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Precisionmedicine is an active component ofmedical practice today, but aspirations are to both broaden its reach
to a greater diversity of individuals and improve its “precision” by enhancing the ability to define evenmore dis-
ease states in combination with associated treatments. Given complexity of human phenotypes, much work is
required. In this review, we deconstruct this challenge at a high level to definewhat is needed tomove closer to-
ward these aspirations. In the context of the variables that influence the diverse array of phenotypes across
human health and disease – genetics, epigenetics, environmental influences, and the microbiome – we detail
the factors behind why an individual's biochemical (metabolite) composition is increasingly regarded as a key
element to precisely defining phenotypes. Although an individual's biochemical (metabolite) composition is gen-
erally regarded, and frequently shown, to be a surrogate to the phenotypic state, we review how metabolites
(and therefore an individual's metabolic profile) are also functionally related to the myriad of phenotypic
influencers like genetics and themicrobiota.Wedescribe howusing the technology to comprehensivelymeasure
an individual's biochemical profile –metabolomics – is integrative to defining individual phenotypes and how it
is currently being deployed in efforts to continue to elaborate on human health and disease in large population
studies. Finally, we summarize instances where metabolomics is being used to assess individual health in in-
stances where signatures (i.e. biomarkers) have been defined.

© 2016 Beebe, Kennedy. Published by Elsevier B.V. on behalf of the Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Better health, improved diagnosis and treatment are aims that
individuals and health care providers aspire to. As highlighted by
President Barack Obama's Precision Medicine Initiative in 2014, preci-
sion medicine is at the heart of these aspirations. Precision medicine is
essentially a combination of prevention and treatment strategies tai-
lored for the individual. Although to do so in a widespread way at the
individual level remains, in most cases, aspirational, examples and ini-
tiatives focusing at the individual level are becoming more prevalent
[1–7].

In order to do this, one must be able to identify signatures
(biomarkers) associated with diverse health and disease states and be
able to react to these signatures with a tailored intervention. The founda-
tion to being able to do this at the individual level is having a precise blue-
print of human health. (By blueprint, we are referring to a detailed
technical map of the molecular underpinnings of human health). A
precise blueprint is required to support the identification of deviations
from this blueprint and the design or implementation of modalities for
applying corrections to these deviations. In order to have an expansive
toolbox of precise recommendations about wellness and treatment for
an individual, the collection and analysis of massive amounts of data are
required.

1.1. A Blueprint Is Not That Simple

Deciphering the genome is one key for creating this blueprint. But,
beginningwith the first draft of the human genome and the subsequent
years of genome research that followed, a striking degree of unantici-
pated (by many) complexity has emerged, making the hunt for genetic
drivers of health and disease very challenging. Some of themore salient
elements are elaborated below and in Fig. 1.

First, humans have strikingly high allelic variation [8,9]. This high
variation is likely a function of our genomes having an inherent
adaptability embedded within them. A seminal example of this is the
recent work illustrating genetically driven metabolic adaptation within
Greenlandic Inuit populations who adapted to extreme weather and a
lipid rich diet high in protein [10]. To adapt to a diet rich in omega-3
polyunsaturated fatty acids (PUFAs), this population was shown to
bear specific alleles affecting enzymes that manage PUFAs (the fatty
acid desaturases) which also have downstream effects on traits
such as height. Presumably, some degree of plasticity in the human
Fig. 1. Complex landscape for predicting allelic variants that impact health. A. Single variant exa
outcomes can be very different where one individual may succumb to a deleterious variant
disease – the concept of penetrance. B. Multi/polygenic example. Many traits are influenced by
trait. In both scenarios, external factors (lifestyle, environment, and the microbiome) frequen
remains healthy or develops disease.
genome has conferred fitness for the diverse niches that humans have
occupied across the planet. And,while thismay be an extreme example,
the statistics on allelic variation suggest that there is a range of adapta-
tion throughout human populations. For example, it is estimated that
any human genome would bear ~3 million variants compared to a ref-
erence genome [7,11]. This high variation presents a tremendous chal-
lenge for deciphering the allelic variants that are important for health
and disease from those that simply achieve statistically significant
associations.

