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Abstract

Balancing selection maintains advantageous diversity in populations through various mechanisms. Although extensively explored

from a theoretical perspective, an empirical understanding of its prevalence and targets lags behind our knowledge of positive

selection. Here, we describe the Non-central Deviation (NCD), a simple yet powerful statistic to detect long-term balancing

selection (LTBS) that quantifies how close frequencies are to expectations under LTBS, and provides the basis for a neutrality

test. NCD can be applied to a single locus or genomic data, and can be implemented considering only polymorphisms (NCD1) or

also considering fixed differences with respect to an outgroup (NCD2) species. Incorporating fixed differences improves power,

and NCD2 has higher power to detect LTBS in humans under different frequencies of the balanced allele(s) than other available

methods. Applied to genome-wide data from African and European human populations, in both cases using chimpanzee as an

outgroup, NCD2 shows that, albeit not prevalent, LTBS affects a sizable portion of the genome: �0.6% of analyzed genomic

windows and 0.8% of analyzed positions. Significant windows (P< 0.0001) contain 1.6% of SNPs in the genome, which

disproportionally fall within exons and change protein sequence, but are not enriched in putatively regulatory sites. These

windows overlap �8% of the protein-coding genes, and these have larger number of transcripts than expected by chance

even after controlling for gene length. Our catalog includes known targets of LTBS but a majority of them (90%) are novel. As

expected, immune-related genes are among those with the strongest signatures, although most candidates are involved in other

biological functions, suggesting that LTBS potentially influences diverse human phenotypes.

Key words: natural selection, overdominance, site frequency spectrum, neutrality test, summary statistic, genome-wide

scan.

Introduction

Balancing selection refers to a class of selective mechanisms

that maintains advantageous genetic diversity in populations.

Decades of research have established HLA genes as a prime

example of balancing selection (Meyer and Thomson 2001;

Spurgin and Richardson 2010), with thousands of alleles seg-

regating in humans, extensive support for functional effects

of these polymorphisms (Prugnolle et al. 2005), and various

well-documented cases of association between selected

alleles and disease susceptibility (Raychaudhuri et al. 2012;

Howell 2014). The catalog of well-understood non-HLA tar-

gets of balancing selection in humans remains small, but

includes genes associated to phenotypes such as autoimmune

diseases (Ferrer-Admetlla et al. 2008; Sironi and Clerici 2010),

resistance to malaria (Malaria Genomic Epidemiology

Network 2015), HIV infection (Biasin et al. 2007), or suscep-

tibility to polycystic ovary syndrome (Day et al. 2015). Thus,

besides historically influencing individual fitness, balanced
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polymorphisms shape current phenotypic diversity and sus-

ceptibility to disease.

Balancing selection encompasses several mechanisms

(reviewed in Andr�es 2011; Key, Teixeira, et al. 2014;

Fijarczyk and Babik 2015). These include heterozygote advan-

tage or overdominance, some cases of frequency-dependent

selection (e.g., rare allele advantage), selective pressures that

fluctuate in time (Bergland et al. 2014) or in space in panmitic

populations (Charlesworth et al. 1997), and some cases of

pleiotropy (Johnston et al. 2013). For overdominance, pleiot-

ropy, and some instances of spatially variable selection, a sta-

ble equilibrium—at the frequency equilibrium, which

maximizes fitness in the population—can be reached

(Charlesworth and Charlesworth 2010). For other mecha-

nisms, the frequency of the selected allele can change in

time without reaching a stable equilibrium. Regardless of

the mechanism, long-term balancing selection (LTBS) has

the potential to leave identifiable signatures in genomic

data. The first is an increase in the ratio of polymorphic to

divergent sites: by reducing the probability of fixation of a

variant, balancing selection increases the local time to the

most recent common ancestor (Hudson and Kaplan 1988)

and the density of polymorphisms. The HKA test is commonly

used to detect this signature (Hudson et al. 1987). The second

signature is an excess of alleles segregating at intermediate

frequencies. In humans, the folded site frequency spectrum

(SFS)—the frequency distribution of minor allele frequencies

(MAF)—is typically L-shaped, showing an excess of low-

frequency alleles when compared with expectations under

neutrality and demographic equilibrium. Regions under

LTBS, on the other hand, can show a markedly different

SFS, with proportionally more alleles at intermediate fre-

quency. Such a deviation in the SFS is identified by classical

neutrality tests such as Tajima’s D (TajD) and newer statistics

such as MWU-high (Nielsen et al. 2009). In some cases, very

ancient balancing selection can maintain trans-species poly-

morphisms in sister species (Leffler et al. 2013; Teixeira et al.

2015). On the other hand, when balancing selection is very

recent or transient (Sellis et al. 2011), signatures are difficult to

distinguish from incomplete, recent selective sweeps (Key,

Teixeira, et al. 2014).

Although balancing selection has been extensively ex-

plored from a theoretical perspective, an empirical under-

standing of its prevalence lags behind our knowledge of

positive selection. This stems from technical difficulties in

detecting balancing selection, as well as the perception that

it may be a rare selective process. In fact, few methods have

been developed to identify its targets, and only a handful of

studies have sought to uncover them genome-wide in

humans (Asthana et al. 2005; Bubb et al. 2006; Alonso

et al. 2008; Andr�es et al. 2009; Leffler et al. 2013;

DeGiorgio et al. 2014; Rasmussen et al. 2014; Siewert and

Voight 2017). Some studies have identified genes (Andr�es

et al. 2009) or genomic regions (DeGiorgio et al. 2014) with

an excess of polymorphisms and intermediate frequency

alleles, whereas others have identified trans-species polymor-

phisms between humans and their closest living relatives

(chimpanzees and bonobos) (Leffler et al. 2013; Teixeira

et al. 2015). Overall, these studies suggested that balancing

selection may act on a small portion of the genome, although

the limited extent of data used (e.g., exome data, Andr�es

et al. 2009; small sample size, DeGiorgio et al. 2014), and

stringency of the criteria (e.g., trans-species polymorphisms

predating human–chimpanzee divergence; Leffler et al.

2013; Teixeira et al. 2015) may underlie the paucity of

detected regions.

In the tradition of neutrality tests analyzing the SFS directly

(Nielsen et al. 2005, 2009; Williamson et al. 2007), we propose

the “Non-central Deviation” (NCD) statistic, which measures

the degree to which the local SFS deviates from expectations

under balancing selection using only polymorphisms (NCD1) or

also fixed differences to an outgroup (NCD2). We show,

through simulations, that NCD2 outperforms existing methods

under a realistic demographic scenario for human populations.

We apply NCD2 to genome-wide data from four human pop-

ulations to test the null hypothesis of neutral evolution, and use

both outlier and simulation-based approaches to identify ge-

nomic regions bearing signatures of LTBS.

Methods

The NCD Statistic

Background

Owing to linkage, the signature of LTBS extends to the genetic

neighborhood of the selected variant(s); therefore, patterns of

polymorphismanddivergence inagenomic regioncanbeused

to infer whether it evolved under LTBS (Charlesworth 2006;

Andr�es 2011). As mentioned, LTBS leaves two distinctive sig-

natures in linked variation, when compared with neutral

expectations: an increase in the ratio of polymorphic to diver-

gent sites and an excess of alleles segregating at intermediate

frequencies when compared with neutral expectations (fig. 1A

and B). With heterozygote advantage, the frequency equilib-

rium (feq) depends on the relative fitness of each genotype

(Charlesworth and Charlesworth 2010): when the two types

of homozygotes have the same fitness (symmetric overdomi-

nance), feq¼ 0.5; when the fitness of the two homozygotes is

different (asymmetric overdominance), feq 6¼ 0.5. Under nega-

tive frequency-dependent selection and fluctuating selection,

whereas an equilibrium may not be reached (supplementary

information S1, Supplementary Material online), feq can be

thought of as the frequency of the balanced polymorphism

at the time of sampling. We focus on overdominance, as com-

paring different mechanisms of balancing selection falls out-

side of the scope of the paper.

