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Abstract: Type IV pili (T4P) are proteinaceous filaments found on the cell surface of many prokaryotic
organisms and convey twitching motility through their extension/retraction cycles, moving cells across
surfaces. In cyanobacteria, twitching motility is the sole mode of motility properly characterised
to date and is the means by which cells perform phototaxis, the movement towards and away
from directional light sources. The wavelength and intensity of the light source determine the
direction of movement and, sometimes in concert with nutrient conditions, act as signals for some
cyanobacteria to form mucoid multicellular assemblages. Formation of such aggregates or flocs
represents an acclimation strategy to unfavourable environmental conditions and stresses, such as
harmful light conditions or predation. T4P are also involved in natural transformation by exogenous
DNA, secretion processes, and in cellular adaptation and survival strategies, further cementing the
role of cell surface appendages. In this way, cyanobacteria are finely tuned by external stimuli to either
escape unfavourable environmental conditions via phototaxis, exchange genetic material, and to
modify their surroundings to fit their needs by forming multicellular assemblies.
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1. The Type IV Pilus Machinery Conveys Twitching Motility to Cyanobacteria

Cyanobacteria are found in a wide variety of ecological niches, ranging from polar latitudes [1,2]
to desert soil crusts [3]. In marine environments, a small number of cyanobacterial genera are so
abundant that they account for a substantial portion of marine primary productivity [4]. Despite
the differences in preferred niches and cellular morphology, many species of cyanobacteria take a
remarkably similar approach in adapting to environmental changes. Cyanobacteria are not known
to possess flagella and instead, most motile cyanobacteria rely on T4P to convey twitching motility
across surfaces, allowing them to move towards favourable environments or to escape unfavourable
environments. A well-studied example of cyanobacterial twitching motility is found in Synechocystis
sp. PCC 6803 (hereafter Synechocystis), but other instances have been reported and characterised in
both single-celled [5] and filamentous cyanobacteria [6], which largely match the Synechocystis T4P
machinery in component genes and operon structure [7].

T4P are protein filaments extended from a membrane-spanning pore complex. In Synechocystis,
the components of the T4P complex have been largely identified by homology with the Type
IVa pilus (T4aP) systems of the heterotrophic Gram-negative bacteria Myxococcus xanthus [8] and
Pseudomonas aeruginosa [9], in contrast to the Type IVb pilus, which mainly differs by the length and the
amino acid sequence of the pilin proteins [10]. The filament, composed of pilin proteins characterised
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by their cleavage motif [11], is extended by the secretion ATPase PilB and passes through the membrane
at the inner membrane platform protein PilC and the outer membrane pore PilQ. PilC and PilQ are
connected by a set of accessory proteins. The structure and function of the cyanobacterial T4P apparatus
have been reviewed in [7]. A schematic representation of the T4P complex is given in Figure 1.
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Figure 1. Schematic representation of the Synechocystis Type IVa pilus (T4aP) apparatus adapted from
Myxococcus xanthus structure and nomenclature [12] and of the type II secretion system (T2SS) based
on structural data from [13–15] using Escherichia component nomenclature. Colours denote proteins
fulfilling homologous functions between the two systems. Dotted outline of PilP denotes a lack of
experimental data confirming the in silico identification by Taton et al. [16].
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Electron micrographs show two types of cell appendages on the Synechocystis surface, which have
been termed thick pili and thin pili for their respective diameters. Thick Synechocystis pili have a
diameter of 6–8 nm [8], matching the diameter of T4P found in heterotrophic bacteria [17]. Thick pili
are essential for twitching motility and deletion mutants of the pilA1 gene encoding the major pilin,
a homologue of P. aeruginosa PilA, lose both thick pili and twitching motility. It is currently unclear
whether PilA1 is the only pilin incorporated in Synechocystis thick pili. In contrast, thin pili are 2–3 nm in
diameter and unable to convey twitching motility by themselves, as ∆pilA1 mutants retain thin pili [8].
The nature and subunit composition of Synechocystis thin pili have not been solved so far. However,
recent structures of Thermus thermophilus wide and narrow pili have shown that T4P machinery can
produce structurally distinct pili depending on the type of pilin subunit incorporated [18]. Besides
PilA1, Synechocystis contains a complement of ten other known PilA variants termed minor pilins [11].
The filamentous cyanobacterium Nostoc punctiforme also contains multiple PilA-like proteins and many
of the components of the N. punctiforme T4P machinery have been identified according to Synechocystis
annotations [19].

