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Abstract

Most human complex phenotypes result from multiple genetic and environmental factors and their 

interactions. Understanding the mechanisms by which genetic and environmental factors interact 

offers valuable insights into the genetic architecture of complex traits and holds great potential 

for advancing precision medicine. The emergence of large population biobanks has led to the 

development of numerous statistical methods aiming at identifying gene–environment interactions 

(G × E). In this review, we present state-of-the-art statistical methodologies for G × E analysis. 

We will survey a spectrum of approaches for single-variant G × E mapping, followed by various 

techniques for polygenic G × E analysis. We conclude this review with a discussion on the future 

directions and challenges in G × E research.
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1 | INTRODUCTION

Genetic variations, environmental factors, and their interactions jointly shape human 

complex phenotypes (Freeman, 1973). Understanding gene–environment interaction (G × E) 

can provide crucial mechanistic insights into genetic and environmental effect heterogeneity 

(Li et al., 2019). One recent example of G × E finding in humans is the interaction between 

BAP1 and asbestos exposure in mesothelioma (Carbone et al., 2020). In Cappadocia, 

Turkey, an asbestos-like carcinogenic fiber was found in the homes and air of villagers. 

However, this environmental exposure alone could not explain an epidemic in which 50% of 

the villagers died of mesothelioma, especially compared with only 4.6% of asbestos miners 

with at least 10 consecutive years of work (Carbone et al., 2007). Studies of the epidemic in 

Cappadocia led to the discovery that susceptibility to mesothelioma is passed down through 

generations in a Mendelian pattern and is caused by a G × E interaction (Carbone et al., 

2020). Other notable human G × E examples include the interaction between FTO and 

physical activity on body mass index (Young et al., 2016), the interaction between SLC2A9 
and biological sex on uric acid concentrations (Döring et al., 2008), and the interaction 

between the genetic risk of obesity and education on health-related outcomes (Barcellos 

et al., 2018). However, these are the few well-characterized G × E examples in humans. 

Way too often, the environment is ignored in human complex trait genetic studies. It also 

largely remains an open problem how such interactions should be modeled, quantified, and 

estimated in current study designs.

Early investigations into G × E primarily relied on a candidate gene approach (Caspi et 

al., 2003), which suffered from low replicability (Dick et al., 2015). The emergence of 

high-throughput genotype data enabled the implementation of genome-wide interaction 

studies (GWIS), allowing for comprehensive G × E scans across millions of single 

nucleotide polymorphisms (SNPs; Thomas, 2010). While GWIS improves the replicability 

and robustness of interaction findings, it poses challenges in terms of the burden of multiple 

testing, which substantially limits its statistical power (Aschard et al., 2012). To address 

this limitation, a two-step approach has been employed, involving an initial SNP filtering, 

followed by testing G × E exclusively on selected SNPs. However, it is now widely 

recognized that most human complex traits exhibit a highly polygenic nature (Boyle et 

al., 2017). Consequently, contemporary GWAS analyses have shifted focus away from 

individual SNPs, embracing methodologies that account for the polygenic nature of these 

traits (Bulik-Sullivan et al., 2015; Finucane et al., 2015; Miao et al., 2023). Similarly, G × E 

studies are undergoing a similar transition, placing greater emphasis on understanding how 

the polygenic basis of a trait varies across different environments (Arold et al., 2022; Barth 

et al., 2020; Bernabeu et al., 2021; Dahl et al., 2020; Martin et al., 2021; Robinson et al., 

2017).
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This article aims to comprehensively examine the cutting-edge statistical methods employed 

in G × E inference using molecular data. In the subsequent sections, we will begin by 

providing an overview of the fundamental concept of G × E. Then, we will review and 

compare statistical methodologies utilized for single-variant G × E studies as well as 

polygenic G × E inference. We will conclude this article by discussing the prospects and 

prevailing challenges of G × E analysis. Figure 1 presents a decision tree to guide the 

selection of an appropriate method for G × E inference. Table 1 offers the links to the 

methods and tools in this review.

2 | DEFINING G × E

G × E is commonly defined as the joint effect of genetics and the environment that deviates 

from their individual additive effects (Freeman, 1973). This concept is illustrated in Figure 

2. Figure 2a illustrates a scenario where carrying an additional A allele produces a consistent 

change in the phenotype across different environments, suggesting the absence of G × E. 

Conversely, in Figure 2b, the presence of an additional A allele leads to varying changes in 

the phenotype across the environments, indicating the presence of G × E.