Under a model of balancing selection, we define tf (target

frequency) as the expected frequency of a balanced allele,
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with the NCD statistic quantifying how far the sampled SNP

frequencies are from it. Because biallelic loci have comple-

mentary allele frequencies, and there is no prior expectation

regarding whether ancestral or derived alleles should be main-

tained at higher frequency, we use the folded SFS (fig. 1B).

NCD is defined as:

NCD tfð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn
i¼1

ðpi � tfÞ2

n

vuuut
; (1)

where i is the i-th informative site in a locus, pi is the MAF for

the i-th informative site, n is the number of informative sites,

and tf is the target frequency with respect to which the devi-

ations of the observed alleles frequencies are computed. Thus,

NCD is a type of standard deviation (SD) that quantifies the

dispersion of allelic frequencies from tf, rather than from the

mean of the distribution. We note that tf is not an estimated

quantity, but rather a hypothetical frequency expected under

balancing selection, with respect to which we quantify devia-

tions in genomic data. We consider the same tf for all SNPs in

a given locus/window because we expect most small regions

to have only one balanced allele, with the rest being shifted

close to the tf (though often not reaching it) by linkage. Low

NCD values reflect a low deviation of the SFS from a

predefined tf (fig. 1C), as expected under LTBS (supplemen-

tary information S1 and supplementary fig. S1,

Supplementary Material online). Of course, a priori feq is

unknown, and thus the choice of a tf value may not be

straightforward. We show that NCD values correlate strongly

across tf values (supplementary fig. S9, Supplementary

Material online), so while this is a key value in the statistic, it

has limited influence in its applications. In any case, we pro-

pose below a practical approach to deal with the inherent feq

uncertainty.

We propose two NCD implementations: NCD1 uses only

polymorphic sites, and NCD2 also includes the number of

fixed differences (FDs) relative to an outgroup species (i.e.,

all informative sites, ISs¼ SNPsþ FDs, are used to compute

the statistic). In NCD2, FDs are considered informative sites

with MAF¼ 0; thus, the greater the number of FDs, the larger

the NCD2 and the weaker the support for LTBS (supplemen-

tary fig. S2, Supplementary Material online). Because NCD2

includes also FDs, it uses more information and we focus on it.

Nevertheless, NCD1 can be used in the absence of an out-

group, and we show its power statistics in detail in the supple-

ments (supplementary information S1 and supplementary

table S1, Supplementary Material online).

Simulations and Power Analyses

NCD’s power was evaluated by simulations (under neutrality

and with selection) with MSMS (Ewing and Hermisson 2010)

following the demographic model described in Gravel et al.

(2011) for African, European, and East Asian human popula-

tions, and considering a generation time of 25 years, mutation

FIG. 1.—A schematic representation of site frequency spectra (SFS) under neutrality and selection, which motivates the NCD statistic. (A) Unfolded SFS

(ranging from 0 to 1) of derived allele frequencies (DAF) for loci under neutrality (gray) or containing one site under balancing selection with frequency

equilibrium (feq) of 0.5 (blue), 0.4 (orange), and 0.3 (pink). (B) Folded SFS (ranging from 0 to 0.5) for minor allele frequencies (MAF). Colors as in A. (C)

Distribution of NCD expected under neutrality (gray) and under selection assuming tf¼ feq. Colors as in A. x axis shows minimum and maximum values that

NCD can have for a given tf.
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rate of 2.5�10�8 per site, recombination rate of 1�10�8, and

the human–chimpanzee split at 6.5 million years ago (Ma).

For simulations with selection, a balanced polymorphism was

added to the center of the simulated sequence and modeled

to achieve a prespecified frequency equilibrium (feq¼ 0.3, 0.4,

0.5) following an overdominant model (supplementary infor-

mation S1, Supplementary Material online). Simulations with

and without selection were run for different sequence lengths

(L¼ 3, 6, 12 kb) and times of onset of balancing selection (1,

3, 5 Ma). For each combination of parameter, 1,000 simula-

tions were used to compare the relationship between true

(TPR, the power of the statistic) and false (FPR) positive rates

for the NCD statistics, with a FPR set to 0.05. When compar-

ing performance under a given condition, power was aver-

aged across demographic scenarios, L, and Tbs.

When comparing NCD performance to classical methods

(TajD, HKA), we used NCD optimal conditions: 3 kb,

Tbs¼ 5 Ma (see Results, fig. 2), which is also optimal for these

other tests (supplementary table S1, Supplementary Material

online). For the ß statistic (Siewert and Voight 2017) we used

the folded version of the test and, for consistency, also of 3-kb

windows (but we note that results do not change with 1-kb

windows; supplementary table S1 and supplementary infor-

mation S1, Supplementary Material online). For the T1 and T2

statistics, which require longer genomic regions to identify the

signature of balancing selection, power was reported based

on windows of 100 informative sites up and downstream of

the target site, following BALLET’s original publication

(DeGiorgio et al. 2014). Power values are for a sample size

of 50 diploid individuals, but sample sizes of 30 and 10 indi-

viduals were also explored (supplementary information S1,

Supplementary Material online).

Identifying Signatures of LTBS in Human Genomes

Statistic

The implementation of the genome-wide analysis was in-

formed by the power analyses (see Results). As our power

results show, NCD2 has very high power. Although the feq

of a putatively balanced allele—that is, the actual frequency

of the balanced polymorphism at the time of sampling—is

unknown, the simplicity of the NCD statistics makes it trivial

to run for several tf values, allowing detection of balancing

selection for a range of equilibrium frequencies. For each win-

dow in each population, we thus calculated NCD2 for three tf

values (0.3, 0, 4, 0.5) although in neutral simulations these

results are highly correlated (supplementary fig. S9,

Supplementary Material online).

Data

We analyzed genome-wide data from two African (YRI:

Yoruba in Ibadan, Nigeria; LWK: Luhya in Webuye, Kenya)

and two European populations (GBR: British, England and

Scotland; TSI: Toscani, Italy) from the 1000 Genomes

(1000 G) Project phase I (Abecasis 2012), excluding SNPs

only detected in the high coverage exome sequencing to

avoid SNP density differences between coding and noncoding

regions. We randomly sampled 50 unrelated individuals from

each population (as in Key, Peter, et al. 2014) and did not

consider Asian populations due to lower NCD performance

for these populations according to our simulations (supple-

mentary table S1 and figs. S7 and S8, Supplementary Material

online). We only included in our analyses positions that passed

mappability (50mer CRG, 2 mismatches; Derrien, Estell�e, et al.

2012), segmental duplication (Cheng et al. 2005; Alkan et al.

2009) and tandem repeats filters (http://genome.ucsc.edu,

last accessed September 2016), as well as the requirement

of orthology to chimp (supplementary fig. S13,

Supplementary Material online).

The analysis was performed on 3-kb sliding (step 1.5 kb)

genomic windows. Windows were defined in physical dis-

tance since the presence of LTBS may affect the population-

based estimates of recombination rate. In addition, we chose

to define windows based on length rather than number of ISs

because the density of SNPs is part of NCD2’s signature, and

fixing the number of ISs may result in particularly short win-

dows in regions under balancing selection, which is undesir-

able for NCD analyses (see Results). We excluded 3-kb

windows with less than ten ISs in any population (supplemen-

tary information S2 and supplementary figs. S11 and S17,

Supplementary Material online) or <500 bp with orthology

in chimp (1.6%); the two criteria combined resulted in the

exclusion of 2.2% of scanned windows. Finally, to show that

undetected short duplications do not contribute substantially

to our candidates, we analyzed an alternative modern human

genome-wide data set (supplementary information S2,

Supplementary Material Online), sequenced to an average

coverage of 20�–30� per individual (Meyer et al. 2012;

Prüfer et al. 2014). After all these filters, we analyzed the

1,657,989 windows that remained in all populations, cover-

ing 2,145,937,383 base pairs (supplementary fig. S13,

Supplementary Material online).