Pilins are processed by the PilD peptidase, which cleaves the N-terminal signal peptide. The mature
pilins are then polymerised by the action of the hexameric ATPase PilB [20], thought to rotate during ATP
hydrolysis, rotating PilC in turn and incorporating pilin subunits [21]. The retraction motor PilT, also a
hexameric ATPase, rotates in the opposite direction to PilB, depolymerising the filament during pilus
retraction [21]. The polymerised filament exits the outer membrane through PilQ. A set of accessory
proteins have been identified in Synechocystis by homology with heterotrophic T4P systems, termed
PilM, PilN, and PilO [9]. A PilP homologue has recently been identified in Synechococcus elongatus
PCC 7942 [16]. Taton et al. also suggest that several other cyanobacteria, including Synechocystis,
encode PilP homologues, though the sequence conservation is less pronounced [16]. As shown in
Figure 1, the alignment complex composed of the PilMNOP accessory proteins forms a set of two
rings in the periplasmic space [12] and links the T4P apparatus components in the inner and outer
membranes. A recent study also indicated that many marine picocyanobacterial strains may contain a
T4P apparatus homologous to S. elongatus PCC 7942 [22].

In contrast to single-celled motile cyanobacteria like Synechocystis or Synechococcus elongatus UTEX
3055, vegetative filaments of many filamentous cyanobacteria are not inherently motile. Instead,
they differentiate into specialised motile filaments termed hormogonia. While vegetative filaments of
N. punctiforme are non-piliated, cells that are part of hormogonia show abundant surface piliation [19]
arrayed in rings at the cell poles [23] and are capable of twitching motility using T4P [6]. In contrast to
Synechocystis, however, only thick pili have been detected in Nostoc hormogonia [19].

2. Twitching Motility Enables Cyanobacteria to Seek out Favourable and Escape
Unfavourable Environments

Cyanobacteria couple twitching motility conveyed by the T4P apparatus with environmental
sensing and engage in tactic behaviour—the movement towards or away from light sources (phototaxis)
or chemical gradients (chemotaxis). Phototaxis allows cyanobacteria to move towards environments
that provide sufficient photosynthetically active light, avoiding higher light intensities or shorter
wavelengths of light that might damage the photosynthetic apparatus [24]. Chemotaxis has been
reported for some species of filamentous cyanobacteria such as N. punctiforme in response to plant
hosts [25], which provide opportunity for symbiotic lifestyles, and Oscillatoria towards CO2 [26].
Twitching motility-based phototaxis, in contrast, is a much more common feature in cyanobacteria,
being observed and studied in single-celled cyanobacteria such as Synechocystis [27] and S. elongatus
UTEX 3055 [5] as well as filamentous cyanobacteria [23]. The means by which phototaxis is performed,
however, varies between cyanobacteria. Filamentous cyanobacteria like N. punctiforme perform both
chemotaxis and phototaxis by moving up and down gradients, the motile hormogonia moving along
the filament axis and controlling the rates of reversal in order to achieve net motion towards the
attractant [6]. When applied to phototaxis, this behaviour is termed scotophobia [28]. Light perception
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in Phormidium uncinatum, another filamentous cyanobacterium, depends on decreases in light intensity
at the leading end of the filament and increases in light intensity at the lagging end, though the
mechanism for this spatial comparison is unclear [29]. Despite the prevalence of movement aligned
with the filament axis, partial illumination of Anabaena variabilis trichomes has produced motility
towards a light source placed to the side of the filament, indicating some ability to reorient the trichome
and thus, the direction of movement [30]. Until recently, the mechanism by which motile filamentous
cyanobacteria such as N. punctiforme, Oscillatoria [31], or Anabaena variabilis [32] move was under
debate, with other hypotheses besides T4P including polysaccharide extrusion as the driving force
of hormogonium motility [33]. However, it has become clear that at least N. punctiforme hormogonia
move using a T4P system with the pili exerting a pulling force [6], as is common for twitching motility.
The hormogonium polysaccharides extruded by N. punctiforme nonetheless support motility across
surfaces [23] as has also been suggested for Synechocystis [34–36]. The hormogonium achieves the
coordinated T4P action required for this behaviour by dynamically localising the partial coiled-coil-rich
protein HmpF, encoded by a gene in the chemotaxis-like hmp gene cluster, to the forward cell pole [6].
Cho et al. showed that HmpF is essential for hormogonium motility and phototaxis as well as cell
piliation in N. punctiforme [6].

In contrast to the bias towards a light source in N. punctiforme, Synechocystis has been shown to
sense light directly by using the cell body as a microlens [37,38]. Although several control elements
which are likely to be involved in downstream signal transmission have been identified, the exact signal
transduction mechanism is unclear so far. The lensing of light in Synechocystis enables the cells to perform
true phototaxis, moving directly towards light sources instead of performing biased random walks
as in chemotaxis. Synechocystis has pili distributed around the entire cell perimeter and dynamically
localises the extension motor PilB1 in the direction of movement [39], whereas N. punctiforme do not
show dynamic PilB localisation [23]. This feature enables Synechocystis to move in any direction rather
than being constrained in the direction to the cell or filament axis.

