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Abstract: The Yangtze River Economic Belt (YREB) is a major national strategic development area
in China, and the development of the YREB will greatly promote the development of the entirety
China, so research on its agricultural production efficiency is also of great significance. This paper
is committed to studying the agricultural production efficiency of 11 provinces in the YREB and
adopts a combination of the Data Envelopment Analysis (DEA) model and the Malmquist index to
make a dynamic and static analysis on the YREB’s agricultural production efficiency from 2010 to
2019. Then, a three-stage DEA Malmquist model that eliminates the factors of random interference
and management inefficiency is compared to a model without elimination. The results show that
the adjusted technological efficiency changes, technological progress, and total factor productivity
increased by −0.1%, 0.24%, and 0.22%, respectively. When comparing these values to the pre-
adjustment values, the results indicate that the effect of environmental variables cannot be ignored
when studying the agricultural production efficiency of the YREB. At the same time, the differences in
the agricultural production efficiency in the YREB are reasonably explained, and feasible suggestions
are put forward.

Keywords: DEA model; Malmquist index; Yangtze River Economic Belt; agricultural production efficiency

1. Introduction

China is an advanced agricultural country, as it forms an important foundation for
economic development, social progress, and industrial structure adjustment [1]. Therefore,
the state has also issued a series of policies for the processes of agricultural development
to promote the sustainable and healthy development of agriculture. The Yangtze River
Economic Belt (YREB) includes 11 provinces and cities: Shanghai, Jiangsu, Zhejiang, Anhui,
Jiangxi, Hubei, Hunan, Chongqing, Sichuan, Guizhou, and Yunnan (Figure 1). Amongst
these provinces/cities, there are great differences in economic development level, industrial
structure, and agricultural production efficiency [2,3]. There are numerous studies on
the YREB. Wang et al. studied the emission reduction efficiency of PM2.5 in the YREB,
which is of great significance to the control of atmospheric environmental pollution [4].
Zhang et al. studied the relationship between the economic development and the pressure
of the water environment in the YREB [5]. Liu et al. analyzed the spatial distribution
characteristics and driving forces of total phosphorus emissions in the YREB, which is of
great significance to the treatment of phosphorus pollution in the YREB [6]. In addition,
agricultural issues in the YREB have also become an important research field. In 2018, the
state issued the Strategic Plan for Rural Revitalization (2018–2022) proposal, which was meant
to build a modern agricultural industrial system, realize the integrated development of
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rural primary, secondary and tertiary industries, promote rural strategic transformation,
and enhance the innovation and competitiveness of China’s agricultural industries. As
an important development strategy of the country, the YREB is also of great significance
to the nation’s agricultural economic development and agricultural production efficiency
(APE). Based on the dynamic and static analysis of agricultural production efficiency in
the 11 provinces included the YREB, this paper aims to study the regional differences
in agricultural development levels in the YREB territories and to put forward feasible
suggestions for the current agricultural development situation in this region and China.
The innovation of the presented paper is that a three-stage DEA model is used to study the
agricultural efficiency of the YREB, which eliminates environmental impact and random
impact, meaning that the results are more objective. In addition, spatio-temporal analysis
of agricultural efficiency can dynamically reflect the changing characteristics of agricultural
efficiency in the YREB.
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This paper is structured as follows: Section 2 contains the literature review, Section 3
contains the research methodology and data, Section 4 contain experimental procedure,
and Sections 5 and 6 contain the discussion and conclusion, respectively.

2. Literature Review

APE evaluation is very important to a country’s agricultural development level, and
there are a variety of ways to measure it. For example, Shah et al. used energy accounting
to analyze the sustainability of Pakistan’s agricultural production system, helping decision
makers understand the important role of ecosystems in agricultural production systems [7].
Guo et al. used labor, land, and capital as input variables and agricultural economic benefits
as output variables. There, they used the Stochastic Frontier Approach (SFA) model, spatial
correlation analysis method, and Tobit model to effectively evaluate the spatial layout of
agricultural production and APE optimization [8]. Li et al. used the data envelopment
analysis (DEA) model to estimate the technical efficiency and energy-saving potential of