Even when a disease-causing genetic variant is identified,
the likelihood of the individual bearing this variant getting the dis-
ease can frequently be modest to very low due to genetic penetrance
[8,9]. In contrast to genes that confer a nearly invariant risk of disease
such as the gene for Huntington's disease (HTT), many genes are less
penetrant or only reach high penetrance in the context of age such as
BRCA1 (conferring ~50% penetrance) for breast and ovarian cancer
and APOE-e1 for Alzheimer's disease. Many more genes attributed to
disease risk have very low risk levels. Further, many confer risk within
the context of environmental triggers such as the HLA-DQ2 gene and
dietary gluten in the case of celiac disease. So, although high-risk
single gene variants exist and more rare examples are certain to be dis-
covered, the capacity of the body to compensate – through its complex
networks –may make assigning absolute risk to a majority of mutations
challenging.

Further, complicating the search for disease-causing genetic variants
is the fact thatmost traits of interest are distributed across the genome –
so-called multi- or polygenic traits [8,9]. Thus, when sequencing an en-
tire genome or exome, determiningwhich variants that are key to a sin-
gle trait have been challenging, particularly when the majority of
variants identified so far impart relatively small increments of risk.
Also, a majority of mutations of interest reside in non-coding regions
[7] expanding the challenge of assigning function to an allele that asso-
ciates with a given trait. There is a need to add data to help define of
these non-coding regions (a function that has yet to be clearly defined
[12].

All of the above points are not aimed to dissuade genome inquiry.
Key insights to the blueprint required for precision medicine are em-
bedded within the genome and many examples have already emerged
with a range of suggested actionable mutations suggested to be as high
as several hundred down to a more conservative – “unequivocal” – set
of 57 genes recommended by the American College of Medical Genetics
and Genomics (ACMG). These genes may indicate the presence of 24
mple. Even after delineating a variant that projects a high risk for developing a disease,
while another individual with the same variant may remain healthy and never develop
a combination of allelic variants and therefore are more challenging to directly map to a
tly are involved in how the effects of these variants play out and whether an individual
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disorders where intervention may reduce or prevent serious morbidity
or early mortality. But, in order to achieve additional insights, sequenc-
ing (through whole genome or exome sequencing) of manymore indi-
viduals will be required. Then, once sequenced, a massive data
reduction challenge resides before consensus and actionable data can
be effectively mined as illustrated by a recent whole genome sequenc-
ing (WGS) initiative published in JAMA where it was concluded that,
while WGS will result in clinically actionable genetic variants, signifi-
cant challenges remain in reducing themajority of this data to beneficial
practice for individuals [11,13].

Given the above challenges for mining the genome to decipher
human health and disease, it is increasingly appreciated that orthog-
onal data streams will be required to help to identify the more rele-
vant or “active” parts of the genome as well as to account for
influences outside of genome sequences, particularly for complex
diseases such as diabetes, cancer, cardiovascular and neurological
diseases (the predominant causes of morbidity and mortality in the
developed world), since most regard these diseases as being caused
by a combination of genetic and environmental factors [14]. Influ-
ences like the microbiome [15] epigenetics and the possibility of
transgenerational inheritance [16] continue to reveal their influence
in human health and disease. These extra-genome influences make es-
tablishing this blueprint solely throughmapping the genome extremely
challenging.

1.2. What Is It Going to Take to Derive This Blueprint?

Clearly, themapping of the genome is a cornerstone of this effort but
having efficientways to interrogate the data to identify alleles that have
meaningful activity in influencing phenotypes is a challenge. Thus, hav-
ing ameans to detect the parts of the genome that “transmit-out” to ac-
tively influence the phenotype would be ideal. In essence, it is a way to
detect the parts of the genome that are actively engaged in composing
the phenotype. Then, once these alleles are identified, it would be
ideal to have data that can inform on the function of the alleles.

Given the complexity of traits and the influence of factors such as
epigenetics, and external factors such as the environment, lifestyle,
and themicrobiome, it alsowould be ideal to have away to track the in-
fluence of these extra-genetic factors. Further, when the signal is dis-
tributed across a complex combination of many genes, and many or
all of these external factors, we still need to acquire signatures salient
to that given health or disease state in order to realize the vision of
precision medicine. If a disease is truly complex, signatures and treat-
ments are still required. A way to derive and then deconvolute these
signatures – essentially – a high-resolution view of the phenotype is
what we would need.

