIT consortium (25) (SRA:ERP000108),
with a total of 192 673 assembled contigs of length at least
1 kbps remaining for binning. Unlike simulated dataset, the
true labels are inaccessible in real dataset. Instead, we ap-
plied CheckM (26) to estimate the approximate precision
(by the percentage of genes absent from different genomes)
and completeness (by the percentage of expected single-
copy genes that are binned).

For the simulated ‘species’ dataset, to assess the gain of
Hetero-RP thoroughly, we further sub-sampled the data of
size varying from 10 to 90, with a step size of 10. To avoid
duplicate contributions from multiple replicates, the num-
bers of replicates are 9, 4, 3, 2, 1, 1, 1, 1, 1, respectively.
When using co-alignment as auxiliary knowledge, as shown
in Figure 2(A), the ARI is improved in 20 cases by an aver-
age of 5.9% and decreased in two cases by an average of
1.7%. We also scrutinized the weight obtained by Hetero-
RP on two randomly picked cases of sample size 10 and
96, respectively. As illustrated in Figure 2(B), the average
weight of abundance profiles are 0.26 and 0.87 when sam-
ple sizes are 10 and 96, respectively. That is, Hetero-RP
prefers to scale down the abundance profiles when sam-
ple size is small, consistent with the observation that bin-
ning performs better when the sample size increases (4,20)
(see supplementary material for more details). When us-
ing paired-end reads linkage as auxiliary knowledge, as de-
picted in Figure 2(C), the ARI is improved in 9 cases by
an average of 2.9% and decreased in three cases by an av-
erage of 1.4%. The improvement is less prominent than co-
alignment because the positive-links set of co-alignment is
∼1800x larger than the set of linkage. The inferior perfor-
mance is also revealed by the weight obtained by Hetero-RP.
As shown in Figure 2(D), the abundance profiles are not suf-
ficiently scaled down by an average of 0.74 when sample size
is 10, and the weight has an average of 0.99, almost dimin-
ished when sample size is 96. We next compared COCA-
COLA with Hetero-RP using co-alignment against CON-
COCT, MaxBin, and MetaBAT. As illustrated in Figure
2(E), Hetero-RP performs well in a majority of the cases,
achieving better precision-recall tradeoff, especially when
sample sizes are small.

For the real ‘MetaHIT’ dataset, we focused on the identi-
fication of genome bins having >80% precision (the lack of
contamination) and >30% recall (completeness). As shown
in Figure 2(F), Hetero-RP contributes to more or equiva-
lent genome bins at every completeness threshold. Because
co-alignment outperforms linkage consistently, we com-
pared COCACOLA with Hetero-RP using co-alignment
against CONCOCT, MaxBin and MetaBAT. We observe
that for the recovery of a genome bin with >90% com-
pleteness, MaxBin dominates other methods. In particular,
MaxBin recovers 29 genome bins in comparison to 25 by
COCACOLA with Hetero-RP, 15 by CONCOCT and 14 by
MetaBAT, respectively. Nevertheless, MaxBin does not per-
form well for genome bins with <70% completeness. COCA
COLA with Hetero-RP consistently recovers more genome
bins than CONCOCT at every completeness threshold. It
recovers more high quality genome bins with ≥60% com-
pleteness than MetaBAT. We conclude that in the exper-
iment involving real metagenomic contigs, COCACOLA
with Hetero-RP still performs well.

Application to classification: RBP binding site prediction

We next incorporated Hetero-RP as a preprocessing step to
predict whether RNA-binding proteins (RBP) bind to spe-
cific nucleotide positions of target RNA, as RBPs are of vi-
tal importance in the control of gene expression. Current
state-of-the-art methods utilize the combination of multiple
data sources including tetranucleotides, secondary struc-
ture, region type, CLIP co-binding and Gene Ontology
(GO) terms (5).

For a given RBP, a predictive model is built based upon
n training nucleotide positions indicating whether each po-
sition is a binding side or not. For each nucleotide position,
the neighboring [−50, 50] positions are considered in five
types of data. Specifically, the tetranucleotide composition
X1 has p1 dimensions where p1 = 256 × 101 = 25 856; the
probabilistic scores of secondary structure X2 computed by
RNAfold (27) has p2 dimensions where p2 = 101; the region
type X3 is has five presence/absence indicators for intron,
exon, 5′-UTR, 3′-UTR and ORF, with dimensionality p3 =
5 × 101 = 505; the co-binding proteins cDNA counts X4 in-
volve other 30 RBP experiments, with dimensionality up to
30 × 101 = 3 030; and the GO annotations X5 has p5 = 39
560 GO term markers indicating the position within known
genes having that annotation (see supplementary material
for more detailed descriptions). In addition, the auxiliary
knowledge is considered as whether pairwise nucleotide po-
sitions share the same labels or different labels.