The regulation of twitching motility in response to external stimuli is achieved by sets of receptors
and downstream regulators. In Synechocystis, while light lensing through the cell body provides
the directionality to motility, movement towards or away from the light source is determined
by the action of several photoreceptors. In particular, excess blue and UV light cause lower
growth rates in Synechocystis [40], induce non-photochemical quenching in photosynthetic organisms
indicating photoinhibition [41], oxidative stress [42], and various other deleterious effects in different
cyanobacteria [43]. Many Synechocystis photoreceptors thus perceive short-wavelength light and
Synechocystis cells use this information to either cease movement (blue light) [44] or reverse movement
direction and move away from the stimulus (UV-A light) [45]. Stimuli from longer-wavelength light are
also sensed, such as high-intensity red light leading to no movement or even negative phototaxis [46,47].
Cyanobacteriochromes (CBCR), Light-oxygen-voltage (LOV) photoreceptors, and Sensor of Blue Light
using Flavin adenine dinucleotide (BLUF) photoreceptors sense the wavelength and intensity of
incident light by photoconversion of bound bilin [48], flavin mononucleotide [49], or flavin adenine
dinucleotide [50] chromophores, respectively.

The CBCR PixJ1 controls the direction of motility depending on the ratio of blue/green light [51]
and mutants deficient in PixJ1 perform negative phototaxis (movement away from the light source)
in environments where wt Synechocystis move towards the light source [52]. PixJ1 is part of the
chemotaxis-like system tax1 and carries a methyl-accepting chemotaxis protein (MCP)-like domain [51]
and the downstream CheY-like response regulator PixG contains a PATAN domain thought to interact
with the T4P apparatus [28,53]. PixJ homologues have been identified in various cyanobacteria,
including Nostoc punctiforme ATCC 29133 [54], Thermosynechococcus elongatus BP-1 [55], Anabaena sp.
PCC 7120 [56], and Synechococcus elongatus UTEX 3055 [5]. The photoconversion of the different PixJ
homologues is variable across a wide range including red/green [57] and blue/green photocycles [51].
However, only some of the species confirmed to carry PixJ homologues have been shown to use them in
phototaxis [5,54], partially owed to the general loss of motility in several cyanobacterial isolates. UirS,
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another Synechocystis CBCR, contains a UV/green photoconvertible GAF domain and causes motility
reversal under UV illumination via its downstream effector, the PATAN domain containing response
regulator LsiR [45]. Although the mechanism of action by which LsiR affects the T4P apparatus is not
currently known, the dependence of negative phototaxis under UV-A illumination on both uirS and lsiR
indicates their interaction with the T4P machinery either directly or indirectly. A third photoreceptor
system which is involved in controlling phototaxis in Synechocystis is the PixD–PixE complex [58]. PixD
is a BLUF domain photoreceptor which binds the PATAN domain response regulator PixE [59,60]. It is
hypothesised that upon blue light exposure, PixE dissociates from PixD, binds to PilB1 and reverses
the direction of movement, resulting in negative phototaxis [61]. The Synechocystis chemotaxis-like
system tax3 for which the signal input is unknown, leads to loss of thick pili and motility entirely when
disrupted [52,62]. This system also contains a PATAN domain CheY-like response regulator, implying
that PATAN domains could link external signals with the T4P apparatus to control its function or
localization. The photoreceptor Cph2 is also implicated in Synechocystis motility. Mutants deficient
in Cph2 show phototaxis towards blue light, whereas wt Synechocystis are non-motile in the same
conditions [44]. In contrast to PixJ1, Cph2 transmits downstream signals through the production of the
second messenger cyclic di-GMP (c-di-GMP) via its C-terminal GGDEF domain, which becomes active
when blue light intensity is high relative to green light intensity [63]. Elevated c-di-GMP levels are
commonly associated with reduced motility and increased sessility (reviewed in [64]). The blue/green
light-dependent activity of Cph2 also leads to a host of pilus- and cell surface-related transcriptional
changes [65], indicating multiple modes of action of Cph2-based c-di-GMP signalling. Furthermore,
the N-terminus of Cph2 contains a red/far-red light sensing dual GAF domain module. The c-di-GMP
synthesizing enzyme Slr1143 interacts with Cph2 and modulates motility under high-intensity red
light by a so far unknown mechanism [46]. In S. elongatus PCC 7942, the LOV domain-based blue light
receptor SL2 shows phosphodiesterase activity, breaking down c-di-GMP in the dark. This process
unexpectedly accelerates upon blue illumination [66]. As S. elongatus PCC 7942 is non-motile, however,
the effect of SL2-based photoperception on motility cannot be assessed, although the closely related
and motile Synechococcus elongatus UTEX 3055 strain [5] may enable studies of the involvement of
photoreceptors in Synechococcus phototaxis and biofilm formation. The mechanisms of many of the
photoreceptors mentioned here have recently been reviewed in [28].