Defining Significant and Outlier Windows

We defined two sets of windows with signatures of LTBS,

which collectively we consider our candidate windows.

Significant windows are defined as those for which the ob-

served NCD2 value is lower than all values obtained from

10,000 neutral simulations with the same number of ISs.

The matching by number of ISs aims to account for the higher

variance in the statistic (in any SFS statistic) in windows with

low numbers of informative sites (supplementary figs. S11

and S17, Supplementary Material online). Thus, all significant

windows have the same P value (P< 0.0001).

In order to quantify how far the NCD2 value of each win-

dow is from neutral expectations, we quantified the number
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of SDs a window’s NCD2 value lies from the mean of the

simulated distribution under neutrality (see supplementary in-

formation S2, Supplementary Material online). For that, we

defined a standardized distance measure between the ob-

served NCD2 (for a queried window) and the mean of the

NCD2 values for the 10,000 simulations with the matching

number of ISs:

Ztf�IS ¼
NCD2tf � NCD2tf�IS

sdtf�IS

; (2)

where Ztf-IS is the standardized NCD2, conditional on the value

of IS, NCD2tf is the NCD2 value with a given tf for the n-th

empirical window, NCD2tf�IS is the mean NCD2 for 10,000

neutral simulations for the corresponding value of IS, and sdtf-

IS is the SD for 10,000 NCD2 values from simulations with

matching ISs. Ztf-IS allows the ranking of windows for a given

tf, while taking into account the residual effect of IS number

on NCD2tf, as well as a comparison between the rankings of a

window considering different tf values. Outlier windows are

defined based on an empirical P value that is attributed to

each window as a function of Ztf-IS values for each tf. The

empirical P value is calculated by ranking the windows in

terms of Ztf-IS values and dividing the ranking position by

the number of scanned window (i.e., the lowest empirical P

value is 1/1,657,989¼ 5:97 � 10�7). Windows with empir-

ical P value� 0.0005 (i.e., the 829 most extreme windows)

were defined as outlier windows. With a few exceptions, out-

lier windows are a subset of significant windows. The coor-

dinates for these windows are provided in supplementary

table S5, Supplementary Material online. For simplicity, all

candidate windows that were identified for multiple tf values

had an assigned tf value, defined as the one that minimizes

the empirical P value for a given window (supplementary in-

formation S2, Supplementary Material online).

Properties of Candidate Windows

Archaic Introgression and Ectopic Gene Conversion

We evaluated two potentially confounding biological factors.

To assess ectopic gene conversion, we tested whether candi-

date genes have elevated number of paralogs in the same

chromosome. To assess archaic introgression, we calculated

the proportion of European SNPs in candidate windows that

are potentially of archaic (Neandertal or Denisova) origin.

Details are provided in supplementary information S3,

Supplementary Material online.

Gene Ontology and Tissue-Specific Expression
Enrichment Analyses

We analyzed protein-coding genes overlapped by one or

more candidate windows. GO and tissue of expression enrich-

ment analyses were performed using GOWINDA (Kofler and

Schlötterer 2012), which corrects for gene length-related

biases and/or gene clustering. GO accession terms were

downloaded from the GO Consortium website. We ran anal-

yses in mode: gene (which assumes that all SNPs in a gene are

completely linked) and performed 100,000 simulations for

FDR (false discovery rate) estimation (significance at

FDR� 0.05). A minimum of three genes in the enriched cat-

egory was required. For tissue-specific expression analysis, we

used Illumina BodyMap 2.0 (Derrien, Johnson, et al. 2012)

expression data for 16 tissues, and considered genes

FIG. 2.—Power to detect balancing selection for NCD2(0.5) and other tests. The ROC curves summarize the true positive rate (TPR) as a function of the

false positive rate (FPR) to detect LTBS for simulations where the balanced polymorphism was modeled to achieve feq of (A) 0.3, (B) 0.4, and (C) 0.5. Plotted

values are for the African demography, Tbs¼5 Ma. L¼3 kb, except for T1 and T2 where L¼100 ISs (see Methods). BETA refers to the ß statistic (Siewert and

Voight 2017). For NCD2 calculations, tf¼ feq. European demography yields similar results (supplementary fig. S10, Supplementary Material online). Power for

NCD1, NCD1þHKA, and T1 is provided in supplementary table S1, Supplementary Material online.
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significantly highly expressed in a particular tissue when com-

pared with the remaining 15 tissues using the DESeq package

(Anders and Huber 2010), as done in Sankararaman et al.

(2014). Details in supplementary information S4,

Supplementary Material online.

SNP Annotations

Functional annotations for SNPs were obtained from

ENSEMBL-based annotations on the 1000 G data and SNPs

were categorized as intergenic, genic, exonic, regulatory, syn-

onymous, and nonsynonymous. For each candidate window,

we sum the number of SNPs in each category, and then across

candidate windows. To compare with noncandidate win-

dows, we performed 1,000 resamplings of the number of

candidate windows from the set of all background (i.e.,

scanned) windows. Empirical P values were obtained by com-

paring proportions of SNPs in each category to those obtained

in 1,000 resamplings (fig. 5 and supplementary table S5,

Supplementary Material online). Because we considered the

sum across windows, and counted each SNP only once,

results should be insensitive to window length (as candidate

windows were merged). Details in supplementary information

S4, Supplementary Material online.

Splicing Variants, Mono-Allelic Expression,
Immune-Related Genes

To test whether candidate genes have a larger number of

transcripts than controls, while controlling for gene length,

we: 1) divided candidate genes into quantiles of gene length;

2) sampled a set of genes (matching candidate genes in

quantile bin; 3) calculated the mean and median number

of transcripts for each set; 4) repeated this process 1,000 times

and calculated the empirical one-tailed P value. The number of

transcripts per gene was obtained from Ensembl Biomart. For

this analysis, to reduce complexity, we used the set of candi-

date genes shared by populations within a continent (265 or

1594 for outlier and significant sets, respectively).

To test for enrichment for genes with mono-allelic ex-

pression (MAE), we quantified the proportions of candi-

date genes with MAE or biallelic expression in Savova

et al. (2016) and compared these proportions to those

in all genes analyzed (one-tailed Fisher’s test). The same

procedure was adopted to test for enrichment of

immune-related genes among our sets, using a list

of 386 keywords from the Comprehensive List of

Immune Related Genes (https://immport.niaid.nih.gov/

immportWeb/queryref/immportgene/immportGeneList.

do; last accessed July 2016).

Gene Cards was used to obtain basic functional informa-

tion about genes. The GWAS catalog (Welter et al. 2014) was

used to search for genome-wide phenotype associations

included in the discussion (we only report “strong

associations,” i.e., when there is at least one SNP with

P< 10�8). All statistical analyses and figures were performed

in R (Development Core Team R 2009) (scripts available on

https://github.com/bbitarello/NCV_dir_package and NCD

code available in https://github.com/bbitarello/NCD-Statistics).

Results

Power of NCD2 to Detect LTBS

We evaluated the sensitivity and specificity of NCD by bench-

marking its performance using simulations under demo-

graphic scenarios inferred for African, European, and Asian

human populations and under a neutral or an overdominant

model (see Methods). We explored the influence of parame-

ters that can affect the power of NCD: time since onset of

LTBS (Tbs), frequency equilibrium defined by selection coeffi-

cients (feq), demographic history of the sampled population, tf

used in NCD calculation and length of the genomic region

analyzed (L). For simplicity, we averaged power estimates

across African and European demographic models (Asian

populations were not considered due to low power, see sup-

plementary information S1, Supplementary Material online), L

and Tbs; these averages reflect general changes in power

driven by individual parameters. For simplicity, we initially dis-

cuss cases where tf¼ feq, and later relax this condition. We

focus on NCD2 (table 1) power results and discuss some key

points below. The complete set of power results, including

NCD1, is presented in supplementary table S1, Supplementary

Material online.