We evaluated Hetero-RP based on 31 published CLIP ex-
periments, with 19 distinct RBPs with one or multiple exper-
imental replicates (5). These RBPs involve a variety of func-
tionalities such as splicing (ELAVL1, FUS, hnRNPs, TDP-
43, U2AF2 etc.) and processing of 3′-UTR (Ago, IGF2BP
etc.). For each individual experiment, up to 20 000 identified
crosslinking sites split into training and test sets as positive
samples, whereas sites within non-interacting genes as nega-
tives. The prediction performance measured by the area un-
der the receiver operating characteristic curves (AUC).

We first compared the state-of-the-art method, iONMF
(5), with or without using Hetero-RP. iONMF relies on
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Figure 2. Incorporating Hetero-RP in metagenomic contig binning. (A) COCACOLA with Hetero-RP applied to the simulated ‘species’ dataset with
multiple sub-sampling replicates, evaluated by Adjusted Rand Index (ARI). The auxiliary knowledge consider the co-alignment of contig pairs. (B) The
feature weight of two randomly picked samples of size 10 and 96 using co-alignment. The blue shadow on the left side of the dashed line indicates the
scales of abundance profile, whereas the red shadow on the right side of the dashed line indicates the scales of composition profile. The green horizontal
line indicates the scales of 1. (C) The auxiliary knowledge consider the paired-end reads linkages. (D) The feature weight of two randomly picked samples
of size 10 and 96 using linkage. (E) COCACOLA with Hetero-RP using co-alignment is compared against CONCOCT, MaxBin, and MetaBAT using
ARI. The improvement is more prominent in small size cases such as 10 and 20. (F) Application to the real ‘MetaHIT’ dataset. The evaluation is based
upon the recovery of genome bins at every completeness threshold. The number of recovered genome bins (X-axis) by each method (Y-axis) in different
completeness threshold (gray scale) with precision >80%, calculated by the lack of contamination using CheckM.
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orthogonality-regularized nonnegative matrix factoriza-
tion, not only outperforming other state-of-the-art methods
GraphProt (28) and RNAContext (29) but also discover-
ing class-specific RNA binding patterns (see supplementary
material for more details). In particular, we applied Hetero-
RP to the training set, and obtained the corresponding
weight. The same weights were applied to both training and
test sets afterwards. We not only showed the improvement
of iONMF after incorporating Hetero-RP as preprocess-
ing, but also compared the improved performance against
GraphProt and RNAContext. Meanwhile, we also com-
pared Hetero-RP against three popular feature selection
methods: Correlation-based Feature Selection (CFS) (30),
Fast Correlation-Based Filter (FCBF) (31), and Sparse Lo-
gistic Regression (SLR) (32) (see supplementary material
for definitions).

We ran iONMF 20 times with different random seeds. For
each round, the random seed was fixed for both training
and testing stages regardless of whether Hetero-RP is used.
As shown in Figure 3(A), in 28 out of 31 cases, Hetero-
RP substantially improves the performance of the already
state-of-the-art method by an average increase of 5.9%. In
the remaining cases, Hetero-RP shows negligibly worse per-
formance by an average decrease of 1.2%. It is notable that
QKI achieves a 21.1% improvement by Hetero-RP, with
the AUC score increasing from 0.678 to 0.821. Further-
more, Hetero-RP facilitates more robust prediction by de-
creasing the standard deviation by an average of 45.9%.
We next compared the improved performance of iONMF
against state-of-the-art methods. As illustrated in Figure
3(B), iONMF with Hetero-RP outperforms GraphProt and
RNAContext in 25 out of 31 cases by an average increase
of 11.1% and 11.0%, respectively. In remaining six cases,
Hetero-RP is outperformed by an average of 6.2% and
5.7%, respectively. After that, we compared Hetero-RP with
three different types of feature selection methods. As shown
in Figure 3(C), Hetero-RP outperforms CFS, FCBF, and
SLR in 26, 30 and 31 out of 31 cases by an average in-
crease of 6.7%, 12.0% and 12.9%, respectively. In compari-
son, Hetero-RP merely shows worse performance by an av-
erage decrease of 2.4% and 1.9% in the remaining cases for
CFS and FCBF, respectively.

We scrutinized the weights obtained by Hetero-RP (see
supplementary material for more details). As shown in Fig-
ure 3(D), 3′-UTR region types turn out to be the most in-
formative features across the upstream and downstream of
the crosslinking sites for RBP such as IGF2BP and PUM2.
In contrast, intron, 5′-UTR, and ORF region types are
scaled down. This observation agrees with the fact that
the binding sites of both IGF2BP and PUM2 are dis-
tributed across 3′-UTRs (33). In addition, both IGF2BP
and PUM2 are mainly cytoplasmic and their binding sites
are mainly located in exons (33), which is also captured by
Hetero-RP. Specifically, exon features across the upstream
of the crosslinking sites are scaled up for both IGF2BP and
PUM2, and the downstream are also enriched for IGF2BP.