Cyanobacteria thus move towards light sources until one or more photoreceptors detect
unfavourable light conditions, such as high-intensity red, blue, or UV light, which provoke a change
in movement direction or a cessation of motility. In this way, cyanobacteria can position themselves
in an optimal light environment. A model of this process in a biofilm context is shown in Figure 2.
A biofilm provides a substrate for T4P to latch onto during twitching motility, making it a more likely
environment for applying such a model compared to planktonic culture. The variety of chromophores,
photosensing domains, and downstream signalling mechanisms with which cyanobacteria regulate
the direction and extent of phototaxis via the T4P apparatus enable a high degree of adaptation to
fluctuating environmental light conditions.



Life 2020, 10, 252 6 of 19
Life 2020, 10, x FOR PEER REVIEW 6 of 20 

 

 
Figure 2. Model of movement of single-celled cyanobacteria in a multi-species phototrophic microbial 
mat. Black arrows indicate twitching motility in the direction of the arrow. The relative attenuation 
of different wavelengths of light in phototrophic communities (adapted from [67]) is represented by 
the colour gradients of the respective downward arrows, with purple representing UV-A radiation. 
The distinct light environments at different depths in the mat can activate or inactivate motility and 
trigger switches from positive to negative phototaxis and vice versa. This leads to an accumulation of 
the cyanobacteria at a depth where there is a favourable light environment. 

3. Many Species of Cyanobacteria Form Large-Scale Multicellular Assemblages 

While phototaxis and chemotaxis enable cyanobacteria to seek out favourable environments, 
many species of cyanobacteria are also known to form multicellular assemblies, allowing 
cyanobacteria to create their own niches. Aggregate formation in bacteria usually involves the 
secretion of various substances such as polysaccharides, proteins, and nucleic acids, which together 
form extracellular polymeric substances (EPS). Examples of aggregate formation include the well-

Figure 2. Model of movement of single-celled cyanobacteria in a multi-species phototrophic microbial
mat. Black arrows indicate twitching motility in the direction of the arrow. The relative attenuation
of different wavelengths of light in phototrophic communities (adapted from [67]) is represented by
the colour gradients of the respective downward arrows, with purple representing UV-A radiation.
The distinct light environments at different depths in the mat can activate or inactivate motility and
trigger switches from positive to negative phototaxis and vice versa. This leads to an accumulation of
the cyanobacteria at a depth where there is a favourable light environment.

3. Many Species of Cyanobacteria Form Large-Scale Multicellular Assemblages

While phototaxis and chemotaxis enable cyanobacteria to seek out favourable environments,
many species of cyanobacteria are also known to form multicellular assemblies, allowing cyanobacteria
to create their own niches. Aggregate formation in bacteria usually involves the secretion of various
substances such as polysaccharides, proteins, and nucleic acids, which together form extracellular
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polymeric substances (EPS). Examples of aggregate formation include the well-documented blooms of
floating Microcystis aeruginosa colonies, a unicellular freshwater cyanobacterium showing extensive
cell surface piliation in liquid medium and on agar surfaces [68]. Nakasugi and Neilan (2005) present
electron micrographs which indicate connections between cells that are likely made by T4P [68].
Colonies of different Microcystis species vary in size and growth rate with nutrient concentrations
and growth medium pH [69]. Ma et al. (2014) suggest the smaller colony sizes and higher growth
rate observed in certain high N and high P conditions represent a better utilisation of the available
nutrients by Microcystis [69]. Nutrient starvation in bacterial aggregates has also been observed in
heterotrophs [70] and Synechocystis [71] and slow mass-transfer into aggregate interiors is one of the
drawbacks of communal lifestyles, leading to steep gradients of important nutrients such as CO2 [72].
Similarly to M. aeruginosa, Synechocystis cell growth increased and lower aggregation was observed
when the extracellular nutrient concentration was raised [71].