Int. J. Environ. Res. Public Health 2022, 19, 958 3 of 15

China’s 30 provincial agricultural departments from 1997–2014 and concluded that there are
differences in APE in the eastern and western regions of China [9]. Agricultural efficiency
is also inseparable from the sustainable development of agriculture. As a case in point,
Laurett et al. used an exploratory factor analysis (EFA) model to explore the important
factors affecting the sustainable development of agriculture [10]. Valizadeh and Hayati
used factor analysis to measure the indicators of sustainable agricultural development [11].
Shen et al. decomposed the overall inefficiency into three components of technology and
the mixing and scale effect and conducted empirical research on the economic and envi-
ronmental performance and APE of 31 provinces in China from 1997–2014 [12]. Wang et al.
used multilateral total factor growth rate estimates to measure the differences in the pro-
duction efficiency of the agricultural sector in various regions of China [13]. Ma et al. used
spatial autocorrelation and econometric models in an analysis of China’s economic value
from 1990–2017 and found that China’s APE is generally low [14].

In the research on agricultural efficiency and factors affecting agricultural production,
the data envelopment analysis (DEA) model is one of the most widely used methods. Based
on the panel data from 2002 to 2015, Yu and Zhang used the ultra-efficient DEA model and
Malmquist index to measure and analyze the APE of Shandong Province, China [15]. Li et al.
used panel data from 30 administrative regions in China as the research objects, selected
a series of indicators as input and output variables, and used the DEA model to analyze
the agricultural total factor production efficiency of various provinces from 1997–2014 and
concluded that China’s agricultural total factor productivity showed a slow growth trend in
fluctuation [16]. In recent years, in order to evaluate agricultural efficiency more effectively,
some scholars have used and developed DEA models. Mosbah et al. converted the DEA
model into two twin input decomposition and output decomposition (i.e., ID-DEA and OD-
DEA) models and effectively evaluated agricultural efficiency [17]. Toma et al. estimated
the APE of EU countries from 1993 to 2013 based on the non-parametric Bootstrap DEA
model and concluded that from the perspective of resource conservation that the oldest
EU countries have higher APE [18]. Based on the global DEA model and the weighted
Russell distance function model, Liu and Feng used 30 provinces in China as a sample
to analyze green total factor productivity in the period from 2005 to 2016 and to propose
countermeasures for the development of green agriculture in China [19].

Another mainstream method for studying APE is the SFA. To demonstrate this, Deng
and Gibson used the Land Production Estimation System (ESLP) to estimate the land pro-
ductivity of Shandong Province in the period from 1990–2010 and analyzed the ecological
efficiency of sustainable agricultural production based on SFA [20]. Yigezu et al. used the
SFA model to measure the efficiency of agricultural irrigation water in Syria [21]. Ilaria et al.
evaluated agricultural efficiency using the heteroscedasticity stochastic frontier model with
Italian farm characteristics as input variables [22]. Villano and Fleming applied the SFA model
to a technical efficiency analysis of rice production and evaluated its production risks [23].

It can be seen that the DEA method can be used to evaluate the production or business
performance of decision-making units with multiple inputs and multiple outputs. The
DEA method does not need to specify the form of the production function of the input and
output, so it can evaluate the efficiency of decision-making units (DMU) with more complex
production relations [24,25]. In summary, this paper uses a combination of a three-stage
DEA model and the Malmquist index to study agricultural efficiency. According to the
experience of some scholars [26–29], this paper takes the sown area of crops, the number
of fertilizers, the agricultural practitioners, the total power of agricultural machinery and
the effective irrigation area as input variables and the total agricultural output value and
the output of main crops as output variables. At the same time, considering factors such
as random disturbance and management inefficiency, this paper incorporates the affected
crop areas, government subsidies, and gross regional product as environmental variables
into the model system, and scientifically analyzes and evaluates the APE of the YREB
(Figure 2) [30,31].
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Figure 2. Research methods for determining the agricultural efficiency in the YREB.