On the surface, having ways to account for all of these influences on
their way to influencing a specific aspect of health or disease seems im-
plausible but the chemistry of life may be a route to do just this.

1.3. Metabolomics – High-Resolution Phenotyping to Support Building The
Blueprint?

The metabolome, in the framework for addressing the challenges
cited above, can be defined as: all the small molecules (metabolites)
that circulate in the body. These circulating metabolites (aka chemicals
or biochemical) are from endogenous metabolic pathways, the
microbiome, or from our environment – diet, chemical exposure, or
supplements and drugs (prescription or elicit). Metabolomics is the
technology for comprehensively surveying the entire metabolome
from a single biological sample (akin to genomics for gene analysis).
The use of metabolomics to survey the metabolome serves to inform
about the health status or “phenotype” and all of its influences.

Many investigators have embraced metabolomics in the context
of disease diagnosis and the response to drug treatment (i.e.
pharmacometabolomics) and, in doing so, have made important
contributions for defining discrete human phenotypes and associated re-
sponse to treatments. The contributions are many and beyond the scope
of this review, but the reader is referred to several contemporary
reviews and examples [17–22]. But, the more widespread use of
metabolomics in precision medicine, particularly in the context of a cor-
nerstone technology for precisionmedicine – genomics – is due to several
important attributes of the metabolome. These attributes are described
below.

The core of the metabolome maintains metabolic processes that
represent the simplified unit that all life is organized around and
strives to maintain homeostatically [19,23–25]. Fig. 2 illustrates how
metabolic pathways serve a central role in nearly all cellular processes –
the source of energy, of DNA, proteins, cofactors, immune activation, mo-
tility, etc. – and how it is connected to molecular biological processes.
The highly orchestrated process of metabolism required to support the
most basic (e.g. energy production) and complex (e.g. cell division)
cellular processes was established early in evolution and remains a focal
point for all life [25–27]. Sincemetabolic processes are so tuned to cell/or-
ganism function, an individual's metabolic fingerprint reflects changes in
homeostasis that underlie phenotypic changes [19,28,29]. And, as is in-
creasingly appreciated, these biochemical pathways are intimately con-
nected to nuclear function through metabolites such as ATP, SAM,
Acetyl-CoA. All of these complex molecular biology networks are aimed
at controlling physiological processes and metabolic pathways are at
this nexus.

Thus, metabolism is often regarded as being “diagnostic” of the
phenotype itself [19,30]. Metabolic homeostasis and the phenotype
are coordinated, and hence, an alteration in one affects the other.
Importantly, as we continue to uncover more about the complexity
of the human phenotype and how most traits are combinatorially
driven (i.e. genetics, microbiome, environment), metabolism offers
a view of the functional state (Fig. 3) of an individual and can directly
inform about the role of individual phenotypic drivers such as the
following.
1.3.1. Genetics
Genes alone frequently fail to explain the phenotype [31,32]. But,

whether it is a strong single gene variant (monogenic) or a complex set
of alleles (polygenic) that induce phenotypic differences, if the phenotype
is even subtly altered, metabolic changes almost invariably occur [1,33].
Some particularly illustrative examples are where metabolic changes
are shown to emerge even years before the onset of disease [34–37] or
an overt phenotype induced by a drug or toxicant treatment [38].
Many other examples could be cited but it is beyond the scope of this
review to summarize all of the biomarker examples that illustrate
the point that the effects of the genome (whether amonogenic or a poly-
genic trait) will frequently be recorded in an individual's metabolic
profile.
1.3.2. Environment, Diet, Lifestyle
Many traits are influenced by external factors. Examination of an

individual's biochemical fingerprint in blood or urine may provide a sig-
nature for altered physiological processes that underlie phenotypic
changes; furthermore, this signature can frequently be composed of
clues about the absorption, distribution, metabolism, excretion (ADME)
of dietary or environmental components that influence the phenotype
in question. The genetic variation in any one of amyriad of steps involved
in ADME, or the microbiome's variation, can influence the bioavailability
of a metabolites. These differences in ADME can influence epigenetics
[39,40] (e.g. catechins in tea or curcumin in a curry dish) as well as the
levels of essential cofactors and vitamins [41] (e.g. folate or choline).
Thus, accounting for the levels of these biochemicals in the context of
genetics, the microbiome and the health state will be important to
deciphering traits.