Synechocystis cells form floating aggregates termed flocs [71,73], although these flocs show a less
dense colony morphology than their Microcystis counterparts. They are distinguished from biofilms
in their lack of attachment to a substratum. Formation of these filamentous structures is dependent
on some T4P components and the string-like appearance of Synechocystis flocs (shown in Figure 3b,c)
might be a strategy to minimise nutrient limitation by increasing the surface-area-to-volume ratio [71].
Despite the disadvantages of nutrient limitation experienced in colonial lifestyles, lower diffusion rates
through EPS also benefit the cells contained in it. Heterotrophic bacteria such as P. aeruginosa [74] and
Klebsiella pneumoniae [75] show significantly increased resilience to many antibiotics in intact biofilms
compared to planktonic cultures. Although the non-infectious cyanobacteria are less likely to encounter
antibiotic treatment, the same principle of EPS shielding cells from harmful extraneous effects has been
extended to salt and metal ion toxicity [76–78], phage infection [79], and predation by some (though
not all) grazers [80]. Work on the Pseudomonas genus has shown that functional, retractile T4P are also
required for infection by a number of bacteriophages [81–83]. Although this has not been confirmed
to date in cyanobacteria to our knowledge, particularly as no known phages exist for the frequently
studied Synechocystis, it may provide an additional layer of phage protection in multicellular aggregate
contexts where a high intracellular c-di-GMP level down-regulates T4P dynamics.

The flocculation process in Synechocystis is known to be dependent on light colour via Cph2-based
c-di-GMP signalling, increasing flocculation in blue light relative to green light [71]. Synechocystis biofilm
formation has likewise been shown to be stimulated by blue light, likely via c-di-GMP [84]. Similar
wavelength-dependent effects have been described for aggregation in Thermosynechococcus vulcanus,
where the blue/green photoconvertible CBCR SesA induces aggregation in blue/UV light [85,86].
The SesB and SesC CBCRs in turn suppress T. vulcanus aggregation in red or green light [86].
Aggregate formation in Synechocystis and Thermosynechococcus may thus be, among other functions,
a protective measure against short-wavelength light, both by increased light attenuation in dense parts
of cyanobacterial aggregates [72] and by secretion of photoprotective extracellular matrix components
as seen in various cyanobacteria [43,87,88]. It has been proposed that particularly the regulation of
aggregation in response to the ratio of blue to green light by photoreceptors like Cph2 or the SesABC
system might also serve to sense cell shading and regulate the size of aggregates, as green light
penetrates deeper into cyanobacterial aggregates than blue light [71,89]. Enomoto and Ikeuchi [89]
have shown that T. vulcanus aggregation is dependent on initial culture density as would be expected
for such a system. A proposed model of this process is shown in Figure 3a. Some species of filamentous
cyanobacteria are known to move vertically within phototrophic mats with diurnal cycles and in
response to different light intensities [67,90] and wavelengths [91]. Cell shading sensors like blue/green
photoconvertible photoreceptors of Synechocystis and Thermosynechococcus [89] and direct light direction
sensing in Synechocystis may also enable cyanobacteria in complex communities to determine their
location within the community [37]. However, to our knowledge, little evidence exists of unicellular
cyanobacterial genera taking part in such migrations to date. Figure 2 shows a speculative model
of such migrations according to light gradients for single cellular cyanobacteria in a multi-species
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phototrophic mat. In this model, cyanobacteria migrate in the direction of incident light towards
the surface of the biofilm until blue light intensity relative to green light intensity is sufficient to
block further motility. Cyanobacteria near the surface of the biofilm would in turn migrate away
from UV-A radiation, which is strongly attenuated by the biofilm [91]. In this way, a zone might
form in phototrophic mats in which cyanobacteria accumulate, with precise depth likely depending
on the species. Cyanobacteria could thus control their light environment even within communities.
This model comes with the caveat of a lack of spatiotemporal data on motility and c-di-GMP levels in
aggregates of unicellular cyanobacteria.Life 2020, 10, x FOR PEER REVIEW 8 of 20 
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Figure 3. (a) Model of dynamic aggregation in Synechocystis and the Thermosynechococcus genus
depending on external factors such as light penetration. Small arrows denote aggregation or the
dissolution of aggregates. (b) Example of Synechocystis wt flocculation of a liquid culture in a 6-well plate
(imaged vertically) with autofluorescence displayed in inverted greyscale. (c) Confocal micrograph of a
Synechocystis floc, displaying autofluorescence in greyscale.
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Another example of unicellular cyanobacteria forming multicellular communities is S. elongatus
PCC 7942 biofilm formation. Intriguingly, S. elongatus PCC 7942 possesses an autoinhibitory system
controlling biofilm formation in a manner dependent on a PilB homologue and PilC [92]. Schatz et al.
(2013) found that when the T4P system was disrupted at the point of the motor ATPase or PilC,
the usually planktonic S. elongatus PCC 7942 formed biofilms at the bottom of culture vessels [92].