3. Data and Methodology
3.1. DEA Model

DEA is very popular model for dealing with multi-input and especially non-single
output [32]. This method can evaluate the relative effectiveness of decision-making units,
pays attention to optimizing each decision-making unit, and provides directional guidance
for the adjustment of relevant indicators. The more mature CCR model and the BCC model
are more frequently used in DEA. BCC assumes that the variable returns to scale, and the
model form is as follows:

s.t.



min θ
n
∑
j=i

λjxij + s+ = θxi0, i = 1, 2, . . . , m

n
∑
j=i

λjγij + s− = θγγ0, γ = 1, 2, . . . , m

λj ≥ 0, j = 1, 2, . . . , n
n
∑

j=1
λj = 1

s+ ≥ 0, s− ≤ 0

(1)

where θ is the efficiency value of the DMU decision-making unit, λj represents the combi-
nation ratio of the j-th decision-making unit DMU in a certain effective DMU combination,
xij is the total input of the j-th DMU to the i-th input, and γij is the j-th DMU. For the
total output of the i-th category output, S+ and S− represent the slack variable. If θ = 1,
S+ = S− = 0, then the DEA of the decision-making unit is valid, and it is on the leading
edge. If θ = 1, S+ 6= 0, or S− 6= 0, the DEA of the decision-making unit is weakly effective.
If θ < 1, then the DEA decision unit is not valid. The calculated efficiency value is compre-
hensive technical efficiency (TE), which can be further decomposed into scale efficiency
(SE) and pure technical efficiency (PTE).

3.2. Malmquist Index

Static DEA analysis can only analyze the efficiency value horizontally and cannot
show a dynamic trend. In order to reflect the agricultural development of the YREB more
comprehensively and intuitively, based on the static analysis, this paper introduces the
Malmquist index method, which deeply analyzes the agricultural development through
the changes in the cross-period efficiency value and then puts forward targeted counter-
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measures to promote the balanced development of agriculture in all of the YREB provinces.
The Malmquist index solution process is as follows:

M(xt, yt, xt+1, yt+1) = [
Dt

c(xt+1, yt+1)

Dt
c(xt, yt)

∗ Dt+1
c (xt+1, yt+1)

Dt+1
c (xt, yt)

]

1
2

=
Dt+1

c (xt+1, yt+1)

Dt
c(xt, yt)

∗ [ Dt
c(xt+1, yt+1)

Dt+1
c (xt+1, yt+1)

∗ Dt
c(xt, yt)

Dt+1
c (xt, yt)

]

1
2

= e f f ch ∗ techch

(2)

where xt and xt+1 are the input variables, yt and yt+1 are the output variables, and Dc is
a distance function. EFFCH represents changes in the technological efficiency, TECHCH
represents technological change, and EFFCH can be decomposed into the product of pure
technological efficiency change (PECH) and scale efficiency change (SECH).

3.3. Stochastic Frontier Approach

The Stochastic Frontier Approach (SFA) can eliminate the impact of environmental
variables and statistical noise on the effectiveness of a decision-making unit. Therefore, in the
second stage, the stochastic frontier model is mainly used to exclude environmental variables
and statistical noise, leaving only relaxation variables created by management inefficiency.

Step 1:
Sni = f (Zi, βn) + γni + µni (3)

Step 2:

XA
ni = Xni + [max( f (Zi, β̂n))− f (Zi, β̂n)] + [max(γ̂ni)− γ̂ni] (4)

where, sni represents the slack value of the decision-making unit, Zi represents the en-
vironmental variables, βn is the environmental variable coefficient, γni represents ran-
dom interference items, and µni represents management inefficiency. XA

ni represents
the input variable after adjustment, Xni represents the input variable before adjustment,
max

(
f
(
Zi, β̂n

))
− f

(
Zi, β̂n

)
represents the adjustment of all of the decision-making units

to the same external environment, and max(ν̂ni) − ν̂ni represents the adjustment of the
random errors of all of the decision-making units to the same situation.

3.4. Data

In this work, data are derived from the following sources: The China Statistical, City
Statistical and Provincial Statistical Yearbooks from 2011–2020. The data used include the
total sown area of crops, agricultural employees, agricultural fertilizer usage, total machin-
ery power, effective irrigation area, disaster areas, agricultural subsidies, and regional GDP.
Missing data were calculated via the interpolation of the adjacent year.