Time since the Onset of Balancing Selection and Sequence
Length

Signatures of LTBS are expected to be stronger for longer Tbs,

because time to the most recent common ancestor is older

and there will have been more time for linked mutations to

accumulate and reach intermediate frequencies. Accordingly,

power to detect LTBS is high with Tbs¼ 3 (0.91) and 5 (0.96)

and low for 1 Ma (0.42, averaged across populations, L and

feq) (supplementary figs. S3–S8 and table S1, Supplementary

Material online). Further, in the absence of epistasis the long-

term effects of recombination result in narrow signatures with

long Tbs. Indeed, our simulations show that narrower win-

dows yield highest power (on average, 13.6% higher for 3

than for 12 kb, when using NCD2(0.5), Tbs¼ 5 Ma; supple-

mentary figs. S3–S8 and table S1, Supplementary Material

online). Thus, we focus the remaining power discussion on

old balancing selection (3 or 5 Ma) in regions of 3 kb.

Demography and Sample Size

Power is similar for samples simulated under African and

European demographic histories for NCD2 (table 1) but consid-

erably lower under the Asian one, possibly due to demography
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(supplementary table S1 and figs. S3–S8, Supplementary

Material online). Although power estimates may be influenced

by the particular demographic model used, we nevertheless fo-

cus on African and European populations, which by showing

similar power allow fair comparisons between them. Although

thepowervaluesdiscussedhereare for samplesof100chromo-

somes, NCD2 performs well even for sample sizes as small as 20

(supplementary table S1 and supplementary information S1,

Supplementary Material online).

Simulated and Target Frequencies

So far, we have only discussed cases where tf¼feq, which

should favor the performance of NCD. Accordingly, under

this condition NCD has very high power: 0.96, 0.94, and

0.89 for feq¼ 0.5, 0.4, and 0.3, respectively (averaged across

Tbs and populations, 3 kb, table 1). However, in practice there

is no prior knowledge about the feq of balanced poly-

morphisms, so we also evaluate the power of NCD when tf

differs from the feq. When feq¼ 0.5, average power is high for

tf¼ 0.5 and 0.4 (� 0.94), but lower for tf¼ 0.3 (0.83, table 1).

Similar patterns are observed for other simulated feq (table 1).

Therefore, NCD2 is overall well-powered both when feq is the

same as tf and also when feq 6¼ tf. In any case, the closer tf is to

feq, the higher the power, so when possible it is desirable to

perform tests across a range of tf.

NCD2 in Comparison to Other Methods

We compared NCD2 to two statistics commonly used to de-

tect balancing selection (TajD and HKA), and two recently

proposed high-powered statistics: the composite likelihood-

based measure T2 (DeGiorgio et al. 2014) and ß (Siewert and

Voight 2017). The T2 statistic, similarly to NCD2, considers

both the SFS and FDs, whereas ß only considers the SFS.

When feq ¼ 0.5, NCD2(0.5) has the highest power: for exam-

ple, for the African demographic scenario (using Tbs¼ 5 Ma,

and 3-kb windows) NCD2(0.5) has a power of 0.96 (the high-

est among other tests is 0.94, for T2) but the difference in

power is highest when feq departs from 0.5. For feq ¼ 0.4,

NCD2(0.4) power is 0.93 (compared with 0.90 for TajD and

T2, and lower for the other tests). For feq ¼ 0.3, NCD2(0.3)

power is 0.93 (compared with 0.90 for ß, 0.89 for T2 and

lower for the other tests). These patterns are consistent in the

African and European simulations (fig. 2 and supplementary

fig. S10, Supplementary Material online), where NCD2 has

greater or comparable power than other available methods.

NCD2 is simple to implement and fast to run, and performs

slightly or substantially better than all other methods tested

(fig. 2 and supplementary fig. S10, Supplementary Material

online). Altogether, the advantage of NCD2 over classic neu-

trality tests and ß is its higher power, especially when feq

departs from 0.5; the main advantage over T2 is simplicity

and speed of implementation. We note that NCD2 can be

computed for particular loci, even in the absence of genome-

wide data (which, if present, allows an empirical approach to

define significance) or a demographic model (which, if pre-

sent, allows simulations to define significance). In addition,

NCD2 outperforms NCD1 (see supplementary information

S1, Supplementary Material online), illustrating the gain in

power by incorporating FDs in the NCD statistic, which is

also more powerful than combining NCD1 and HKA (supple-

mentary table S1 and supplementary information S1,

Supplementary Material online). Because NCD2 outperforms

NCD1, we used it for our scan of human populations.

However, NCD1 also outperforms several of the existing

methods (supplementary table S1, Supplementary Material

online) and is a good choice when outgroup data are lacking.

Identifying Signatures of LTBS in Human Genomes

The ideal window size will vary depending on species demo-

graphic properties and sampling. Informed by our power

Table 1

Power for Simulations under the African and European Demographic Models

Tbs feq Africa Europe

NCD2 NCD1 NCD2 NCD1

tf tf tf tf

0.5 0.4 0.3 0.5 0.4 0.3 0.5 0.4 0.3 0.5 0.4 0.3

5 0.5 0.96 0.94 0.84 0.93 0.91 0.39 0.97 0.95 0.84 0.92 0.85 0.20

5 0.4 0.94 0.94 0.89 0.89 0.89 0.67 0.95 0.94 0.91 0.85 0.83 0.60

5 0.3 0.90 0.91 0.93 0.72 0.80 0.84 0.84 0.86 0.89 0.47 0.57 0.74

3 0.5 0.91 0.88 0.68 0.86 0.80 0.24 0.93 0.89 0.68 0.81 0.69 0.15

3 0.4 0.88 0.86 0.76 0.78 0.78 0.56 0.89 0.88 0.79 0.74 0.71 0.46

3 0.3 0.75 0.77 0.81 0.56 0.64 0.71 0.73 0.76 0.80 0.39 0.48 0.63

NOTE.—Tbs, time in Ma since onset of balancing selection; feq, equilibrium frequency in the simulations. Power at false positive rate (FPR)¼5%. Simulations with L¼3 kb.
Power on additional conditions is presented on supplementary table S1, Supplementary Material online.
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analyses, we computed the highly powered NCD2 in sliding

windows of 3 kb. These were defined as sliding windows in a

genome-wide framework to ensure overlap with the narrow

signatures of balancing selection. We note though that alter-

native approaches to define the windows, such as windows

centered on each IS, are also possible. After filtering (see

Methods), we analyzed �81% of the autosomal genome

(supplementary fig. S13, Supplementary Material online),

overlapping 18,633 protein-coding genes. Between 6,226

and 6,854 (0.37–0.41%) of the scanned windows in each

population have a lower NCD2(0.5) value than any of the

10,000 neutral simulations (P< 0.0001), placing them in the

significant category (table 2). The proportions are similar for

NCD2(0.4) and NCD2(0.3) (table 2). In each population, the

union of significant windows considering all tf values spans,

on average, 0.6% of the windows (table 2) and 0.77% of the

base pairs.

Next, we defined as outlier windows for each tf those with

the most extreme signatures of LTBS (in the 0.05% lower tail

of the respective Ztf-IS distribution, see Methods). This more

conservative set contains 829 outlier windows for each pop-

ulation and tf value (table 2), which cover only � 0.09% of

the base pairs analyzed and are largely included in the set of

significant windows. Significant and outlier windows are col-

lectively referred to as candidate windows.