4. The T4P Apparatus Has Structural and Secretory Roles in Cyanobacterial
Community Formation

Many roles of T4P in biofilm development in heterotrophic bacteria have been established,
including patterning [93,94] and surface sensing [95,96]. In cyanobacteria, in contrast, research into T4P
involvement in multicellular aggregate formation has been more limited. In Synechocystis, thick pili
(via deletion of pilA1) and associated twitching motility were found to be non-essential for flocculation,
whereas PilB1, the RNA chaperone Hfq, PilC, and the minor pilins of the pilA9-slr2019 operon were
crucial for flocculation and mutants in any of the respective genes lost flocculation entirely [71,73].
It has been suggested that some minor pilins may be incorporated into T4P as has been found in
P. aeruginosa [97], with thin pili visible during electron microscopy potentially being composed of a
different set of pilins. Neuhaus et al. recently found that Thermus thermophilus produces pili with
different diameters that vary in pilin composition [18]. Synechocystis thin pili may thus likewise be
(partially) composed of minor pilins and play an important role in flocculation.

T4P have been implicated in mechanosensing in several species of heterotrophic bacteria, sensing
surface contact via downstream cAMP and c-di-GMP signalling and leading to enhanced surface
colonisation [95,96,98]. There is currently no evidence that a similar process occurs in Synechocystis
or other cyanobacteria, and neither PilA1 nor PilT1 being required for flocculation indicates that if
mechanosensing via retractile T4P exists in Synechocystis, it is not essential for flocculation.

Biofilm formation in S. elongatus PCC 7942 suggests an additional, secretory role for the T4P
apparatus [99]. Inactivation of the T4P apparatus leads to a biofilm phenotype in this cyanobacterium.
Notably, wt conditioned medium was able to restore planktonic growth in these mutants, indicating
that a small secreted factor inhibits biofilm formation in wt S. elongatus PCC 7942 [92]. In absence
of this putative factor, short peptidase-processed proteins are secreted by S. elongatus PCC 7942 and
support biofilm formation [100]. Although quorum sensing systems are widespread in proteobacteria
and often essential for biofilm formation [101], limited examples of quorum sensing systems exist in
cyanobacteria to date [102]. The suppression of S. elongatus PCC 7942 biofilm formation by secreted
factors may represent a non-traditional quorum sensing system, suggesting quorum sensing may be
more common in cyanobacteria than previously thought.

The type II secretion system (T2SS) is closely related to the T4P apparatus, with many T2SS protein
components showing functions equivalent to their T4P counterpart. A schematic comparison between
the architecture of T4P apparatus and the T2SS is shown in Figure 1. Although the S. elongatus PCC 7942
secretion ATPase deleted by Schatz et al. might be a homologue of either GspE or PilB [92], bioinformatic
analyses have suggested that cyanobacteria do not contain a T2SS and the S. elongatus PCC 7942 system
is rather a T4P system spread over multiple loci [103,104]. Denise et al. found that there are only two
species (both Gloeobacter) containing generic type IV filament systems in the cyanobacterial clade and
no dedicated T2SS at all, while type IVa pilus systems were found in 79 genomes, including various
filamentous and unicellular cyanobacterial species [104]. Considering the ambiguity in assignment of
the PilB-type ATPase responsible for the suppression of biofilm formation in S. elongatus PCC 7942,
the impact of the S. elongatus PCC 7942 PilB homologue on biofilm formation and general protein
secretion [99] suggests a secretory role of the T4P apparatus in biofilm formation in this cyanobacterium.
Involvement of the T4P apparatus in secretion is not without precedent in cyanobacteria. Secretion of
heterologous proteins in Synechococcus elongatus and other cyanobacteria has been suggested to proceed
via the T4P apparatus by an unknown mechanism [105,106]. Furthermore, accumulation of extracellular
PilA in N. punctiforme is connected with polysaccharide secretion via HmpF, PilB, and PilQ [6]. Cho et al.
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find that, particularly, loss of PilB and PilQ drastically reduces released polysaccharides and suggest
polysaccharide export through the T4P machinery [6], though regulation via mechanosensing or similar
T4P-mediated signalling mechanisms leading to downstream regulation of polysaccharide export by
second messenger signalling could also explain the observations. Recently, several new genes have been
identified in N. punctiforme encoding putative hormogonium polysaccharide (hps)-producing proteins,
including homologues of Wza, Wzc, and Wzy [107]. Zuniga et al. also showed a connection between
PilA secretion and the hps genes, with PilA secretion and motility depending strongly on several
identified genes, although the mechanism of this interaction remains unclear [107]. In Synechocystis,
polysaccharide export is substantially dependent on homologues of Wzm/Wzt [108] and Wza/Wzc [78],
which have been found to be important in cell–cell and cell–surface adherence and cell buoyancy
in Synechocystis, respectively. However, in contrast to N. punctiforme, no connection with the T4P
machinery is known to date. This suggests that polysaccharide secretion may be dependent on T4P
in some but not all species of cyanobacteria. Moreover, it has been shown that the homologue of
the RNA chaperone Hfq binds to PilB1 in Synechocystis and that its correct localization at the pilus
base is important for its function. Inactivation of hfq leads to non-motile cells and to changes in
transcript accumulation, which are similar in pilB1 and pilC mutant strains [109]. Hfq binds to a specific
C-terminal domain of PilB1, which is found only in cyanobacterial assembly ATPases of T4P. Therefore,
it is tempting to speculate that in general, in cyanobacterial mutants which do not form functional T4P,
secondary effects occur, for example due to the incorrectly localised Hfq protein.