Fig. 2.Metabolic pathways are at the nexus of all cellular function. Signaling through the central dogma of genes, transcripts, and proteins leads tometabolic pathway regulation. However, it
is not always appreciated thatmetabolism also has a direct effect on posttranslationalmodifications, epigenetics, and consequently, onmany complex biological processes (albeit, lesswell
understood than the flow from genes to metabolic pathways).
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1.3.3. Microbiome
The last decade has revealed an additional layer of complexity to

human health asmore andmore traits are shown to be substantially in-
fluenced by themicrobiome [15] (such that some refer to it as a “second
genome”). Microbial communities communicate using small molecules
[42], so metabolomics is essential for deciphering this chemical output
and the influence of this complex “organ” in the context of health and
disease. Several traits such as autism, asthma, cancer, and obesity have
been significantly associated with the composition of the microbiota
Fig. 3.Metabolism (metabolic pathways) are a surrogate of the phenotype. Metabolites are ideally
microbiota, or a complex combination of all of these influences.
and the examination of the metabolome using metabolomics has been
an important element in deciphering function [43–49].

1.3.4. Epigenetics
Lamarck's ideas on evolution, the development of traits as driven by

environmental conditions, may have not have been as fallible as once
thought. Studies continue to emerge showing that traits are not
strictly inherited via DNA. Instead, some degree of inheritance
(transgenerational) can be attributed to signals from the environment
situated to account for phenotypic changes induced by either genes, the environment, the



Fig. 4. Evolving landscape of precisionmedicine. Themajority of clinical tools today limit the ability to fully individualize a treatment for many conditions (left). Big data initiatives (middle)
are currently enrolling and profiling thousands of individuals and collecting an immense amount of data at the clinical and molecular level to begin the process of defining individual
health, disease, and response to interventions. As signatures (alleles, metabolite profiles) emerge (indicated by colored human silhouettes), they can be deployed as additional
profiling and analysis reveals additional clinically useful signatures. The result of these initiatives aspires to offer the potential to define, track, and treat disease on a far more
individual basis (far right).

Fig. 5. Metabolomics is a genome “sentinel.” Recent research 1, 2 showed that metabolites
are a highly informative “intermediate phenotype” between genes and the phenotype.
By illuminating alleles that actively perturb metabolism and reflecting back to the
function of the allele, an awareness of metabolism's importance for understanding
biology – particularly in the context of genetics – was re-kindled.
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and transmitted epigenetically [26,27,50–52]. How widespread or
relevant this is in mammals is yet to be concretely established.
However, epigenetic or transgenerational inheritance is ultimately
controlled by small molecule metabolites (e.g. SAM, Acetyl-CoA, etc)
[20].

Numerous examples are cited that illustrate an intimate connec-
tion between metabolic status and epigenetics [26,53]. And, new
findings continue to emerge. For example, a plausible link between
cellular metabolism, the epigenetic state, and stem cell fate was
shown in the work by Shyh-Chang and colleagues where threonine
levels were coupled to S-adenosylmethionine (SAM) regulation of
histone methylation [54].

More extreme metabolic states like fasting or caloric restriction
result in the production of the ketone body, D-b-hydroxybutyrate
(BHBA). It was recently shown that D-b-hydroxybutyrate is an en-
dogenous and specific inhibitor of class I histone deacetylases
(HDACs). The resulting changes in histone acetylation and gene ex-
pression caused by BHBA promote stress resistance in the kidney
[55].

As epigenetics continue to be deciphered in the context of genetics
and health, it will be important to account for the small molecules
(metabolites) that may in fact be the proximal signals for epigenetic
activity.

1.3.5. A Complex Combination of the Above
The connection of metabolites to the phenotype via the array of in-

fluences cited above offers a reminder that examining the chemistry
of life (metabolites) has a rich heritage for building knowledge and
making clinical decisions. In our current era of molecular biology, we
often forget that some of the most fundamental aspects of physiology
(cancer, muscle metabolism, diabetes, etc.) were mapped in detail by
biochemists such as Cori, Warburg, Meyerhof, and Krebs. The result of
their work in mapping discrete metabolic pathways was to uncover
connections to higher order physiology – a coupling of physiology and
metabolic pathways.