Reliability of Candidate Windows

Significant windows are enriched both for polymorphic sites

(fig. 3A and B) and intermediate-frequency alleles, and the

SFS shape reflects the tf for which they are significant (fig. 3C

and D). Although expected, because these were the patterns

used to identify these windows, this shows that significant

windows are unusual in both signatures. In addition, as

expected with LTBS, the significant windows are largely

shared across populations (see below). The striking differences

of significant windows with respect to the background distri-

bution, combined with the fact that neutral simulations do

not have NCD2 values as low as those of the significant win-

dows, precludes relaxation of selective constraint as a an al-

ternative explanation to their signatures (Andr�es et al. 2009).

Relaxation of purifying selection can shift slightly the SFS

(mostly for the functional sites, e.g., nonsynonymous), but it

cannot explain our significant windows because their SFS is

strikingly different from the genome-wide, background distri-

bution (which represents mostly neutral regions) and from

simulations run under neutrality.

Windows with low NCD2 values have similar coverage to

the rest of the genome, that is, they are not enriched in unan-

notated, polymorphic duplications. In fact, candidate windows

are not only not enriched in high-coverage regions: they show

a depletion of them (supplementary fig. S14, Supplementary

Material online) (Mann–Whitney U two-tail test; P< 0.02 for

tf¼ 0.5 and tf¼ 0.4 for GBR and TSI). We also examined

whether these signatures could be driven by two biological

mechanisms other than LTBS: archaic introgression into mod-

ern humans and ectopic gene conversion (among paralogs).

These mechanisms can increase the number of polymorphic

sites and (in some cases) shift the SFS toward intermediate

frequency alleles. We find introgression is an unlikely con-

founding mechanism, since candidate windows are depleted

in SNPs introgressed from Neandertals (supplementary fig.

S16, supplementary table S4 and supplementary information

S3, Supplementary Material online). In addition, genes over-

lapped by significant windows are not predicted to

be affected by ectopic gene conversion with neighboring

paralogs to an unusually high degree, with the exception of

olfactory receptor genes (supplementary fig. S15 and supple-

mentary information S3, Supplementary Material online).

The candidate windows are enriched in heterozygous posi-

tions in the genomes of archaic humans (Neandertal and

Denisova, all P values< 0.001). This shows that, as expected,

the polymorphisms in identified candidate windows tend to

be older than those in neutral regions of the genome, predat-

ing the split between humans and archaic hominins (supple-

mentary information S6 and supplementary fig. S22,

Supplementary Material online). Thus, candidate windows

represent a catalog of strong candidate targets of LTBS in

human populations.

Assigned tf Values

Many windows were significant for more than one tf. For

these cases, we used the Ztf-IS statistic (Equation 2) to identify

Table 2

Candidate Windows and Protein-Coding Genes across Populations

Population LWK YRI GBR TSI

tf 0.3 0.4 0.5 U 0.3 0.4 0.5 U 0.3 0.4 0.5 U 0.3 0.4 0.5 U

Significant windows 7,364 6,841 6,226 10,072 8,098 7,420 6,854 10,997 6,173 6,858 6,519 9,521 5,998 6,661 6,403 9,282

Outlier windows 829 829 829 1,248 829 829 829 1,230 829 829 829 1,251 829 829 829 1,270

Significant genes 1,182 1,099 1,026 1,457 1,326 1,187 1,110 1,616 1,026 1,094 1,051 1,414 1,039 1,091 1,056 1,414

Outlier genes 151 158 167 249 142 151 157 232 140 157 159 222 143 157 166 231

NOTE.—Significant and outlier genes and windows, see main text. Total number of queried windows per population is 1,657,989. Union of all candidate genes is 2,348
(significant) and 402 (outlier). U, union of windows considering three tf values.
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which tf provides the strongest support for LTBS (i.e., for

which tf the departure from neutral expectations was great-

est). In this way, we could assign a tf to each significant win-

dow. On average, �53% of the candidate windows are

assigned to tf¼ 0.3, 27% to tf¼ 0.4 and 20% to tf¼ 0.5

(supplementary table S3 and supplementary information S2,

Supplementary Material online).

Nonrandom Distribution across Chromosomes

Candidate windows are not randomly distributed across the

genome. Chromosome 6 is the most enriched for signatures

of LTBS, contributing, for example, 10.2% of significant and

25% of outlier windows genome-wide for LWK while having

only 6.4% of analyzed windows (supplementary fig. S12,

Supplementary Material online). This is explained by the

MHC region (fig. 4A), rich in genes with well-supported evi-

dence for LTBS. Specifically, ten HLA genes are among the

strongest candidates for balancing selection in all four popu-

lations, most of which have prior evidence of balancing selec-

tion (supplementary table S4 and supplementary information

S4 and S5, Supplementary Material online).

Biological Pathways Influenced by LTBS

To gain insight on the biological pathways influenced by LTBS,

we focused on protein-coding genes containing at least one

candidate window (222–249 outlier and 1,404–1,616 signif-

icant genes per population), and investigated their annota-

tions (all results are presented in supplementary table S2,

Supplementary Material online). Regarding functional catego-

ries, significant genes are overrepresented in 28 GO catego-

ries, 24 of which are shared by at least two populations and

18 by four populations (supplementary table S2,

Supplementary Material online). Thirteen categories are

immune-related according to a list of 386 immune-related

keywords from ImmPort (Methods). The more stringent sets

of outlier genes are enriched for 28 GO categories (21 shared

by all four populations), 18 of which are immune-related.

Furthermore, in both sets several of the remaining enriched

categories are directly related to antigen presentation al-

though not classified as immune-related (e.g., “ER to golgi

transport vesicle membrane,” “integral to membrane”).

Among the non immune-related categories are

“sarcolemma,” “epidermis development,” “keratin fila-

ment,” and “negative regulation of blood coagulation.”

When classical HLA genes are removed from the analyses

(supplementary information S4, Supplementary Material on-

line), only two categories remain enriched: “sarcolemma” (in

YRI) and “epidermis development” (GBR), but the small set of

genes per population hampers power. For the significant win-

dows, “antigen processing and presentation of endogenous

peptide antigen via MHC class I” remains significantly

enriched (driven by TAP1, TAP2, ERAP1, and ERAP2; supple-

mentary table S2, Supplementary Material online). Significant

windows remain enriched in categories related to the extra-

cellular space—“extracellular regions,” “integral to mem-

brane”—as in other studies (Andr�es et al. 2009; DeGiorgio

et al. 2014; Key, Teixeira, et al. 2014) and “keratin filament.”

These categories are not immune-related per se, but they

FIG. 3.—Polymorphism-to-divergence and SFS. (A and B) SNPs/(FDsþ1) for LWK (A) and GBR (B) populations. SNPs/(FDsþ1) measures the proportion

of polymorphic-to-divergent sites for the union of significant windows for all tf (purple, green) compared with all scanned windows (gray). (C and D) SFS in

LWK (C) and GBR (D) of all scanned windows in chr1 (gray), significant windows for NCD2(0.5) (blue), NCD2(0.4) (orange), NCD2(0.3) (pink). DAF, derived

allele frequency.
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represent physical barriers to the invasion by pathogens. This

indicates that LTBS maintains advantageous diversity in nu-

merous defense-related genes other than classical HLA genes.

Overall, 33% of the outlier (and 31% of the significant)

genes have at least one immune-related associated GO cate-

gory, compared with only 24% of scanned genes (see

Methods). These results collectively suggest that immunity

and defense are frequent targets of LTBS, although a large

fraction of the candidates for LTBS have non immune related

functions or indirect connections with immunity hitherto

unknown.