5. Regulation of the T4P Machinery

Although pilus motors can be directly regulated by c-di-GMP as found for the Vibrio cholerae Msh
pilus [110], several other avenues of regulation exist, particularly at the transcriptional level. The second
messenger cyclic 3’-5’-AMP (c-AMP) is induced by blue light in Synechocystis via the adenylate cyclase
Cya1 [111], which is responsible for a large portion of intracellular cAMP production [112]. Which blue
light-receptor is involved in activating Cya1 is currently unclear. Furthermore, cya1 is downregulated
by elevated bicarbonate levels [113], showing the diverse regulatory inputs in cAMP signalling. Cya1
is known to be crucial in Synechocystis phototaxis, with cells unable to form the characteristic finger-like
projections in cya1 deletion mutants [112,114]. Sycrp1 and Sycrp2 are the Synechocystis versions of the
typical cAMP binding transcriptional regulator Crp known from many bacteria [115]. They propagate
the Cya1 signal downstream, regulating among others the pilA9-slr2019 operon and leading to a
loss of cell surface piliation when deleted [116]. The downregulation of the pilA9-slr2019 operon in
∆sycrp2 mutants and the putative cooperation between Sycrp1 and Sycrp2 observed by Song et al. are
sufficient to explain the impairment of motility in ∆cya1, ∆sycrp1 [115], and ∆sycrp2 [65,116] mutants.
The abundance of pilA11 mRNA and protein is further regulated by the PilR antisense RNA. PilR,
however, does not regulate pilA9, pilA10, or slr2018 expression, all part of the same operon as pilA11,
showing that regulation of minor pilins can be highly specific [117].

Other species of cyanobacteria contain adenylate cyclases showing homology to Synechocystis
cya1 [112]. Though the connection to cell piliation in those bacteria is not as well established as
in Synechocystis, cAMP signalling is involved in stress responses in other cyanobacteria such as
desiccation tolerance in Anabaena sp. PCC 7120 [118], and mat formation in Spirulina platensis,
both during extracellular cAMP addition [119] and when intracellular cAMP phosphodiesterases were
inhibited [120]. Uptake of extracellular cAMP and compensation for low intracellular cAMP have also
been observed in Synechocystis motility [114].

Several cyanobacteria have been confirmed to contain SigF, a stress response-related group 3
sigma factor, including many community-forming or filamentous species [121]. Although Imamura
and Asayama found SigF in all cyanobacteria investigated, only Synechocystis and N. punctiforme
SigF function has been characterised to date [121]. Synechocystis SigF is known to directly regulate
the transcription of the pilA1-pilA2 operon [122]. Deletion of sigF in Synechocystis correspondingly
leads to a reduction in pilA1-pilA2 mRNA and a loss of thick pili and phototactic motility [123,124].
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Furthermore, Flores et al. found that sigF deletion significantly alters the exoproteome, with many
proteins being present in reduced quantities or not at all [124]. Although this may indicate a connection
between T4P action and protein secretion, as has been found in S. elongatus PCC 7942, Flores et al.
also point out the large number of proteins of unknown function regulated by SigF, so definite
conclusions on protein export will require further characterisation [124]. The Synechocystis ∆sigF
mutant also shows an enhanced degree of cell sedimentation and flocculation [124], both in keeping
with the drastic increase in exopolysaccharide production and change in monosaccharide composition.
The increase in flocculation despite the downregulation of the pilA1-pilA2 operon confirms that the
major pilin PilA1 is not required in Synechocystis flocculation. Similarly, Miranda et al. have found
Synechocystis to flocculate in batch cultures when the gene slr1783, coding for a monooxygenase,
was deleted, leading to increased exopolysaccharide content [125]. The enhanced cellular aggregation
in exopolysaccharide-overproducing mutants poses the question of the relative importance of T4P and
exopolysaccharides in enabling Synechocystis flocculation depending on external conditions.

Similarly to Synechocystis, N. punctiforme SigF regulates pilA, which is very highly expressed
in hormogonia, with deletion of sigF leading to almost total loss of pilA mRNA [126]. Intriguingly,
all other T4P components investigated by Gonzalez et al. showed strong regulation by SigJ, rather
than SigF [126]. The Synechocystis sigF deletion mutant showed no differential regulation of other
components of the T4P [124], indicating that regulation of the major pilin specifically may be a common
feature of cyanobacterial SigF.