It has been reported that hnRNPC interacts with the
same positions as U2AF2 (5), consistent with the weights
revealed in Figure 3(E), which is either scaled up or
unchanged across the upstream and downstream of the
crosslinking sites. The underlying rationale is that binding

of the hnRNPC or U2AF2 serves as the indirect evidence
of binding of the counterpart. Meanwhile, there is evidence
supporting the direct competition between the two (34), im-
plied by the fact that the weights of positions around [−25,
25] relative to the binding site is lower than the upstream
and downstream.

Finally, U2AF2 is a splicing factor that predominantly
crosslinks to the 3′ splice site (34). It has also been reported
that the intron–exon boundary is at ∼30 nucleotides up-
stream from the binding site (5), exactly where the weights
of both intron and exon region types start to increase
steeply, as depicted in Figure 3(F).

DISCUSSION

Hetero-RP provides a general data preprocessing frame-
work for integrative genomic studies. By utilizing implic-
itly existing auxiliary knowledge, Hetero-RP introduces a
scalable algorithm to weigh important features more highly
than less important ones. At the same time, efforts have been
made to avoid overfitting by regularization and incorporat-
ing intrinsic structure from data per se. From practitioners’
perspective, Hetero-RP is tuning-free without tedious cross-
validation for tuning parameters.

We demonstrate the effectiveness of Hetero-RP in both
clustering and classification domains, from metagenomic
contig binning to RBP binding site prediction, showing
the wide applicability of our framework. More importantly,
Hetero-RP not only plays the role as a ‘black box’, but also
leads to interpretability of feature importance, offering in-
sights into better biological understanding.

We also notice the potential improvement of Hetero-RP
for future investigation:

i The ‘positive-links’ and ‘negative-links’ chosen as aux-
iliary knowledge are assumed to be generic so that
they remain invariant to all situations. Nevertheless,
such generic assumption may be limited when auxiliary
knowledge vary with different situations. That is, a spe-
cific ‘positive-link’ or ‘negative-link’ may take place in
certain situation while not in others. For example, in-
dividual RBP binding activities may change along with
different cell types, environmental conditions, or biologi-
cal systems. Therefore, modeling condition-specific aux-
iliary knowledge is needed to adaptively learn feature
weights that exhibit condition-specific behavior. More-
over, once having obtained feature weights learned from
auxiliary knowledge in some conditions, how and to
what extent to reuse such results to help boost the per-
formance given auxiliary knowledge in other conditions
is also needed.

ii More general form of auxiliary knowledge, such as the
relative comparison in the form of ‘A is closer to B than
A is to C’, can be considered, . The relative comparison is
pervasive and ubiquitous in many scenarios. For exam-
ple, the relative comparison encodes a phylogenetic tree
containing the interspecies relationships among the mi-
crobial organisms. To be specific, two genomes sharing
the same genus taxonomic level are more likely to be-
long to the same OTU than those in different levels (35).
Actually, the positive-links and negative-links are special
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Figure 3. Incorporating Hetero-RP in RBP binding sites prediction. (A) iONMF with or without Hetero-RP is applied to 31 published CLIP experiments.
The positive-links and negative-links sets are constructed according to the labels of the nucleotide positions in the training set. The performance is evalu-
ated by the area under the receiver operating characteristic curve (AUC). (B) Hetero-RP is compared against state-of-the-art methods. (C) Hetero-RP is
compared against popular feature selection methods. (D–F) Interpretations of the scales obtained by Hetero-RP. (D) The 3′-UTR region type of PUM2
and IGF2BP has the largest weights, consistent with the fact that the binding sites of both IGF2BP and PUM2 are distributed across 3′-UTRs. (E) The
mutual co-binding of hnRNPC and U2AF2 has large weights and this observation agrees with the fact that hnRNPC interacts with the same positions as
U2AF2. Moreover, the weights are even larger at the upstream and downstream, supporting the evidence of direct competition between the two. (F) The
intron and exon region types of U2AF2 start to scale up at ∼30 nucleotides upstream from the binding site, where the reported intron–exon boundary is
located.
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cases of relative comparison, that is, an positive-link pair
is closer than any random pair which in turn is closer
than a negative-link pair.

iii Hetero-RP measures the features against auxiliary
knowledge implicitly in Euclidean distance, which may
not hold well for all sources of data. We can potentially
employ Kernel Principal Component Analysis (36) to
project the original data into a new data matrix with the
nonlinear features induced by the kernel, and then use
the resulting data matrix as the input to Hetero-RP. This
procedure is referred to as ‘KPCA trick’, which is theo-
retically sound (37).

iv The quadratic programming form of Hetero-RP is not
computationally optimal, and faster solvers such as
ADMM (38) can be applied.

In summary, Hetero-RP can serve as a foundational pre-
processing tool for integrative genomic studies. With the ad-
vent of high-throughput technologies, researchers are ex-
posed to ‘Big Data’ in biology and medicine. Though in-
tegrative studies are increasingly common, facilitating bet-
ter understanding towards biological mechanisms, the opti-
mal integration of diverse heterogeneous massive data still
needs to be explored. We expect Hetero-RP to motivate a
rich set of applications in integrative genomic studies and
‘Big Data’ practices.
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