Functional Annotation of SNPs in Candidate Windows

We next tested whether LTBS preferentially targets SNPs at

particular types of functional sites. To do so, we investigated

the overlap of candidate windows with different classes of

functional annotations in the human genome (Methods and

supplementary information S4, Supplementary Material on-

line), and tested the hypothesis of enrichment of certain clas-

ses of sites within our sets of candidate windows, when

compared with sets of randomly sampled windows from

the genome.

SNPs in outlier windows are disproportionally represented

in protein-coding exons in all the populations (P� 0.001, one-

tail test; fig. 5 and supplementary table S5, Supplementary

Material online). The protein-coding enrichment is even stron-

ger when considering only SNPs within genes, which both in

outlier (P< 0.001) and significant windows (P� 0.003) are

strongly enriched in protein-coding exons (fig. 5). Within

the protein-coding exons, outlier windows in Africa

(P� 0.022) and significant windows in all populations

(P� 0.037) are enriched for nonsynonymous SNPs (fig. 5).

These observations show that our candidate targets of LTBS

tend to be enriched in exonic and potentially functional

(amino-acid altering) SNPs.

Conversely, outlier and significant windows have no excess

of SNPs annotated as regulatory (P� 0.458 in all populations,

fig. 5). When we explicitly compared protein-coding exons

versus regulatory sites by restricting our analysis to sites in

these two categories, outlier windows have an excess of

FIG. 5.—Enrichment of classes of sites among candidate windows.

Dashed lines mark the P¼0.975 (bottom) and P¼0.025 (top) thresholds

for the one-tailed P values (hypothesis: enrichment). NSyn, nonsynony-

mous; all, Genicþ IntergenicþRegulatory. The annotation is based on

Ensembl variant predictor (supplementary information S4,

Supplementary Material online). P<0.001 was treated as 0.001 to avoid

infinite values.

FIG. 4.—Manhattan plot and population sharing. (A) Manhattan plot of all scanned windows, for one analysis (NCD2(0.5) for LWK). y-axis, P value (log-

scale) based on Ztf-IS. x-axis, ordered location of analyzed windows on the genome. Each point is a scanned (gray and black), significant (blue), or outlier (pink)

window. Names of outlier protein-coding genes are provided, sorted by name. Significant windows were defined based of simulations, not on Ztf-IS. (Ztf-IS is

used to rank even those with P<0.0001) (B) Venn diagram showing the overlap in signatures of the 167 outlier genes annotated in (A) with other

populations.
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exonic SNPs (P� 0.003). The same is true for significant win-

dows (P� 0.016; fig. 5). When only nonsynonymous and reg-

ulatory sites are considered, we see enrichment for LWK and

YRI for the outlier windows (P� 0.036, fig. 5) but not for the

significant windows (P� 0.458 for all populations, fig. 5), al-

though the two analyses that consider nonsynonymous SNPs

are likely underpowered due to low SNP counts (supplemen-

tary table S5, Supplementary Material online).

Finally, results using more detailed RegulomeDB annota-

tions generally agree with the observation of lack of enrich-

ment of regulatory sites in our candidate windows (P� 0.121

for a one-tail test for enrichment for RegulomeDB1þ 3 for

SNPs with MAF� 0.2) (supplementary table S5,

Supplementary Material online). Although perhaps limited

by the quality of the annotation of regulatory sites and the

low power associated to small SNP counts for nonsynony-

mous variants, we do not have strong evidence that LTBS in

human populations has preferentially shaped variation at sites

with a role in gene expression regulation.

Overlap across Populations

On average, 86% of outlier windows in a given population

are shared with another population (79% for significant win-

dows), and 77% with another population within the same

continent (66% for significant ones) (supplementary fig. S18,

Supplementary Material online). The sharing is similar when tf

are considered separately (supplementary figs. S19 and S20,

Supplementary Material online). Therefore, there is also con-

siderable overlap of candidate protein-coding genes across

populations: for example, in LWK (tf¼ 0.5), 76.6% of outlier

genes are shared with at least another population, and 66%

are shared with YRI (89% and 77% for significant genes;

fig. 4B). In fact, on average, 44% of outlier genes for a given

population are shared across all populations and 78.7% are

shared by a same-continent population (50% and 77% for

significant genes; supplementary fig. S21, Supplementary

Material online).

Candidate Genes in More than One Population

Instances where signatures of LTBS are not shared between

populations may result from changes in selective pressure,

which may be important during fast, local adaptation (de

Filippo et al. 2016). On the other hand, loci with signatures

of LTBS across human populations are more likely to represent

stable selection. We considered as “shared” those candidate

protein-coding genes (from the union of candidate windows

for all tf) that are shared by all populations (supplementary

table S4, Supplementary Material online). We considered as

“African” those shared between YRI and LWK (but neither or

only one European population), and “European” those

shared between GBR and TSI (but neither or only one

African population). We note that these designations do not

imply that genes referred to as “African” or “European” are

putative targets of LTBS for only one continent (partially be-

cause there are some power differences between Africa and

Europe, table 1). The 79 African, 84 European, and 102

shared outlier genes add up to 265 genes in total (�1.4%

of all queried genes) and the 458 African, 400 European, and

736 shared significant genes add up to 1,594 (�8.5% of all

queried genes; supplementary table S4, Supplementary

Material online). Several of them have been detected in other

studies, but the vast majority are novel candidates (supple-

mentary information S4 and S5, Supplementary Material

online).

Expression of Candidate Genes

Candidate genes are disproportionally expressed in a number

of tissues: lung, adipose tissue, adrenal tissue, kidney, and

prostate (FDR� 0.05, supplementary table S2,

Supplementary Material online). In addition, candidate genes

have an unusually large number of different transcripts: out-

lier genes shared by at least two populations have on average,

8.69 transcripts (compared with 7 in the controls), with a

similar pattern holding for significant genes (8.73 compared

with 7.1 in controls). These are both significantly higher than

controls even after controlling for gene length (P< 0.001 in

both cases for a one-tail test).

Genes with MAE—that is, the random and mitotically sta-

ble choice of an active allele for a given locus—were enriched

among the small set of genes previously reported to be under

LTBS (Savova et al. 2016). Our observations are in agreement

with these findings, with 64% and 62% of the outlier and

significant genes shared by at least two populations having

MAE status (Savova et al. 2016), compared with only 41% for

genes without signatures of LTBS (P< 1.12�6 Fisher’s exact

test, one-sided).

Discussion

Limitations of NCD Statistics

LTBS produces signatures that are unexpected under neutral-

ity. Still, all tests for balancing selection are affected by demo-

graphic history, in particular strong population substructure,

which can result in an excess of polymorphism that, in certain

cases (e.g., with similar contribution of the two subpopula-

tions, or with positive selection) may be at intermediate fre-

quencies. We benefit from the extensive prior work on the

1000 G populations showing absence of substructure and

providing a parameter-rich demographic model, which can

be used for hypothesis testing. Some types of migration and

introgression can also result in genome-wide or local excess of

diversity and, under positive selection, also intermediate fre-

quencies. We show that Neandertal introgression has a min-

imal effect on our inferences of LTBS. However, as with any

neutrality test, applying NCD to other species requires
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consideration of the demographic history of the population to

weight the possibility of alternative explanations. If the demo-

graphic history is unknown, a purely empirical approach

allows the identification of putative targets of balancing se-

lection. Nevertheless, substructure, migration, and introgres-

sion should to be investigated as alternative explanations,

using additional methods (e.g., LD-based).

Certain selective regimes can also generate signatures that

are similar to those of LTBS. For example, incomplete or soft

sweeps can produce an excess of intermediate frequency var-

iants (Hermisson and Pennings 2017) that could be mistaken

as evidence for balancing selection when only polymorphisms

are used. Still, because none of these types of selection in-

crease the time to the most recent common ancestor and

density of polymorphisms, they do not confound NCD2.