The estimation problem for G × E can be formulated within the following statistical 

framework. We consider a generalized linear model that incorporates the main effects of 

genetics and the environment, along with their interaction:

g E Y i ∣ Gi, Ei = β0 + βGGi + βEEi + βIGiEi

where subscript i denotes the ith individual, g is the link function, Y i is the phenotype, Ei

is an environmental factor, Gi is the additively coded genotype of a SNP with values 0, 

1, or 2. Here, the interaction coefficient βI is the estimand of G × E analysis. Hypothesis 

testing conducted on this coefficient provides evidence regarding the presence of G × E. 

Additionally, the magnitude of βI quantifies the extent of G × E between SNP Gi and 

environment Ei on the phenotype Y i.

2.1 | Statistical methods to detect single-variant G × E

We first examine the statistical model utilized for single-variant G × E analysis, which aims 

to identify specific genetic variants that exhibit variability across subgroups defined by the 

environmental exposures. This model has been extensively employed in the GWIS design.

2.2 | The basic model

For quantitative traits, a linear interaction model is typically used to model G × E, with the 

form

Y i = β0 + βGGi + βEEi + βIGiEi + ϵi

where the interaction coefficient βI measures the G × E effects. Software such as plink 

(Purcell et al., 2007) and Regenie (Mbatchou et al., 2021), can be used to implement 
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computationally efficient GWIS, repeating the regression analysis for millions of SNPs in 

the genome.

For binary traits, several methods have been proposed to investigate G × E effects. 

One commonly used approach is implemented through logistic regression in case–control 

designs:

logit Pr Y i = 1 ∣ Gi, Ei = β0 + βGGi + βEEi + βIGiEi .

Testing the hypothesis H0:βI = 0 in this model assesses the presence of SNP × E interaction. 

However, it is recognized that this method has limited statistical power (Piegorsch et 

al., 1994). An alternative approach known as the case-only method has been developed 

(Piegorsch et al., 1994). This method relies on the assumption of independence between 

Gi and Ei in the underlying population. Essentially, under this assumption, the interaction 

test statistic in logistic regression becomes equivalent to testing the association between 

Gi and Ei among disease cases. In addition, under G–E independence, case-only analysis 

is known to be more efficient for estimating G × E compared with case–control analysis 

which is a more robust alternative not relying on G–E independence (Gauderman et al., 

2017). However, the case-only method has a notable limitation: when the independence 

assumption is violated, it can lead to an inflated type-I error (Albert et al., 2001). Besides, 

directly testing the G–E independence assumption is challenging due to constraints in 

statistical power. To strike a balance between robustness and statistical power, empirical 

Bayes-type (EB) approaches have been introduced (Mukherjee & Chatterjee, 2008). The 

EB approach computes a weighted average of the case–control and case-only estimators of 

the G × E, exploiting a trade-off between bias and efficiency. The weights are estimated 

from the data by a stochastic framework to account for uncertainty in the assumption of 

G–E independence. A main advantage of this approach is that users can bypass the need 

to test the G–E independence assumption. Following this work, a more general method for 

deriving EB estimates has been proposed for all parameters of the general logistic regression 

model (Chen et al., 2009). A Bayesian model averaging framework has also been introduced 

to weight case–control and case-only estimates using posterior probabilities (Li & Conti, 

2009). In conclusion, while logistic regression remains the most widely used method for 

case–control studies, alternative methods have been developed to improve efficiency under a 

range of weak or strong assumptions.

In the case of genome-wide G × E scans, several methods have been proposed to address 

various challenges. SPAGE provides a computationally efficient approach to deal with 

unbalanced case–control ratios (Bi et al., 2019). This approach fits a genotype-independent 

logistic regression model only once in the genome-wide analysis to reduce computational 

cost and uses saddle point approximation to calibrate the test statistics for binary outcomes 

with unbalanced case–control ratios. In addition, fastGWA-GE is a linear mixed model-

based method for efficient and accurate genome-wide G × E analysis (Zhong et al., 

2023). It controls for relatedness either through pedigree information or through a sparse 

genetic relationship matrix, and the effects of population stratification are captured using 

SNP-derived principal components.
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2.3 | Two-step approaches and screening by vQTL

While the GWIS design enhances the replicability and robustness of G × E findings 

compared with candidate gene analysis, it also introduces a substantial burden of 

multiple testing, which significantly diminishes its statistical power (Aschard et al., 2012). 

Consequently, several “two-step” approaches have been proposed to improve the efficiency 

of G × E analysis while maintaining control over type I error. These approaches involve 

an initial step of SNP filtering, followed by testing for G × E using the selected SNPs at a 

modified significance level (Gauderman et al., 2017). Among the various two-step strategies, 

filtering by variance-associated genetic loci (vQTL) has recently been demonstrated to have 

higher effectiveness (Marderstein et al., 2021; Miao, Lin, et al., 2022).