4. Agricultural Efficiencies of Each Province in the YREB
4.1. Static Analysis and Temporal and Spatial Evolution of Agriculture in the YREB

According to the provincial agricultural data from the YREB, this paper selects the
sowing area of crops, the amount of chemical fertilizer, agricultural employees, the total
power of agricultural machinery, and effective irrigation area as input variables, and the
total agricultural output value and the output of main crops as the output variables. The
APEs in 2010 and 2019 were analyzed using DEAP 2.1 software, and the following results
are obtained: Tables 1–3.

It can be seen that the technical efficiency, pure technical efficiency, and scale efficiency
of the provinces in the YREB are all on the rise, with the average values increasing by
3.7%, 2%, and 1.7%, respectively. In 2010, there were three provinces (Jiangxi, Yunnan, and
Guizhou) with increasing returns to scale in the YREB, three provinces (Hubei, Zhejiang,
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and Hunan) with diminishing returns to scale, and five provinces (Jiangsu, Anhui, Sichuan,
Chongqing, and Shanghai) with constant returns to scale. By 2019, only Hunan had
increasing returns to scale, with an additional three provinces (Hubei, Zhejiang, and
Yunnan) with diminishing returns to scale, and seven provinces (Jiangsu, Anhui, Sichuan,
Chongqing, Shanghai, Jiangxi, and Guizhou) with constant returns to scale. In order to
express the temporal and spatial evolution of agricultural efficiency more intuitively in the
YREB, this paper used ArcGIS 10.2 to plot the changes in the technical efficiency, pure technical
efficiency, and scale efficiency in each province in 2010 and 2019, as shown in Figures 3–5.

Table 1. APE in 2010 and 2019.

Year 2010 2019

Province CRSTE VRSTE Scale CRSTE VRSTE Scale

Jiangsu 1 1 1 — 1 1 1 —
Anhui 0.896 0.896 1 — 1 1 1 —

Sichuan 1 1 1 — 1 1 1 —
Hubei 0.916 1 0.916 drs 0.865 0.866 0.999 drs

Chongqing 1 1 1 — 1 1 1 —
Shanghai 1 1 1 — 1 1 1 —
Zhejiang 0.766 1 0.766 drs 0.751 1 0.751 drs
Hunan 0.915 1 0.915 drs 0.838 0.84 0.999 irs
Jiangxi 0.8 0.81 0.987 irs 1 1 1 —
Yunnan 0.812 0.829 0.979 irs 0.972 1 0.972 drs
Guizhou 0.916 0.942 0.972 irs 1 1 1 —

Mean 0.911 0.953 0.958 0.948 0.973 0.975
Note: CRSTE represents technical efficiency; VRSTE represents pure technical efficiency; scale represents scale
efficiency; drs represents diminishing returns to scale; irs represents increasing returns to scale; and—represents
constant returns to scale.

Table 2. Evaluation of unadjusted APE in the YREB from 2010–2019.

Year EFFCH TECHCH PECH SECH TFPCH

2010–2011 0.967 1.031 0.972 0.995 0.996
2011–2012 1.02 0.964 1.014 1.006 0.983
2012–2013 1.017 1.02 1.02 0.997 1.037
2013–2014 1.017 1.014 1.028 0.989 1.031
2014–2015 1.003 1.01 0.994 1.009 1.013
2015–2016 0.997 1.012 0.986 1.012 1.009
2016–2017 1.004 1.021 0.995 1.01 1.025
2017–2018 1.014 1.023 1.02 0.994 1.037
2018–2019 1.001 1.018 0.996 1.005 1.019

Mean 1.004 1.012 1.003 1.002 1.017

Table 3. Same as Table 2, but for unadjusted APE.

Province EFFCH TECHCH PECH SECH TFPCH

Jiangsu 1 0.99 1 1 0.99
Anhui 1.012 1.02 1.012 1 1.033

Sichuan 1 1.005 1 1 1.005
Hubei 0.994 0.999 0.984 1.01 0.993

Chongqing 1 1.008 1 1 1.008
Shanghai 1 1.007 1 1 1.007
Zhejiang 0.998 1.027 1 0.998 1.025
Hunan 0.99 1.021 0.981 1.01 1.011
Jiangxi 1.025 0.996 1.024 1.001 1.021
Yunnan 1.02 1.02 1.021 0.999 1.04
Guizhou 1.01 1.043 1.007 1.003 1.053

mean 1.004 1.012 1.003 1.002 1.017
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4.2. The First Stage DEA-Malmquist

According to the principles and calculations of Equations (1) and (2), which were
made using the DEAP 2.1 software, the initial APE evaluation results for each province
in the YREB (Table 2) and the total efficiency changes in the YREB from 2010–2019 were
obtained (Table 3).