Recent balancing selection, on the other hand, is difficult to

distinguish from those two selective scenarios, so we focused

our analyses and interpretations on LTBS. Of note, by defini-

tion NCD requires predefining a tf, which in practice is un-

known, but this can be easily addressed by running the test

with different tf (whose results correlate strongly) and com-

bining results. So, overall, and despite these limitations, NCD is

a powerful, simple, and fast method to identify the signatures

of LTBS in polymorphism data, which we expect will be used

in model and nonmodel organisms.

The Targets of LTSB in the Human Genome

Using simulation-based and outlier approaches, we uncov-

ered windows with signatures of LTBS in humans. We

showed that these windows are unlikely to be affected by

technical artifacts or biological processes other than LTBS,

such as introgression from archaic hominins. On average,

across populations, 0.6% of the windows in a population

meet our criterion of significance based on neutral simula-

tions. These windows contain on average 0.77% of the

base-pairs and 1.6% of the SNPs in the analyzed genome

per population, and although they amount to a low propor-

tion of the genome, on average, 7.9% of the protein-coding

genes contain at least one significant window (considering

UTRs, introns, and protein coding exons). For the outlier win-

dows (those in the 0.05% lower tail of the NCD2 genomic

distribution), on average, 1.2% of genes show some evidence

of selection. These proportions are similar when requiring that

a significant or outlier window be shared by at least two

same-continent populations (8.5% and 1.4%, respectively).

We note that although these sets probably include some false

positives, our method is only sensitive to very old balancing

selection, so, in practice, we are likely underestimating the

total influence of balancing selection in human genomes.

For instance, a more widespread influence of younger instan-

ces of balancing selection, which cannot be detected by our

methods, could in principle be detected by methods able to

distinguish the signatures of recent balancing selection from

those of incomplete sweeps or selection on standing varia-

tion. Alternatively, recent balancing selection targeting partic-

ular pathways or gene networks could in principle be

detected by gene set enrichment analyses as described in

Daub et al. (2013) in the context of polygenic adaptation.

We identified a number of previously known targets of

LTBS, but also many new ones: almost 70% of the outlier

genes shared at least by another same-continent population

(and 90% of the significant ones) are novel. Many of the

candidate genes show strongest evidence for LTBS at tf values

different from 0.5. This is expected, for instance, under asym-

metric overdominance, and highlights the importance of con-

sidering selective regimes with different frequencies of the

balanced polymorphism.

Functional Properties of SNPs in Candidate Windows

In this study, we confirm cases where protein-coding regions

are the likely targets of selection, such as HLA-B and HLA-C

(Hughes and Nei 1988), as well as cases where regulatory

regions are probably targeted, such as UGT2B4 and TRIM5

(Cagliani, Fumagalli, et al. 2010; Sun et al. 2011). Although

LTBS has been proposed to play an important role in main-

taining genetic diversity that affects gene expression (Leffler

et al. 2013; Savova et al. 2016), we find that regulatory SNPs

are underrepresented within the candidate regions. This does

not imply that there are no regulatory SNPs under LTBS, but

rather that with existing annotations (which are less precise

for regulatory than protein-coding sites) they are not enriched

within candidate windows. Overall, we found an enrichment

of exonic and of nonsynonymous SNPs in the candidate win-

dows, suggesting an overrepresentation of potentially func-

tional SNPs within selected regions. This is compatible with

two scenarios: 1) direct selection on protein-coding sites or 2)

accumulation of functional (including slightly deleterious) var-

iants as a biproduct of LTBS.

Overlap with Previous Studies

Whereas the various scans for positive selection show a re-

markably low overlap with respect to the genes they identify,

34% of our outlier genes (11% of significant ones) had evi-

dence of LTBS in at least one previous study (Andr�es et al.

2009; Leffler et al. 2013; DeGiorgio et al. 2014). Remarkably,

47% of the shared outliers across all four populations (17%

of the shared significant ones) have been detected in at least

one previous study, and the proportions are similar even when

classical HLA genes are removed (39% and 16% overlap,

respectively). This is a high degree of overlap, considering

the differences in methods and data sets across studies.

Properties of Candidate Genes

Below, we discuss some of the candidate genes (supplemen-

tary table S4, Supplementary Material online), highlighting
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the variety of biological functions and known genetic associ-

ations potentially shaped by LTBS in humans.

Gene Expression

Candidate genes have on average a larger number of tran-

scripts than other genes. As examples, CLDN11, ROBO2,

ESR1, or PRKCE (discussed below) have 10–15 different tran-

scripts, a higher number than at least 75% of scanned genes.

It is possible that these genes benefit from high levels of di-

versity, contributed both by genetic diversity and transcript

diversity. In addition, in agreement with previous findings,

we find a significant excess of MAE genes among targets of

LTBS. This excess is not driven by HLA genes and supports the

claim for a biological link between MAE and balancing selec-

tion (Savova et al. 2016). Heterozygosity in a MAE gene could

lead to cell-to-cell heterogeneity within same-cell clusters,

which could be potentially advantageous (Savova et al.

2016), particularly in the case of cell-surface proteins. Some

of these MAE genes found in our study, and not previously

detected in scans for LTBS, are involved in immunity/defense

barriers (e.g., IL1RL1-IL18R1, FAM114A1, EDARADD, SIRPA,

TAS2R14), oxygen transport and hypoxia (e.g., PRKCE, HBE1,

HBG2, EGLN3), or reproduction (e.g., CLDN11).

Oxygen Transport and Response to Hypoxia

Among the outlier genes with MAE, we find EGLN3, which is

significantly upregulated under hypoxia (Escribese et al. 2012)

and plays a role in skeletal muscle differentiation (Fu et al.

2007). The encoded protein hydroxylates the product of

EPAS1, a gene shown to harbor variants responsible for hu-

man adaptation to high altitude in Tibet (Yi et al. 2013). We

also find members of the ß-globin cluster (HBE1-HBG2) that

are involved in oxygen transport and have strong associations

to hemoglobin levels and ß-thalassemia (Danjou et al. 2015),

and for which there is also evidence for recent positive selec-

tion in Andean (HBE1, HBG2) or Tibetan (HBG2) populations

(Bigham et al. 2010; Rottgardt et al. 2010; Yi et al. 2010). It is

plausible that these genes have been under LTBS and under-

gone a shift in selective pressures in high-altitude populations,

but further analyses are required to confirm this possibility.

Another outlier gene, PRKCE, is also associated to hemoglobin

levels and red blood cell traits (Astle et al. 2016).

Immunological Function and Defense Barriers

It has long been argued that genes of immune function are

prime candidates for LTBS. As expected, we detect several

classical HLA with known signatures of LTBS. However,

many non-HLA candidates from our set of outlier genes

have immunological functions. We confirm signatures of

LTBS in the ABO locus (supplementary information S5,

Supplementary Material online), a well-known case of LTBS

in humans (S�egurel et al. 2012), and TRIM5, a gene with

antiviral function (Cagliani, Fumagalli, et al. 2010). Among

novel candidates, we find several genes involved in auto-

immune disease. For example, IL1RL1-IL18R1 have strong

associations atopic dermatitis, an autoimmune disease

(Hirota et al. 2012). HLA-DQB2 mediates superantigen acti-

vation of T cells and is associated both to infectious (hepatitis

B) and autoimmune diseases (Lee et al. 2012; Jiang et al.

2015). Two other significant genes for which there is prior

evidence for LTBS, ERAP1 and ERAP2 (Andr�es et al. 2010;

Cagliani, Riva, et al. 2010), are associated with ankylosing

spondylitis and psoriasis (Strange et al. 2010; Evans et al.