A vQTL refers to a genetic locus that is associated with phenotypic variability. In the context 

of G × E analysis, we consider a linear model that incorporates the main effects of genetics 

and environments, as well as their interaction.

Y i = β0 + βGGi + βEEi + βIGiEi + ϵi, i = 1, …, n,

where Ei is an environmental factor following a distribution FE with mean μE and variance σE
2

(i.e., Ei FE μE, σE
2 , Gi is the additively coded genotype of a SNP with values 0, 1, or 2, and 

ϵi is the error term following a distribution Fϵ 0, σϵ
2 . We assume Gi, Ei, and ϵi to be mutually 

independent. Under this model, the conditional variance of Y i given the genotype Gi = gi is

Var Y i ∣ Gi = gi = σϵ
2 + βE + βIgi

2σE
2 ,

This suggests that the conditional variance of Y i may differ across genotype groups of Gi

if the genetic variant is involved in interactions. Thus, a genetic variant showing SNP × E 

interaction is associated with the variance of the phenotype, that is, a vQTL, and one can use 

vQTL to screen for candidate SNP × E effects (Miao, Lin, et al., 2022).

Various statistical methods have been proposed to detect vQTLs, including classic non-

parametric methods (Wang et al., 2019), full parametric methods (Young et al., 2018), 

and two-stage methods (Marderstein et al., 2021). However, these methods have certain 

limitations, such as a lack of robustness to non-Gaussian phenotypes and potential 

confounding effects on both trait levels and trait variability. To address these limitations, 

a recent method called QUAIL, a quantile regression-based framework, has been introduced 

(Miao, Lin, et al., 2022). In QUAIL, if a SNP Gi is a vQTL for trait Y i, the conditional 

quantile function will exhibit different regression slopes βτ  for various quantile levels τ :

QYi τ ∣ Gi = gi = giβτ

QUAIL defined a quantile-integrated effect.

βQI =
0

0.5
βτ + 0.5 − βτ dτ
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which aggregates the differences between the regression coefficients of the upper and lower 

quantile levels (i.e., βτ + 0.5 − βτ, τ ∈ 0,0.5  across all quantile levels. The choice of 0.5 in τ + 0.5
is to ensure that the quantile integral effect is equal to the difference of quantile-specific 

effect between all upper quantile levels τ > 0.5  and all lower quantile levels τ < 0.5 . This 

quantile-integrated effect represents the magnitude of the vQTL effect of a SNP. Testing the 

vQTL effect of a SNP is equivalent to testing the null hypothesis H0:βQI = 0.

QUAIL estimates the quantile-integrated effect using various computational techniques to 

overcome the computational challenges associated with fitting standard quantile regression 

procedures that require iterative optimization for numerous quantile levels. It efficiently 

identifies vQTLs at the genome-wide scale, while overcoming the key limitations of 

traditional two-stage methods. Simulation studies have demonstrated that QUAIL exhibits 

greater power compared with other commonly used VQTL approaches when the phenotype 

is non-Gaussian distributed. In previous simulations, under a 0.4% phenotypic variance 

explained by G × E, QUAIL showed a 75% probability of rejecting the null hypothesis at 

a significance level of P < 0.05, while the best alternative methods had a 56% probability. 

When applied to UK Biobank data, QUAIL identified 11 novel vQTL for BMI (20% of 

the vQTL identified by all methods tested) compared with other methods (Miao, Lin, et al., 

2022).

2.4 | Modeling multiple environments

The aforementioned approaches are primarily designed for G × E analysis of G × E 

with a single environmental variable. An alternative approach involves jointly modeling 

multiple environmental variables, which can potentially enhance statistical power by 

capturing a combination of variables that serve as proxies for the true underlying driver of 

interaction. Several methods have been proposed to accommodate the modeling of multiple 

environments simultaneously, such as StructLMM (Moore et al., 2019) and LEMMA 

(Kerin & Marchini, 2020). StructLMM is a computationally efficient method that aims 

to identify genetic variants interacting with one or more environments. It achieves this by 

modeling the environmental similarity between individuals across multiple environments as 

a random effect and testing G × E via the variance components test. On the other hand, 

LEMMA is a Bayesian whole-genome approach that allows for the joint modeling of SNP 

marginal effects and SNP G × E interaction effects with an environmental score (ES). The 

ES is a linear combination of multiple environmental variables and can be employed in 

single-variant-by-ES G × E inference. LEMMA employs variational inference techniques 

to fit the model, ensuring computational tractability even with large-scale datasets such as 

large biobanks. By incorporating multiple environmental variables and employing advanced 

modeling techniques, these approaches provide alternative strategies to enhance the analysis 

of G × E interactions beyond single environmental variable scenarios.