Urine chemical properties have guided physicians such as in
establishing the concept of inborn errors in metabolism (IEMs) [29].
The idea suggested that a biochemical fingerprint within a biofluid
(i.e. urine or blood) was a by-product of human variation and a surro-
gate for distinct pathologies. Garrod speculated that the inborn errors
of metabolism that he was able to observe “were merely extreme
examples of variations of chemical behavior which are probably
everywhere present in minor degrees” [28]. In other words, he believed
that there was a spectrum of phenotypes that could be associated
with certain biochemicals. The technology available to him could not
affirm this idea but it has been confirmed recently with metabolomics
[19,20].
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More subtle phenotypes (e.g. susceptibility to a disease, response to
a drug, prognosis) also produce a chemical fingerprint in biofluid [35,38,
56–59]. Hence, there is a strong and well-established association be-
tween the gene, the metabolite, and the biological state. Today, we uti-
lize this knowledge as we assess our health by measuring metabolites
such as glucose for diabetes and cholesterol for cardiovascular health.
And, as discussed in the next section, biomarker discovery and valida-
tion efforts are producing a new pipeline of metabolite-based bio-
markers that either are – or potentially will – produce the tests of
tomorrow.

Despite this heritage in elucidating our understanding of physiology
by studying metabolic pathways and their routine clinical use, the last
several decades have intensely focused on the genetic basis of disease
and molecular biology. But, even a casual review of the literature
shows that many researchers have not forgotten that metabolism is con-
nected to all aspects of biology – from epigenetics – to metabolite signal-
ing/regulation – to cell cycle and growth – to elaborate physiological
processes like angiogenesis is demonstrating metabolism's key role in bi-
ology [25,60–62]. Some assert that this return to metabolic inquiry is be-
cause the low-hanging fruit of molecular biology has been harvested,
necessitating a deeper understanding of biological systems using this fun-
damental science [62].With thematurity ofmetabolomics, an opportuni-
ty has arisen for precision medicine to ensure that this foundational
metabolite data (in aggregate, the metabolome) can contribute to defin-
ing precision medicine signatures and mechanisms that can illuminate
treatment strategy. Fig. 4 described how this is envisioned to evolve. Cur-
rently, precision medicine implementation options are relatively limited
as treatments are based on the clinical assessment tools of the 20th cen-
tury. Big data initiatives to characterize individual health, disease, and
Fig. 6. Metabolomic screening to identify disease signatures – inborn errors of metabolism (IEMs)
multitude of genetic abnoramtilites at once. B. Two examples of patient samples overlaid o
population are red and blue, respectively. The magnitude of the deviation is noted by the s
metabolic variation and secondary disease effects to reveal the salient metabolic pathways and
response with a battery of 'omic and clinical assessment tools are under-
way. Emerging from these initiatives will be a high-resolution view of
health at the individual level, including additional signatures (bio-
markers) of health and disease to support precision medicine at the
highest level. From the vast number of data points provided through
“omic discovery,” a reduced set of biomarkers will emerge into practice.
In fact, biomarker signatures are already enriching precision medicine.
As described below, metabolomics is continuing to play an important
role in this evolution at several different levels – building the blueprint
and deploying these signatures in a clinical setting as they emerge.

2. Case Examples

2.1. Building the Blueprint

A cornerstone for realizing a more systematic and individualized ver-
sion of precision medicine will be the collection of massive amounts of
data to reveal signatures of various health anddisease states and response
to interventions. These efforts will involve the enrollment of large num-
bers of subjects and the collection of many data points on each subject
through an array of methods including genomics, metabolomics, and
microbiome profiling. This overall scenario is nicely reviewed elsewhere
[7]. But it is important to point out that, as the data are being collected
and analyzed,findings are emerging that can immediately provide clinical
utility. As described below,metabolomics is a key element in these efforts
as it effectively functions as a genome “sentinel” (Fig. 5).