2011; Robinson et al. 2015). Finally, there are several associ-

ations to autoimmune disease and susceptibility to infections

in the classical HLA genes that we identify. In brief, our results

are consistent with the hypothesis that autoimmune disease is

linked to natural selection favoring effective immune response

against pathogens (Corona et al. 2010; Sironi and Clerici

2010).

Another important aspect of defense is the avoidance of

poisonous substances. As suggested previously by studies on

polymorphism in PTC receptors (Wooding et al. 2004), avoid-

ance of bitterness might have been adaptive throughout hu-

man evolutionary history because several potentially harmful

substances are bitter. The TAS2R14 gene encodes for a bitter

taste receptor, and in humans it has strong associations to

taste perception of quinine and caffeine (Ledda et al. 2014), is

considered a promiscuous receptor (Meyerhof et al. 2010;

Karaman et al. 2016), and is one of the few bitter taste

receptors that binds a vast array of compounds, and for which

no common structure has been found (Behrens et al. 2004;

Meyerhof et al. 2010). This entails diversity in the antigen

binding portions of the receptors, which may be enhanced

by balancing selection. Indeed, an elevated dN/dS ratio was

reported for a cluster of bitter taste receptors which includes

TAS2R14 (Kosiol et al. 2008). To our knowledge, our study is

the first in detecting signatures of LTBS in this gene.

Cognition

Several candidate genes are involved in cognitive abilities, or

their variation is associated with diversity in related pheno-

types. KL (life extension factor klotho) is a gene that has

been associated to human longevity (Arking et al. 2002)

and for which signatures of LTBS have been previously

reported (DeGiorgio et al. 2014). In mice, decreased levels

of klotho shorten lifespan (Welberg 2014). In humans, heter-

ozygotes for the KL-VS variant show higher levels of serum

klotho and enhanced cognition, independent of sex and age,

than wild-type homozygotes. On the other hand, KL-VS

homozygotes show decreased lifespan and reduced cognition

(Dubal et al. 2014). If higher cognition is advantageous, over-

dominance for this phenotype can explain the signatures of

balancing selection we observe, although the effect in lifespan

itself could also influence the selective regime.
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PDGFD encodes a growth factor that plays an essential role

in wound healing and angiogenesis. PDGFD-induced signal-

ing is crucial for human (but not mouse) proliferation of the

neocortex due to neural stem-cell proliferation (Lui et al.

2014), a trait that underlies human cognition capacities.

This gene has strong associations to coronary artery disease

and myocardial infarction, which are related to aging.

In addition, among our outliers is a gene with a cognitive-

related genetic association, ROBO2, which encodes a trans-

membrane receptor involved in axon guidance. Associations

with vocabulary growth have been reported for variants in its

vicinity (St Pourcain et al. 2014). ROBO2 has signatures of

ancient selective sweeps in modern humans after the split

with Neandertals and Denisova (Peyr�egne et al. 2017) on a

portion of the gene (chr3: 77027850–77034264) almost

40 kb apart from the one for which we identified a signature

of LTBS (chr3: 76985072–76988072). The occurrence of both

these signatures highlights the complex evolutionary history

of this gene.

Associations of candidate genes with cognition are also ex-

emplified by case–control and cohort studies linking polymor-

phisms in the estrogen receptor alpha (ER-a) gene, ESR1, to

dementia and cognitive decline. Links between ER-a variants

andanxiety and depression in women have been proposedbut

lack confirmation (reviewed in Sundermann et al. 2010).

Interestingly, three other candidate genes (PDLIM1, GRIP1,

SMYD3) interact with ER-a at the protein level (Szklarczyk

et al. 2015), and two (PDLIM1, GRIP1) have strong association

with suicide risk (Perlis et al. 2010; Mullins et al. 2014).

In genes like KL, where heterozygotes show higher cogni-

tive abilities than homozygotes, cognition may be a driving

selective force. This is a possible scenario in other genes, too.

Still, given the complexity of brain development and function,

it is also possible that cognitive effects of this variation are a

byproduct of diversity maintained for other phenotypes. For

example, MHC proteins and other immune effectors are be-

lieved to affect connectivity and function of the brain

(reviewed in Shatz 2009; Needleman and McAllister 2012),

with certain alleles being clearly associated with autism

disorder.

Reproduction

Among candidate genes, there is an enrichment for prefer-

ential expression in the prostate. There are also a number of

outlier genes involved in the formation of the sperm. For ex-

ample, CLDN11 encodes a protein expressed in several tissues

and crucial for spermatogenesis. Knockout mice for the mu-

rine homologue show neurological and reproductive impair-

ment (Gow et al. 1999; Wu et al. 2012) and some variants in

humans are strongly associated to prostate cancer.

ESR1, mentioned earlier, encodes an estrogen-activated

transcription factor and leads to abnormal secondary sexual

characteristics in females when defective (Quaynor et al.

2013). ER-a interacts directly with the product of BRCA1

and has strong associations to breast cancer (Michailidou

et al. 2013), breast size (Eriksson et al. 2012) and age of

menarche. In males, it is involved in gonadal development

and differentiation, and lack of estrogen and/or ER-a can

lead to poor sperm viability (Lazari et al. 2009). Strikingly,

this gene also has SNPs strongly associated to a diverse array

of phenotypes, including height, bone mineral density (spine

and hip), and sudden cardiac arrest (Rivadeneira et al. 2009;

Aouizerat et al. 2011; Wood et al. 2014). Two other genes

among our candidates are also part of the estrogen signaling

pathway: PLCB4 and ADCY5 (which is strongly associated to

birth weight). Estrogens are not only involved in reproductive

functions (both in male and females) but also in several pro-

cesses of neural (see above), muscular or immune nature, and

the ER-a–estrogen complex can act directly on promoter

regions of other genes. In this case, balancing selection could

be explained by the high level of pleiotropy, including the

function in male and female reproduction (if different alleles

are beneficial in males than females).

Conclusions

We present two new summary statistics, NCD1 and NCD2,

which are both simple and fast to implement on large data

sets to identify genomic regions with signatures of LTBS. They

have a high degree of sensitivity for different equilibrium fre-

quencies of the balanced polymorphism and, unlike classical

statistics such as Tajima’s D or the Mann–Whitney U (Andr�es

et al. 2009; Nielsen et al. 2009), allow an exploration of the

most likely frequencies at which balancing selection maintains

the polymorphisms. This property is shared with the ß and the

likelihood-based T2 tests (DeGiorgio et al. 2014; Siewert and

Voight 2017). We show that NCD is well-powered to detect

LTBS within a complex demographic scenario, such as that of

human populations. NCD can be applied to either single loci

or the whole-genome, in species with or without detailed

demographic information, and both in the presence and ab-

sence of an appropriate outgroup (NCD2 and NCD1,

respectively).

More than 85% of our outlier windows are shared across

populations, raising the possibility that long-term selective

pressures have been maintained after human populations col-

onized new areas of the globe. Still, �15% of outlier win-

dows show signatures exclusively in one sampled population,

and 16 of these show opposing signatures (OAS1, C15orf48,

OR11A1, GSTO1, DHRS4, PABPC1, MYOZ3, OR6K5,

KRTAP10-7, GRTP1, MINOS1, GANC, FBXO15, TIMM21,

ZNF780A, MAPT, supplementary table S4, Supplementary

Material online) of selective regimes between human groups.

They are of particular relevance to understand how recent

human demography might impact loci evolving under LTBS

for millions of years or subsequent local adaptations through

selective pressure shifts (de Filippo et al. 2016).
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Our analyses indicate that LTBS in humans may be shaping

variation in<2% of variable genomic positions, but that these

on average overlap with �8% of all protein-coding genes.

Importantly, almost 70% of the candidate genes shared by at

least same-continent populations cannot be ascribed to

immune-related functions, suggesting that diverse biological

functions, and the corresponding phenotypes, contain advan-

tageous genetic diversity.

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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