2.5 | Statistical method to detect polygenic G × E

Thus far, we primarily focused on interactions between a single genetic variant and the 

environment. However, it is now known that complex traits are influenced by numerous 

genetic variants scattered across the genome (Boyle et al., 2017). Therefore, contemporary 

G × E methods are increasingly emphasizing the investigation of how the polygenic 
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architecture of a trait varies across different environments. In the following sections, we 

will delve into several G × E methods that have been developed to leverage polygenicity by 

considering the G × E effects for all SNPs across the genome.

2.6 | Heritability and genetic correlation-based methods

This class of methods assesses whether the polygenic genetic basis of a trait varies across 

environments and typically examines the existence of any G × E (Bernabeu et al., 2021; 

Blokland et al., 2022; Martin et al., 2021). For demonstration, consider the trait under two 

different environments E = 0 and E = 1. We can express the trait values as follows:

Y 0 =
j

M
Gjβj

0 + ϵ 0 ,

Y 1 =
j

M
Gjβj

1 + ϵ 1 ,

Here, Y 0  and Y 1  represent the trait values in environments E = 0 and E = 1, and βj
0  and 

βj
1  denote the effect for jth SNP in environment E = 0 and E = 1, respectively. ϵ 0  and ϵ 1

represent the environment-specific noise terms.

Two common approaches are used to test for polygenic G × E effects: differential heritability 

and imperfect genetic correlation between environments. Based on the above model, we can 

define the environment-stratified heritability, which represents the proportion of phenotypic 

variance explained by SNPs, as follows:

ℎ 0 2
=

Var j
M Gjβj

0

Var Y 0 andℎ 1 2
=

Var j
M Gjβj

1

Var Y 1 .

Testing for differential heritability is equivalent to testing the null hypothesis 

H0:ℎ 0 2
= ℎ 1 2

. In contrast, the genetic correlation between the environments, can by 

written as

rg =
Cov j

M Gjβj
0 , j

M Gjβj
1

Var j
M Gjβj

0 Var j
M Gjβj

1

Testing for imperfect genetic correlation is equivalent to testing the null hypothesis 

H0:rg = 1. To perform statistical inference on these parameters, two types of methods are 

commonly used: the GREML-based approach (Yang et al., 2010) and linkage disequilibrium 

(LD) score regression (Bulik-Sullivan et al., 2015). Both methods aim to estimate 

environment-stratified heritability and genetic correlation across environments. GREML 

provides a more efficient estimator compared with LD score regression but requires 
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individual genotype and phenotype data as input. On the other hand, LD score regression, 

while less efficient than GREML, only requires environment-stratified GWAS summary 

statistics as input. Hypothesis testing based on these two approaches is often used to assess 

the existence of polygenic G × E.

Nevertheless, testing for differential heritability and imperfect genetic correlation may 

provide flawed results, if the goal is to examine the existence of G × E (Miao, Song, 

et al., 2022). For instance, heritability estimates may vary across discrete environments 

merely due to heteroscedasticity (i.e., differences in the residual variance components) in the 

absence of true G × E, leading to false positive G × E findings. Similarly, genetic correlation 

analysis between environments has its limitations. A perfect genetic correlation can be 

observed when the SNP additive effects are proportional between the environments, which is 

sometimes referred to as “amplification” in the G × E literature (Zhu et al., 2023). This leads 

to false negative results on testing G × E. Consequently, heritability and genetic correlation 

analyses are inadequate for proper estimation of polygenic G × E effects. Moreover, some 

of these approaches face technical challenges such as the inability to handle continuous 

environmental exposures.

2.7 | Variance component tests

Another class of methods directly assesses polygenic G × E using variance component 

tests. The G × E variance, which quantifies the extent to which phenotypic variation in 

a population is attributable to the interaction between genetic and environmental factors, 

serves as the target for estimation in these methods. Several approaches have been 

proposed to estimate G × E variance. One such approach is GCI-GREML, an extension 

of the GREML approach that focuses on estimating the proportion of phenotypic variance 

explained by G × E effects (Robinson et al., 2017). However, GCI-GREML assumes a 

homogeneous residual variance across environments, which may introduce bias in the 

results (Ni et al., 2019). To address this limitation, the MRNM approach was proposed 

as an extension of GCI-GREML (Ni et al., 2019). MRNM overcomes this limitation by 

considering both the genotype–environment correlation (which captures the association 

between genetic factors and environmental factors) and the residual–environment interaction 

(which captures the variation in non-genetic factors across different levels of environmental 

factors). However, MRNM cannot be used to model binary traits and only allows for 

univariate environments (Dahl et al., 2020). To address these issues, G × EMM was 

developed (Dahl et al., 2020). G × EMM is a mixed model framework analogous to GREML 

and is designed to capture the aggregate polygenic contributions of G × E effects. It can 

be applied to binary traits and general environments, allowing for a broader range of 

applications compared with MRNM. G × EMM estimates the heritability specific to each 

discrete environment or environmental extreme in the case of continuous environments.