(I) From the perspective of technological progress, with the exception of the fact that
the technological progress in the YREB from 2011 to 2012 was less than 1, the technological
progress of other years was greater than 1, indicating that the technological progress of
the YREB was generally at a high level, which promoted total factor productivity progress.
Looking at each province individually, only Jiangsu, Hubei, and Jiangxi have technological
progress less than 1 from 2010–2019. Other provinces have technological progress that
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is greater than 1, and the overall average value is 1.012, which represents a relatively
high level. (II) On the whole, from 2010–2019, the APE index of the YREB has alternately
increased and decreased, but the efficiency index has become more and more stable, and
there is an overall increasing trend. With the exception of the efficiency values of Jiangsu
and Hubei provinces, which are less than 1, the efficiency values of the other provinces
are all greater than 1. It can be seen that the main driving factor of APE in the YREB is
technological progress. In order to see the changes in the total factor productivity in the
YREB more intuitively, this article uses a histogram to show it more clearly (Figure 6):
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4.3. SFA Regression in the Second Stage

Table 4 shows the impact of the environmental variables on agricultural production-
related inputs. As shown in the table, environmental variables have an impact on the five
input factors, and most of them are positive. The γ values of the five input slack variables
are 0.64, 0.61, 0.05, 0.71, and 0.67, respectively. Four of them are greater than 0.6 and are at a
relatively high level, indicating that the environmental variables have a significant impact
on their input indicators, and the LR likelihood tests all passed the 1% significance level.
Therefore, it is necessary to study the impact of environmental variables on input and to
eliminate them to make the research results more objective and accurate. When the impact
coefficient of the environmental variables on the input variables is positive, such as the
impact coefficient of disaster areas on crop sowing area being (0.027), which is positive, it
shows that increasing the number of environmental variables will reduce the difference
variable; that is, the impact of disaster area on APE will be negative. When the influence
coefficient of the environmental variables on the input variables is negative, such as when
the influence coefficient of regional GDP on total mechanical power is (−0.011), it indicates
that increasing the number of environmental variables will increase the difference variable;
that is, an increase in the regional GDP will have a positive impact on APE.

4.4. The Third Stage of DEA-Malmquist

After SFA regression in the second stage, the input variables are adjusted by Equation (4),
and then DEA analysis is carried out according to the same method used in the first stage
to obtain the adjusted APE of the provinces in the YREB in period from 2010–2019. The
results are presented in Tables 5 and 6.
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Table 4. SFA regression results.

Explanatory
Variables

Explained Variable

A1 A2 A3 A4 A5

Constant −196.07 −39.49 −8.31 61.79 −333.69
B1 0.027 −0.0012 −0.0005 0.046 0.04
B2 −0.049 −0.001 0.0142 0.255 0.265
B3 0.003 −0.0006 −0.0001 −0.011 0.0003
σ2 135,336.16 100,262.99 402.87 401,350.78 146,890.70
γ 0.64 0.61 0.05 0.71 0.67

LR test 47.26 36.72 53.95 50.43 50.34
Note: A1 represents the total sown area of crops; A2 represents agricultural employees; A3 represents agricultural
fertilizer usage; A4 represents total machinery power; A5 represents effective irrigation area; B1 represents disaster
area; B2 represents agricultural subsidies; and B3 represents regional GDP.

Table 5. Evaluation of adjusted APE in the YREB from 2010 to 2019.