6. Cyanobacterial Natural Competence Requires T4P

The uptake of exogenous DNA, known as natural competence, allows cells to adapt to
environmental conditions through the exchange of situationally useful genes. Competence is known
to depend on functional T4P in several bacteria [81,127], with DNA binding by T4P likely occurring at
the pilus tip [128,129].

In Synechocystis, a close interplay between T4P and competence has also become evident.
Yoshihara et al. have shown that many core components of the T4P apparatus are required for
transformability in addition to their role in motility [9]. They also identified the comA gene, which,
when deleted, causes a complete loss of transformability but only has a moderate impact on thick
pili abundance and deletion mutants retain their motility [9]. Likewise, Nakasugi et al. identified a
homologue of the comF gene in Synechocystis, which also leads to loss of competence but does not
disrupt surface piliation when deleted [130]. ComF deletion, however, leads to a loss of motility [130].
This suggests a correlation between transformability and motility which was not apparent in the study
by Yoshihara et al. on the effects of comA deletion. However, Yoshihara et al. assessed motility only
from colony morphology, which may be less reliable than the colony motility assay method employed
by Nakasugi et al, which is now more widely favoured. Nonetheless, these findings suggest that
Synechocystis has DNA binding proteins which are required for natural transformability and which also
strongly influence pilus function. Intriguingly, Nakasugi et al. also report the formation of filamentous
aggregates in liquid cultures of comF deletion mutants matching the structures described in recent
work on Synechocystis flocculation [71]. They suggest that the increased bundling of pili in the ∆comF
mutant may be the cause of this flocculating phenotype, indicating that competence genes may be
important factors in controlling Synechocystis T4P morphology and multicellularity [71].

Similar dependence of natural transformation on parts of the T4P apparatus has been observed
in S. elongatus PCC 7942, including T4P motor proteins, comEA/comEC/comF homologues, and sigF,
showing that many similar factors are involved as in Synechocystis [16]. Intriguingly, S. elongatus
PCC 7942 is non-motile but naturally competent, asking questions about the cause of its deficiency in
phototaxis, the mechanism of its competence, or both. Taton et al. also discovered a strong dependence
of natural transformation on the circadian clock, likely via circadian control of the T4P machinery [16].
However, not all strains of Synechococcus are naturally competent, indicating some variability within
the genus [131].
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Although T4P in other naturally competent cyanobacteria have been suggested to be important in
natural transformation, for example in Microcystis aeruginosa PCC 7806 [132], Phormidium lacuna [133],
and Thermosynechococcus elongatus BP-1 [134], no direct link between T4P and competence in
these organisms has been made to date. Recent in silico approaches, however, have shown that
many cyanobacteria share high sequence similarity in their T4P genes with naturally competent
cyanobacteria [16,133], suggesting that T4P may enable natural transformation in many more
cyanobacterial genera than have been confirmed experimentally.

7. Concluding Remarks

Several unanswered questions on the involvement of T4P in cyanobacterial motility and
multicellularity remain. Particularly mechanosensing, emerging as a frequent feature among
heterotrophic bacteria, has not yet been demonstrated in cyanobacteria. Aggregation into biofilms, flocs,
and microbial mats is a more common strategy in cyanobacteria than previously thought, particularly
among laboratory strains such as Synechocystis or S. elongatus PCC 7942. The latter strain provides an
example of the dangers of relying on strains that exhibit potentially non-representative phenotypes
with the isolation of S. elongatus UTEX 3055, a very close relative of S. elongatus PCC 7942, indicating that
freshwater Synechococcus may be motile and natively community-forming. Thermosynechococcus vulcanus
NIES-2134 (RKN) and Thermosynechococcus elongatus BP-1 similarly are very closely related [135] and
yet show divergent aggregation phenotype, with T. elongatus BP-1 being deficient in aggregation [136],
illustrating the importance of selecting appropriate strains for research. The examples of S. elongatus
PCC 7942 and N. punctiforme have demonstrated that much is left to be understood about the secretory
roles of the T4P apparatus in cyanobacteria, providing potential avenues of cell–cell communication
which have so far been largely missing in the phylum.

The loss of motility in laboratory strains as a result of prolonged cultivation in particular is further
exemplified by the microevolution of Synechocystis laboratory strains [137]. We have likewise observed
in the past that at least some strains of the non-motile Kazusa branch of Synechocystis (ATC27184)
do not flocculate. It therefore seems prudent to be mindful of such pitfalls given the large areas of
cyanobacterial physiology that are yet to be thoroughly explored.

Research in the last few years has shown that cyanobacteria are capable of complex and co-operative
behaviour. Much remains to be learned about these behaviours and the survival advantages that they
may confer in the natural environment.
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