Recent work suggests that to accurately assess the presence or absence of polygenic G × E, 

researchers should focus on estimating the G × E variance component, instead of differential 

heritability and imperfect genetic correlation analysis (Miao, Song, et al., 2022). However, 

current methods in the literature still have value in certain scenarios. For example, one study 

highlighted that differential heritability between environments may affect the predictive 
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accuracy of PGS in those environments, raising concerns about the universal applicability of 

PGS (Mostafavi et al., 2020). Imperfect genetic correlation analysis may be used to measure 

whether SNP effects are shared across environments (Bernabeu et al., 2021).

2.8 | Empirical PGS × E analysis

Another method, often referred as empirical PGS × E analysis, has become increasingly 

popular in the field of G × E research (Biroli et al., 2022; Domingue et al., 2020; Li et 

al., 2019; Schmitz et al., 2022). This approach involves a two-step procedure that begins 

by summarizing the genetic predisposition of each individual into a polygenic score (PGS). 

Subsequently, it examines the interaction between the PGS and the environment using a 

regression-based framework. The “empirical” in the title indicates the fact that PGS used 

in this type of analysis is not the true PGS, but a noisy estimate derived from an external 

GWAS.

A true PGS is typically defined as a weighted sum of effect alleles for a collection of SNPs 

PGSi∑ j = 1
M GijβGj, where the βGj are the true SNP effects for the jth SNP and Gij indicates the 

number of copies of the effect alleles for the jth SNP (0, 1, or 2) for ith individual. Based on 

the true PGS, the data-generating model for PGS × E can be denoted as

Y i = αPGSPGSi + αEEi + αIPGSiEI + ϵi,

where αPGS, αE, and αI represents the main effects of the PGS PGSi, environment Ei and the 

interaction between the PGS and environment, respectively. The estimand of PGS × E is αI.

In practice, one can only use scores estimated from GWAS (denoted by empirical PGS PGSi) 

and perform empirical PGS × E analysis. For demonstration, we used the linear regression 

on quantitative traits as an example. The empirical PGS × E can be denoted as the following:

Y i αPGS
Emp PGSi + αE

Emp Ei + αI
Emp PGSEI,

where PGSi = PGSi + si, si is the estimation error in the PGS and Cov PGSi, si = 0. The 

empirical PGS × E requires no overlap between the GWAS used to construct PGS and the 

sample for PGS × E analysis. Under this requirement, the hypothesis testing for empirical 

PGS × E, denoted as H0:αI
Emp = 0 is equivalent to the hypothesis testing for PGS × E, 

H0:αI = 0. However, this point estimation is substantially affected by the imprecision in 

PGS estimation due to limited sample sizes in GWAS. Neglecting the inherent uncertainty 

in the empirical PGS can lead to interaction estimates that are biased toward zero (i.e., 

E αI
Emp < αI . In cases where sample overlap exists between the GWAS and the PGS × E 

analysis, PGS will overfit the data, resulting in biased estimates of interaction and potential 

false discoveries in empirical PGS × E analysis (Miao, Song, et al., 2022).

The PGS × E approaches mentioned previously are based on linear regression for 

quantitative traits. For binary traits, the model for PGS × E analysis can be formulated 

by replacing the single variant in the logistic regression-based G × E analysis with the 

true PGS. Case-only methods have also been proposed for PGS × E analysis (Meisner 
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et al., 2019). These methods exploit the G–E independence to enhance the power of 

logistic regression-based tests. In addition, a recent method simultaneously models G–E 

correlations and G × E using PGS in case–control studies (Wang et al., 2023). It uses a 

logistic-normal regression framework to quantify both disease risk and the PGS distribution 

in the population, and proposes joint inference using the retrospective likelihood of case–

control data.

2.9 | PIGEON

A key issue for all these aforementioned methods for polygenic G × E inference is, although 

all these approaches are referred to as G × E analysis in the literature, the relationship 

between these approaches is poorly understood. For example, it is unclear whether PGS × 

E and differential heritability analysis aim to estimate the same parameter. Consequently, 

a consistent language to describe the connections and distinctions among these methods is 

lacking. There is a pressing need for a comprehensive framework for quantifying polygenic 

G × E.