Year EFFCH TECHCH PECH SECH TFPCH

2010–2011 0.977 1.075 0.99 0.987 1.05
2011–2012 1.006 1.025 1.004 1.001 1.031
2012–2013 1.032 1.032 1.013 1.019 1.066
2013–2014 1.017 1.024 1.015 1.003 1.042
2014–2015 0.995 1.044 0.996 0.999 1.038
2015–2016 0.998 1.02 0.989 1.009 1.017
2016–2017 0.993 1.036 0.996 0.998 1.029
2017–2018 1.025 1.016 1.015 1.01 1.041
2018–2019 0.987 1.051 0.998 0.989 1.037

Mean 1.003 1.036 1.002 1.001 1.039

Table 6. Evaluation of the adjusted APE of the provinces in the YREB from 2010 to 2019.

Province EFFCH TECHCH PECH SECH TFPCH

Jiangsu 1 1.004 1 1 1.004
Anhui 1.009 1.021 1.008 1.001 1.031

Sichuan 1 1.033 1 1 1.033
Hubei 0.984 1.028 0.989 0.995 1.012

Chongqing 1.009 1.018 1 1.009 1.027
Shanghai 0.945 1.069 1 0.945 1.01
Zhejiang 1 1.06 1 1 1.06
Hunan 0.978 1.062 0.987 0.991 1.038
Jiangxi 1.023 0.996 1.02 1.003 1.02
Yunnan 1.034 1.052 1.014 1.02 1.088
Guizhou 1.057 1.051 1.002 1.054 1.111

Mean 1.003 1.036 1.002 1.001 1.039

Similarly, the adjusted APE of the YREB will be evaluated in three aspects. (I) From the
perspective of changes in technical efficiency, the overall technical efficiency changes in the
YREB from 2010 to 2019 show a downward trend, and the changes in technical efficiency in
various provinces fluctuate around 1, which is also because the pure technical efficiency
and scale efficiency are basically unchanged. (II) From the perspective of technological
progress, the technological progress of the YREB is almost greater than 1, which is also the
main driving force to promote changes in total factor productivity. However, from 2010
to 2019, the technological progress of the YREB changed from an increase to a decrease,
but it remained at generally high levels. (III) As for the total factor productivity of the
YREB, the change in the total factor productivity also shows an alternating change of a rise
and fall from 2010 to 2019, which was mainly affected by technological progress. It can be
seen that the technological progress of the YREB directly affects changes in the total factor
productivity and plays a leading role [33–35].
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5. Results and Discussion

Compared to the first stage, the changes in the technical efficiency, technological
progress, and total factor productivity after adjustment increased by −0.1%, 0.24%, and
0.22%, respectively, indicating that the impact of environmental variables cannot be ignored
and that they will have a great impact on the APE. As discussed by Fei [36] and Li [37],
agricultural production is affected by various environmental factors. Among them, the
change in technical efficiency has a negative effect on the efficiency of agricultural produc-
tion. Specifically, the technical efficiency of Hunan, Hubei, and Shanghai is less than 1,
representing a low level, resulting in low total factor productivity. Therefore, these cities
should focus on improving technical efficiency. The total factor productivity of Zhejiang,
Yunnan, and Guizhou is higher than the average value of the YREB, indicating that there is
no large input redundancy phenomena in these three provinces, and the APE is high.

DEA analysis was conducted for the adjusted input–output variables for 2019. Taking
technical efficiency as the abscissa and scale efficiency as the ordinate, the decomposition
diagram of the comprehensive efficiency of the 11 provinces and cities in the YREB was
determined and was divided into four categories, as shown in Figure 7 and Table 7. The
first category is a double low type of technical efficiency and scale efficiency, which can
be seen in Shanghai, Chongqing, and Hunan. These three cities need to continue to
improve their technical capabilities and technical levels to improve their local APE. The
second and third categories include Hubei Province, which has a low technical level, and
Jiangxi Province, which as low scale efficiency. These two cities have some deficiencies
in terms of technical efficiency and scale efficiency, respectively, so they can learn from
each other. The fourth category is a double high type of technical efficiency and scale
efficiency, and these are represented by Jiangsu, Anhui, Sichuan, Zhejiang, Yunnan, and
Guizhou. If these cities want to further improve their agricultural efficiency, then they must
develop new technologies and innovative agricultural means, such as the introduction of
new agricultural technologies, the promotion of agricultural mechanized production, the
reduction of as many agricultural and human costs as possible, and the optimization of the
layout of the agricultural industry.
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Table 7. Four categories of provinces/cities.

