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Abstract

Multiple genome-wide and targeted association studies reveal a significant association of variants in the CHRNA5-CHRNA3-
CHRNB4 (CHRNA5/A3/B4) gene cluster on chromosome 15 with nicotine dependence. The subjects examined in most of these
studies had a European origin. However, considering the distinct linkage disequilibrium patterns in European and other ethnic
populations, it would be of tremendous interest to determine whether such associations could be replicated in populations of
other ethnicities, such as Asians. In this study, we performed comprehensive association and interaction analyses for 32 single-
nucleotide polymorphisms (SNPs) in CHRNA5/A3/B4 with smoking initiation (SI), smoking quantity (SQ), and smoking cessation
(SC) in a Korean sample (N = 8,842). We found nominally significant associations of 7 SNPs with at least one smoking-related
phenotype in the total sample (SI: P = 0.015,0.023; SQ: P = 0.008,0.028; SC: P = 0.018,0.047) and the male sample (SI:
P = 0.001,0.023; SQ: P = 0.001,0.046; SC: P = 0.01). A spectrum of haplotypes formed by three consecutive SNPs located
between rs16969948 in CHRNA5 and rs6495316 in the intergenic region downstream from the 59 end of CHRNB4 was
associated with these three smoking-related phenotypes in both the total and the male sample. Notably, associations of these
variants and haplotypes with SC appear to be much weaker than those with SI and SQ. In addition, we performed an
interaction analysis of SNPs within the cluster using the generalized multifactor dimensionality reduction method and found a
significant interaction of SNPs rs7163730 in LOC123688, rs6495308 in CHRNA3, and rs7166158, rs8043123, and rs11072793 in
the intergenic region downstream from the 59 end of CHRNB4 to be influencing SI in the male sample. Considering that fewer
than 5% of the female participants were smokers, we did not perform any analysis on female subjects specifically. Together,
our detected associations of variants in the CHRNA5/A3/B4 cluster with SI, SQ, and SC in the Korean smoker samples provide
strong evidence for the contribution of this cluster to the etiology of SI, ND, and SC in this Asian population.

Citation: Li MD, Yoon D, Lee J-Y, Han B-G, Niu T, et al. (2010) Associations of Variants in CHRNA5/A3/B4 Gene Cluster with Smoking Behaviors in a Korean
Population. PLoS ONE 5(8): e12183. doi:10.1371/journal.pone.0012183

Editor: Katrina Gwinn, National Institutes of Health, United States of America

Received January 7, 2010; Accepted July 21, 2010; Published August 16, 2010

Copyright: � 2010 Li et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported in part by the National Research Laboratory Program of the Korea Science and Engineering Foundation (M10500000126), a
grant from the National Institute of Health of Korea (2008-E00355-00) to TP, and National Institutes of Health grants DA-12844 and DA-13783 to MDL. The work of
TP was supported by the Consortium for Large Scale Genome Wide Association Study (2008-E00355-00), the National Research Foundation (KRF-2008-313-
C00086) and the Brain Korea 21 Project of the Ministry of Education. The KARE data analyzed in this study were obtained from the Korean Genome Analysis
Project (4845-301) which was funded by a grant from the Korea National Institute of Health (Korea Center for Disease Control, Ministry for Health, Welfare and
Family Affairs), Republic of Korea. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: Ming_Li@virginia.edu (MDL); tspark@stats.snu.ac.kr (TP)

Introduction

There are about 1.3 billion smokers worldwide, and the

mortality burden from tobacco use has been estimated to exceed

6 million annually [1]. In Korea, male smoking prevalence is

among the highest in the world [2]. In 2000, the prevalence was

estimated to be 68% among men and 3% among women [2]. The

number of deaths attributable to smoking-related diseases in

Korea is about 35,000 each year, and the economic loss from

premature death from smoking-related diseases exceeded 3 trillion

won (approximately US $2.5 billion) in the year 2000 [3].

Nicotine is the psychoactive substance in tobacco that causes

addiction. Many of those who want to quit smoking do not seek

treatment but are unable to quit on their own [4]. Evidence for

moderate heritabilities of smoking initiation (SI), nicotine dependence

(ND), and smoking cessation (SC) has led to intensive efforts to identify

susceptibility loci for these complex behavioral phenotypes [5,6,7,8].

The psychopharmacologic effects of nicotine are mediated primarily

by functionally diverse neuronal nicotinic acetylcholine receptors

(nAChRs), a family of ligand-gated ion channels widely distributed in

the brain [9,10,11]. Because of their unique functions, genes encoding

various nAChR subunits have been proposed as plausible candidates

for genetic studies of ND. Several subunit genes have been investigated

for associations with ND as well as other smoking-related behaviors in

human subjects (for reviews, see [12,13]).