To bridge this gap, (Miao, Song, et al., 2022) proposed PIGEON, a unified statistical 

framework designed for estimating polygenic G × E. PIGEON is constructed based on a 

linear mixed model that captures both the additive effects and G × E effects for many SNPs.

Y i =
j = 1

M
GijβGj + EiβE +

j = 1

M
GijEiβIj + ϵi0 + ϵi1Ei .

Here, Y i is the standardized phenotype with a mean of 0 and variance of 1 for the ith
individual, Gij is the jth standardized SNP, Ei is the standardized environment, ϵi0 is the 

noise term, and ϵi1E quantifies the heteroskedasticity arising from the interaction between 

the residual variance and the environment (i.e., the variation in residual variance across 

different environments). Polygenic additive effects and interaction effects (i.e., βGj and βIj) 

are modeled as random variables.

In the PIGEON framework, two main objectives are defined for G × E inference: G × E 

variance and covariant G × E. These two objectives aim to quantify the overall contribution 

of G × E to the phenotype and provide mechanistic insights into the interaction mechanisms, 

respectively. The G × E variance is a measure of the overall G × E contribution and is 

defined as the variance of the interaction effects, represented as σI
2 = Var βIj , where M is the 

total number of SNPs. Hypothesis testing on this quantity helps determine the evidence of 

any G × E. The magnitude of the G × E variance component quantifies the extent of G × E 

for the trait of interest. This is similar to the variance component tests we have introduced 

above. However, solely having a non-zero G × E variance does not provide detailed 

mechanistic insights into the interactions. To gain a deeper understanding of the polygenic 

G × E, PIGEON introduces the concept of covariant G × E, that is, ρGI = Cov βGj, βIj . This 

measure captures the covariance between SNP additive effects ρGI  and SNP × E interaction 

effects βIj  across the genome. By examining the correlation between the effects of SNPs on 
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complex traits and their tendency to interact with the environment, the covariant G × E offers 

valuable insights into the underlying interaction mechanisms at a whole-genome level.

The two major objectives in the PIGEON framework serve as the foundation for quantifying 

evidence of polygenic G × E and interpreting the underlying mechanisms of these 

interactions. PIGEON also establishes the connections between existing G × E approaches, 

allowing us to understand their relationships, distinctions, and limitations. The objectives 

of differential heritability and imperfect genetic correlation are associated with the G × E 

variance which primarily focuses on providing evidence for the presence of polygenic G × 

E. On the other hand, PGS × E analysis is linked to the covariant G × E objective, which 

aims to interpret the mechanisms underlying polygenic G × E.

As mentioned in the section above, empirical PGS × E analysis is substantially affected 

by the imprecision in PGS estimation due to limited sample sizes in GWAS. Ignoring the 

uncertainty in empirical PGS leads to biases toward zero in the interaction coefficient 

estimates. In contrast, Importantly, PIGEON reveals a direct relationship between the 

coefficients of the oracle PGS × E analysis (which is based on the true PGS and described 

in “Empirical PGS × E analysis” section above) denoted as aI from and the covariant G × E 

represented by ρGI

αI = ρGI

σG
2 ,

where σG
2  is the additive heritability of the outcome of interest. The oracle PGS × E 

represents an upper bound and infinite sample limit of empirical PGS × E, analogous to 

heritability being the upper bound of PGS predictive R2 in the GWAS literature. Therefore, 

as a superior alternative to commonly used PGS × E analysis, estimating covariant G × E 

through variance component analysis provides a more reliable approach to quantifying and 

interpreting polygenic G × E effects.

PIGEON also introduces an estimation strategy called PIGEON LDSC which allows 

for the estimation of polygenic G × E effects using only GWIS and GWAS summary 

statistics as the input. It is unbiased, computationally efficient, and robust to sample 

overlap, heteroscedasticity, and gene–environment correlation. Two methods can be used 

to estimate the G × E variance component: PIGEON and G×Esum (Shin & Lee, 2021). Both 

methods utilizes the Z-scores for SNP × E interaction effects obtained from GWIS summary 

statistics. The PIGEON LDSC method calculates the expected value of the squared Z-score 

for each SNP × E interaction effect, denoted as zIj. Regressing the squared Z-scores on the 

LD score provides the estimator of the G × E variance component accurately:

E zIj
2 ∣ ℓj = NIσI

2

C2M
ℓj + 1 + μE 4 − 1 σG

2 + σϵ1
2 /C2,
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where NI denotes the GWIS sample size, σI
2 is the G × E variance component, M is the 

number of SNPs, C = 1 − ZE
2

ZE
2 + NI − 2  is a correction factor to account for the environmental 

effect on Z-score approximation in GWIS, ZE
2  is the Z-score of environmental effect, ℓj is 

the LD score, and μE 4  is the kurtosis of the environment.