For example, metabolomics on 2 large populations revealed an
exceptionally strong association between the metabolite N-acetyl orni-
thine and the NAT8 locus [19], which was also reported to associate
. A. Paradigm for how a single sample submitted for a metabolomics screen can screen a
n metabolic atlas where metabolites that are elevated or reduced relative to a control
ize of the colored sphere. In these examples, a clear pattern emerges from any normal
either maple syrup urine disease or phenylketonura. Adapted from Miller et al. [1].
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with kidney function. This information provided a dynamic marker for
kidney function as N-acetylornithine concentrations were associated
with kidney function (estimated glomerular filtration rate) and the
risk allele of NAT8 was associated with higher N-acetylornithine con-
centrations. In another example of a very complex trait where genetic
associations are elusive, interrogationof themetabolome revealed associ-
ations that provided insight about the etiology of the disease and provid-
ed dynamic biomarkers. This recent work described identifying a novel
pathway of blood pressure regulation [63]. These are just 2 examples of
how, as discoveries emerge from these large multi-omic population
studies, they can enter a pipeline to further confirm and sharpen their
clinical utility.

Thus, although thousands of individuals will be required to create
a comprehensive map of individual health, the process is underway,
and bearing useful signatures that can be deployed clinically today.
Many of these associations were of known and suspected inborn errors
of metabolism (IEMs) [20]. Fig. 4 illustrates how this is imagined to be
evolving.
2.2. Disease Signatures (Biomarkers) in Action

As described above, a key utility ofmetabolomics is that it can comple-
ment data from other 'omics technologies. Specifically, the identification
and quantitation of specific metabolites can be correlated to genetic se-
quence analysis which has been shown to identify associations with spe-
cific genotypes [19,20].

One especially clear example of this is the use of metabolomics for
inborn error testing (Fig. 5). Current diagnostics for detecting IEMs uti-
lize kits which interrogate diagnostic biochemicals that increase or de-
crease in abundance based on the specific disease. Of the over 500 IEMs
known to exist, 150–200 of these are more common and seen most
often. These diseases result frommutations in genetic elements that af-
fectmetabolism. In order to test for these diseases, typically 10 or 20 in-
dividual clinical tests are needed which entails the testing of multiple
sample types (e.g. whole blood, plasma, urine, cerebrospinal fluid).
These tests interrogate specific enzyme activities or biochemically relat-
ed groups of molecules (e.g., organic acids, amino acids). Thus, the cur-
rent paradigm for diagnosing a patient is dependent on the selection of
the right test or an exhaustive utilization of all the available test panels
until a diagnosis is achieved. Further, diagnosis is dependent on the dis-
ease being canonical and therefore having an associated test clinically
available.

A metabolomics workflow that can screen a single sample for thou-
sands of biochemicals that comprise the canonical analytes in the test
kits as well as additional molecules to aid in canonical and non-
canonical disease would be a valuable approach for implementing pre-
cisionmedicine in thefield of IEMs [64]. Indeed,Miller et al. recently de-
scribed a promising start to this ideal [1]. Fig. 6 summarizes this work
and how, from a single sample of plasma, signatures for nearly 20
IEMs could be identified [1].

Although metabolomics does not directly measure large molecules,
this approach has also been utilized to screen for lysosomal storage dis-
orders, congenital disorders of glycosylation, mucopolysaccharidoses,
mucolipidoses, or other similar large molecule disorders as the small
molecules that composemacromolecules can change in their respective
pathways due to genetic defects.

Finally, this metabolomics approachmay lead to the identification of
new inborn errors in addition to also demonstrating that less invasive
sample types can be screened to identify diseases that are currently di-
agnosed using test kits that require invasive sample types [33]. For ex-
ample, nucleotide profiles are typically examined through testing of
urine. However, the metabolomics workflow of plasma can identify nu-
cleotides and nucleotide metabolites giving increased value to testing
plasma if urine is not available or convenient for testing [1]. Additionally,
the biomarkers of the neurological disorder aromatic amino acid
decarboxylase deficiency can be identified in urine and plasma, when
CSF is the front-line specimen of choice [65].