Category Province/City

I Shanghai, Chongqing, Hunan
II Hubei
III Jiangxi
IV Jiangsu, Anhui, Sichuan, Zhejiang, Yunnan, Guizhou

Throughout the YREB, the APE of provinces and cities is generally at a high level
because the YREB is a major strategic area for national development. Promoting the de-
velopment of agricultural production in the YREB; forming a pattern of complementary
advantages, cooperation, and interaction between upstream, middle, and downstream
areas; and narrowing the development gap between the east, central, and western re-
gions is conducive to a new path towards innovative and green agricultural development.
Therefore, according to the current agricultural development situation in the YREB, this
paper puts forward the following suggestions: First, the government should implement the
strategy of differentiated development to promote the balanced development of regional
agriculture, especially in areas with low agricultural efficiency, such as in Jiangsu, Hubei,
Shanghai, and so on. These areas should improve production conditions as guidance,
strengthening deep cultivation and fine farming ability, developing fine agriculture, tap-
ping into the characteristic agricultural products with great potential and high efficiency,
and improving product quality and influence [38,39]. At the same time, these areas need to
introduce excellent varieties, build high-standard farmland, cultivate high-quality main
production areas, and realize the multi-layer superposition of benefits. In addition, the
government should strive to improve the technical level of these areas, promote agricul-
tural innovative development, and narrow the gap in agricultural development among
regions. Second, the government needs to improve the level of regional financial support
for agriculture. Local financial expenditure on agriculture, forestry, and water has a positive
effect on agricultural efficiency. Agricultural subsidies in Chongqing, Shanghai, and Jiangxi
are low, so they also have a certain impact on the improvement of agricultural efficiency.
Therefore, on the one hand, the agricultural sector should strengthen its financial support
for agriculture in order to improve the government’s attention to agricultural development.
On the one hand, the state council should also standardize the management and process
acquiring agricultural support for agriculture and should strengthen the construction of
corresponding laws and regulations to ensure that the support funds are scientific, reason-
able, and smooth. Third, the provinces located in the YREB may be affected by natural
disasters, resulting in the APE not reaching the expected level, especially in provinces
with high agricultural sowing areas, such as Yunnan, Hunan, and Hubei. The government
should pay attention to the affected area and scope of crops, improve agricultural policies,
and introduce financial and insurance services to the agricultural sector, minimize losses
in the process of agricultural development, and improve APE. Fourth, it is necessary to
deepen the reform of the government system, strengthen government supervision, and
rationally allocate agricultural resources. Even though the industry sector plays a leading
role in agricultural product planting, processing, tourism, and other industries, it should
also focus on the joint development of rural primary, secondary, and tertiary industries, the
innovation of new models of agricultural development, the creation of regional advantages,
and build core competitiveness in local agricultural development [40,41].

6. Conclusions

As it is an important national development strategy, the research on agricultural
efficiency is of great economic significance. This paper makes a dynamic and static analysis
on the agricultural efficiency of the YREB from 2010–2019 through a three-stage DEA
Malmquist model. First, this paper makes a static analysis on the agricultural efficiency
of provinces in the YREB and clearly shows the differences in the APE through the use of
a spatiotemporal evolution diagram. Then, it provides a dynamic analysis on the APE of
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the YREB from 2010–2019 and studies the differences in the agricultural efficiency in the
YREB by using the combination of the DEA and Malmquist index without excluding the
influencing factors of environmental factors and random disturbance, with the APE of the
YREB showing an increasing trend in terms of fluctuation=; however, the APE of Jiangsu
and Hubei is low due to environmental factors. Then, SFA was used to eliminate the impact
of environmental variables and statistical noise on the effectiveness of the decision-making
unit in the second stage. The environmental variables include affected area, regional GDP,
and agricultural subsidies. The results of the stochastic frontier show that the γ value and
LR unilateral detection are significant. Therefore, it is necessary to eliminate environmental
factors and statistical noise factors to further analyze the APE of the YREB. Finally, the third
stage DEA Malmquist model is used to study the APE of the YREB. It was determined
that the agricultural development level of the entire YREB is better. Compared to the
results of the first stage, environmental variables affected the development of agricultural
production to a certain extent. After excluding the influencing factors of the environmental
variables, this paper was divided into four categories according to the differences in the
agricultural efficiency values among the provinces and cities in the YREB and then put
forward problems and guiding suggestions for agricultural development according to
the different categories. In short, in-depth research on regional agricultural efficiency
is beneficial for the government to make effective policy, which can promote the rapid
agricultural development.