To estimate covariant G × E, PIGEON LDSC only requires GWIS and GWAS summary 

statistics with arbitrary sample overlap. The expected value of the product of additive effect 

Z-scores and SNP × E effect Z-scores is

E zGjzIj ∣ ℓj = NGNIρGI
CM ℓj + Ns

C NGNI
2ρGI + βE

2 μE 3 ,

where ρGI is the covariant G × E, M is the number of SNPs, C = 1 − ZE
2

ZE
2 + NI − 2  is a 

correction factor described above, ZE
2  is the Z-score of environment effects, ℓj is the 

LD score, NI and NG represents the GWIS and GWAS sample size, Ns is the number 

of overlapped samples between GWIS and GWAS analysis, μE 3  is the skewness of the 

environment. The oracle PGS × E coefficient can be obtained by normalizing the covariant 

G × E by heritability.

With this approach, it has become possible to only use GWIS and GWAS summary statistics 

to perform G × E inference, especially PGS × E analysis. The most important feature is 

its robustness to sample overlap. In traditional G × E approaches, the presence of shared 

samples between GWAS and G × E cohorts renders PGS generation and subsequent PGS × 

E analysis impossible, due to the concern of inflated type-I error. With PIGEON, unbiased 

estimates for covariant G × E and oracle PGS × E can now be obtained, regardless of sample 

overlap. Another advantage of PIGEON is its ability to facilitate hypothesis-free scans for 

PGS × E. Unlike most studies that define PGS based on the same outcome used in G × 

E analysis, PIGEON offers a superior strategy. It allows researchers to perform GWIS in 

large samples through meta-analysis and then examine its genetic correlation with multiple 

published GWAS. This strategy eliminates the concerns regarding whether the GWAS and 

GWIS were conducted on the same or distinct samples, allowing for a comprehensive 

assessment of PGS × E effects across multiple PGS.

2.10 | Gene–environment correlation in G × E research

The environments in many G × E applications can be partially endogenous, creating 

complex patterns of gene–environment correlations (rGE) that pose inferential challenges 

for identifying G × E (Jaffee & Price, 2007). In many applications of G × E, it is of 

great interest to ensure the exogeneity of E (Barcellos et al., 2018; Schmitz & Conley, 

2017; Zhu et al., 2023). When G × E analysis is performed on observational data, some 

studies go to great lengths to use instrumental variables or other approaches (Barcellos 

et al., 2018; Schmitz & Conley, 2017). Some studies focus on the interaction between 

SNPs in autosomes and sex (Blokland et al., 2022; Zhu et al., 2023), while other studies 

ignore the potential correlation between genes and environment (Robinson et al., 2017). 
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For single-variant G × E analysis, the rGE can lead to spurious G × E results (Dudbridge 

& Fletcher, 2014). Sensitivity analyses have been suggested to reduce the possibility of 

false-positive reports of interaction (Dudbridge & Fletcher, 2014). For polygenic G × E 

analysis, a much weaker condition than G–E independence, that is, zero correlation between 

additive SNP effects on environment and SNP × E effects on outcome, is sufficient to obtain 

unbiased estimates and well-controlled false-positive rates in polygenic G × E inference 

(Miao, Song, et al., 2022). If this weak condition is violated, a solution is also proposed to 

correct for biases introduced by rGE (Miao, Song, et al., 2022). In conclusion, it is important 

to recognize the impact of rGE on G × E inference and to select appropriate statistical 

methods and sensitivity analyses to reduce false-positive findings.

3 | CONCLUSION

Despite the long-standing interest in G × E, our understanding of its contribution to 

human complex traits and diseases remains limited. The study of G × E interactions 

presents statistical challenges due to the high dimensionality of genetic information and 

environmental exposures, the need for large sample sizes to reliably detect G × E effects, 

and the scarcity of large datasets that combine genetic and environmental data. In this 

article, we aim to review the current state-of-the-art statistical methods on G × E inference. 

We discussed two main categories of methods designed for single-variant analysis and 

polygenic G × E analysis. These approaches represent a tradeoff between statistical power 

and resolution of findings. Single-variant analysis, while having lower power, offers higher 

resolution, making it valuable for identifying specific genetic variants involved in G × 

E interactions. In contrast, polygenic G × E analysis, with its higher power but lower 

resolution, aims to leverage genome-wide information to provide an understanding of the 

collective contribution and interpretation of G × E effects across all SNPs. These methods 

have laid the foundation for identifying and interpreting robust G × E interactions and hold 

significant potential for broad applications in many disciplines.