In addition to the identification of new biomarkers associated
with specific genetic conditions such as those that cause inborn errors
of metabolism, metabolomics will interrogate biomarkers associated
with medicinal intervention, inflammation, disease status, and nutri-
tional intervention, metabolomics also can identify xenobiotics, plant
bi-products, and biochemicals linked to microbial metabolism. For ex-
ample, recent work by Guo et al. combined metabolomics with whole
exome sequencing (WES) of fairly healthy individuals revealing
potentially damaging mutations that were not appreciated through
WES data alone, and several metabolic indicators of early stage disease
[2]. For example, one subject had profoundly elevated levels of fructose
and the sugar alcohol sorbitol, but the patient had no complaint, and no
damaging mutations within genes governing the metabolism of
fructose or sorbitol were initially flagged. However, re-inspection of
the WES data revealed a damaging mutation in the aldolase gene
(ALDOB), suggesting a rationale for the elevated metabolites and pro-
viding a cautionary dietary planning note for this subject since fructose
intolerance can result in organ damage. Although this was a small study
(80 volunteers) of relatively healthy volunteers, the information
derived from metabolomics suggested that, even in more subtle
health states, metabolomics alleviates some of the challenges of geno-
mics by identifying genes that are effectively “active” and then helping
to create a functional connection between the gene and the health state.
3. Conclusions

Precision medicine is a medical model that customizes health
care decisions, medical practices, and products to the individual. Imple-
mentation of specific diagnostic testing and therapeutic intervention
can be selected based on the context of a patient's biological signatures
(i.e. genetic, biochemical, or otherwise). This tailored approach to diag-
nosis and treatment has the potential to realize greater efficacy while
limiting costs and side effects. Clearly, there is more work to do in
order to expand the repertoire of precisionmedicine options tomore in-
dividuals and disease states but useful signatures (biomarkers) are
emerging.

With the availability of 'omic technologies, researchers and clini-
cians can now generate large amounts of data on biological samples.
The maturation of bioinformatics technologies is now allowing for
the analysis of large data sets such as entire genomes in shorter
time frames. The ability to practice precision medicine does and
will continue to depend on the knowledge acquired through the
analysis of cohorts of clinical samples. Tools or interfaces that in-
crease the utility of these 'omics in routine practice will help to
drive the production and availability of the knowledge base in preci-
sionmedicine to ultimately assist clinicians in taking action based on
the results. Improvements to data acquisition, data analysis, and data
utilizationwill drive precisionmedicine initiatives such as those pro-
posed by President Barack Obama in his 2015 State of the Union
address.

And, while genomics is a mainstay for deriving a higher resolution
view of human health – the view thatwill yield the roadmap for tailored
individual healthcare –metabolomics is a clear ally. Box 1 highlights the
major roles of metabolomics in current and emergent precision
medicine – from large cohort analysis to individual health and risk
assessment.

A main focal point for where metabolomics fits into this is its rela-
tionship to the phenotype whether the phenotype is primarily driven
by a single gene or a complex combination of external factors. Associat-
ing biochemical levels and alterations with specific genotypes or exter-
nal factors such as the microbiome offers the ability to streamline
diagnostics and utilize a greater breadth of information to the clinic to
assess patient health.



Box 1
The role of metabolomics in precision medicine.

A framework for understanding metabolomics' role in precision
medicine can be summarized under the following 4 points.
Metabolomics has the direct ability to:

1. Phenotype individuals
• Even in caseswhere important traits yield no (or veryweak)
associations to genetics [57,59,63]

• Or in cases where the phenotype is driven by environmen-
tal, microbiota, or epigenetics [49]

• Or undifferentiated phenotypes (e.g. child with develop-
mental delay, seizures, autism, etc.) [66]

• Metabolic pathways associating with a phenotype may
contribute tomechanistic understanding of the phenotype.

2. Identify alleles and mutations with biological significance –
penetrant alleles
• Alleles that actively changemetabolismare disproportionally
important phenotypically [20]

• Metabolites act as a “sentinel” to active genes to assist in
avoiding false discoveries or missing important alleles that,
by themselves, have a small effect size [19,20]

• With equivocal molecular test in a gene known to be in-
volved in metabolism

3. Identify allele function
• Through the direct functional association of metabolites
and genes [19,20]

• Even in the “dark matter,” non-coding regions (introns)
[67,68]

• Variants of unknown significance (VUS) [2]

4. Perform longitudinal analysis of individuals by following
dynamic metabolite markers
• Track treatment through the interrogation ofmetabolites of
the treatment regimen

• Track disease progression or response to treatment with
dynamic metabolite markers
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