Based on these results and discussions, changes and drivers of agricultural efficiency
can be further analyzed:

(a) The overall agricultural production efficiency of Shanghai, Chongqing, and Hunan
is relatively low. The reason for this is that Shanghai and Chongqing are municipalities
that are directly under the central government of the YREB, and their geographical area
is relatively small, resulting in a decrease in the sown area of crops and the number of
farmers. Hunan is located in the middle reaches of the YREB, and natural disasters are
relatively serious, resulting in low agricultural efficiency, which is also demonstrated in the
observation data.

(b) Although Jiangxi’s agricultural scale efficiency is relatively good, its overall effi-
ciency is relatively low, and the total agricultural output value is not high. Because Jiangxi
has more agricultural planting areas but less local agricultural subsidies, farmers lack
high levels of enthusiasm and motivation. The total agricultural factor productivity is
low. Therefore, government subsidies are also crucial for the improvement of agricultural
production efficiency.

(c) The reason for the low agricultural efficiency in Hubei is technical efficiency.
The agricultural irrigation technology and machine power in this province are relatively
low compared to other provinces and cities. Therefore, in order to improve agricultural
production efficiency in Hubei, it is necessary to improve the local technical level.

(d) The agricultural production efficiency of Jiangsu, Anhui, Zhejiang, Sichuan, Yun-
nan, and Guizhou were able to reach optimal levels. The internal factors permitting this
are the superior geographical location, high agricultural scale efficiency, and advanced
agricultural technology that these provinces. The external factors are that these provinces
have a low frequency of natural disasters and high government subsidies. Therefore, the
input–output ratio of agriculture was able to reach a reasonable state. If these areas want to
further improve their agricultural production efficiency, they need to implement innovative
agricultural development strategies.

APE represents the degree of agricultural development. According to the above
conclusions some suggestions to realize the development of agricultural production are
discussed below:

Increase infrastructure construction and consolidate the foundation of agricultural
development. First, the agricultural production sector should calculate the sowing area,
production conditions, and resource distribution of local agriculture and should adjust the
agricultural scale on the premise of ensuring reasonable output. Second, provinces and
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cities in the YREB should strengthen the construction of farmland and water conservancy
facilities, carry out production technologies such as intelligent irrigation and energy-saving
drainage, and improve production conditions and further consolidate the foundation of
agricultural production. At the same time, regions should develop mixed agriculture
according to local conditions, promoting the comprehensive utilization and development
of farmland and achieving a win-win situation for scale and efficiency, quality, and quantity.
Third, the agricultural market should strengthen the factor input guarantee mechanism, op-
timize the input–output structure, improve the resource transformation efficiency, promote
the efficient transformation of factors, and ensure the balance of agricultural output.

Accelerate the process of market-oriented allocation of factors such as labor, land,
energy, and water resources. All regions should reduce the resource waste caused by the
factor mismatch and imbalance of the demand and supply structure, strengthen the con-
struction of modern agricultural facilities in the YREB, constantly improve the production
capacity of agricultural development, and make the market play a decisive role in the
allocation of resource factors.

Improve the agricultural structure and mechanism and promote the transformation
and upgrading of agriculture. First, the government should strengthen the construction
of agricultural parks, guide the convergence of resource elements, radiate, and drive the
landing of surrounding facilities to solve problems related insufficient resources, scattered
facilities, and weak industries in rural areas to improve the level of agricultural develop-
ment. Second, leading enterprises should be guided to cooperate with small farmers, which
will result in the implementation of the integrated development strategy for production
and marketing, will constantly expand market capacity and sales channels, and will solve
the problems of slow and difficult sales of agricultural products. Third, the market needs
to open factor circulation channels, guide the flow of advantageous resources to weak
areas, promote the free flow of factors, and realize the effective integration and sharing of
regional resources.
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