There are several important directions for future G × E methodological research. Firstly, 

the remarkable success of complex trait genetics, particularly through large-scale GWAS 

meta-analyses and the sharing of summary association statistics, has revolutionized how we 

approach genotype–phenotype associations. In contrast, G × E analysis still predominantly 

relies on small cohorts with individual-level genetic, exposure, and outcome data to date. 

To propel the field forward, it is crucial to meta-analyze and widely share GWIS summary 

statistics. Future developments in G × E methodology should prioritize approaches that 

leverage summary-level data, enabling more extensive collaboration and data integration 

efforts. Secondly, a lingering challenge is accurately quantifying the overall contribution 

of G × E across all relevant environments. The current G × E studies rely on single or 

several hypothesized environmental exposures. Understanding the cumulative impact of 

G × E across all possible environments remains an open question. Thirdly, unraveling 

the functional interpretation of G × E interactions presents another intriguing challenge. 

Identifying the underlying mechanisms and biological pathways through which genes and 

environmental factors interact to influence complex traits is essential for gaining deeper 

insights. Future research should strive to develop innovative methodologies that integrate 

genetic, environmental, and functional genomic data to elucidate the functional implications 
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of G × E interactions. Fourth, the current gold-standard of PGS × E analysis involves 

performing regression within families, which effectively eliminates all bias from population 

stratification, environmental confounding, assortative mating, and other sources (Biroli et 

al., 2022). It is an open question whether the methods discussed might have biases for 

the reasons mentioned above when applied to population-level data, and if so, whether 

they can be used for within-family analyses. Fifth, it is important to recognize that the 

statistical methods discussed in this review all focus on G × E analyses using molecular 

genetic data. Before the advent of molecular genetic data made possible by advances in 

sequencing technologies, researchers used twin- and family-based analyses to study G × E 

(Dick, 2011). These methods relied on latent, unobserved indices of genetic influence to 

detect the presence of G × E. An example from twin studies is the analysis of monozygotic 

twins raised apart, which examines the effect of different environments on some traits with 

identical genotypes (Bergeman et al., 1988). Another example is differential heritability 

analysis, which compares twin-based heritability across different environments (Turkheimer 

et al., 2003). A valuable avenue for future research would be to compare the results and 

models from twin- and family-based studies with those from molecular analyses in the 

context of G × E to better understand the strengths and limitations of each study design.
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FIGURE 1. 
A decision tree for guiding the selection of appropriate methods for G × E inference. The 

decision node, depicted by the yellow block, serves as the starting point for determining the 

suitable approach. The blue blocks represent the specific methods to be employed based on 

the decision made at the decision node.
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FIGURE 2. 
An illustration of G × E. Each data point represents an individual, where the X-axis denotes 

the genotype, and the Y -axis represents the phenotype value. Three different colors indicate 

three distinct environments. (a) In the absence of G × E, the genetic effect on the phenotype 

remains consistent across all three environments, as depicted by the fitted line parallel to 

each other. (b) In the presence of G × E, the genetic effect on the phenotype varies across the 

three environments. The largest effect is observed in the environment highlighted in yellow. 

This variation is illustrated by the fitted lines not being parallel to each other, indicating that 

the relationship between genotype and phenotype depends on the environment.
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TABLE 1

Software tools for G × E methods reviewed in this article.

Category Methods Study design Software

Single-variant 
G × E

Linear regression Cohort study https://www.cog-genomics.org/plink/2.0/assoc#glm

Logistic regression Cohort and case–control study https://www.cog-genomics.org/plink/2.0/assoc#glm

Case-only approach Cohort, case-only, and case–control 
study

https://bioconductor.org/packages/release/bioc/html/
CGEN.html

Empirical Bayes-type 
approach

Cohort and case–control study https://bioconductor.org/packages/release/bioc/html/
CGEN.html

QUAIL Cohort study https://github.com/qlu-lab/QUAIL

LEMMA Cohort and case–control study https://github.com/mkerin/LEMMA

StructLMM Cohort and case–control study https://github.com/limix/struct-lmm

GCI-GREML Cohort and case–control study https://bio.tools/mtg2

SPAGE Cohort and case–control study https://github.com/WenjianBI/SPAGE

fastGWA-GE Cohort and case–control study https://yanglab.westlake.edu.cn/software/gcta/
#fastGWA-GE

Polygenic G × 
E

MRNM Cohort and case–control study https://bio.tools/mtg2

G × EMM Cohort and case–control study https://github.com/andywdahl/gxemm

PIGEON GWIS summary statistics from cohort 
and case–control study

https://github.com/qlu-lab/PIGEON
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