Initially, Saccone et al. [14] reported associations of multiple

single nucleotide polymorphisms (SNPs) in the CHRNA5/A3/B4

gene cluster with ND, with the smallest P value of 0.00064 for

rs16969968 (D398N) in exon 5 of CHRNA5. However, the

significance of these results did not survive correction for multiple
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testing. Shortly after the initial publication, rs1051730 (Y215Y) in

exon 5 of CHRNA3 was reported to be significantly associated at a

genome-wide level with smoking quantity (SQ) [15] and lung

cancer (LC) [15,16,17]. Several other genome-wide and candidate

gene-based association studies provided further evidence for the

association of variants of the CHRNA5/A3/B4 cluster with various

nicotine-related behaviors [14,18,19,20,21,22,23,24,25]. In con-

trast, other studies have failed to reveal a significant association of

this gene cluster with ND or other smoking-related phenotypes

[26,27].

Considering that (1) the participants in most of these studies were

primarily European Americans or of European origin, with the

exception of two studies on African Americans [18,28], and (2) there

are distinct differences in linkage disequilibrium (LD) patterns across

different ethnic populations [12], it is of tremendous interest to

determine whether variants in this gene cluster play any role in the

etiologies of smoking behavioral phenotypes in other ethnic groups.

Thus, the major objective of this study was to test for such genetic

effects in a large population-based Korean sample.

Results

Description of KARE sample in its relation to smoking
behaviors

Of the 8,842 subjects, 4,205 were recruited from Ansung and 4,637

from Ansan, Korea. Their average ages were 55.668.74 (standard

deviation; SD) and 49.167.86 years, respectively. Although 52.7% of

the participants (N = 4,659) were female, only 4.93% of these were

considered either former (1.34%), light (1.29%), or habitual (2.30%)

smokers. In contrast, 80.62% of the male subjects were smokers, with

31.05% being former smokers, 4.78% light smokers, and 44.79%

habitual smokers. For those habitual smokers, the average number of

cigarettes smoked per day (CPD) was 19.5168.74 for male and

11.9367.28 for female smokers. A detailed description of the

characteristics of all subjects is presented in Table 1.

Individual SNP-based association analysis
Among the 36 SNPs genotyped for the 15q24-15q25.1 region

in CHRNA5/A3/B4, only 32 had a minor allele frequency (MAF)

of .0.01. Considering the differences in LD patterns of the region

across multiple ethnic samples and to have a better understanding

of the LD landscape within this region in the Korean vs. the other

ethnic populations, Table S1 provides a detailed list of all

genotyped SNPs for the total and male samples. However, only

those 32 SNPs with MAFs .0.01 were used in the association

analyses for the three smoking-related phenotypes.

Associations of individual SNPs with the three phenotypes were

determined with the PLINK program [29], and the results are shown

in Table 2. Altogether, we found 7 SNPs that had nominally

significant associations with at least one smoking-related phenotype in

either the total or the male sample. In the total sample, we found that

the A allele of rs951266 in CHRNA5 was nominally significantly

associated with SI (P = 0.023; odds ratio [OR] = 1.32; 95%

confidence interval [CI]: = 1.04, 1.67) and SQ (P = 0.008;

OR = 1.48; 95% CI: 1.11, 1.98), and the G allele of rs11072768 in

CHRNB4 was nominally significantly associated with SI (P = 0.015;

OR = 1.14; 95% CI: 1.03, 1.27), SQ (P = 0.028; OR = 1.17; 95% CI:

1.02, 1.34), and SC (P = 0.018; OR = 1.16; 95% CI: 1.03, 1.31).

Furthermore, the associations of SNPs rs8043123 (C), rs4887077 (T),

and rs11638372 (T) with SQ and the association of rs2869550 (C)

with SC reached nominal significance.

In the male sample, the G allele of rs11072768 in CHRNB4 was

nominally significantly associated with SI (P = 0.001; OR = 1.22;

95% CI: 1.08, 1.37), SQ (P = 0.016; OR = 1.16; 95% CI: 1.03,

Table 1. Demographic characteristics of study subjects.

Category Sub-Category Ansung Ansan Total

Sample Size (N) 4,205 4,637 8,842

Male/female (%) 1,809 (43)/
2,396 (57)

2,374 (51.2)/
2,263 (48.8)

4,183 (47.3)/
4,659 (52.7)

Mean age (years)6SD 55.6068.74 49.0867.86 52.2268.92

Smoking status (Total sample) Never smoked 2,492 2,651 5,143

Mean CPD for ‘‘Former Smokers’’
6 SD (N)

18.88611.88
(512)

19.11612.14
(842)

19.02612.04
(1,354)

Number of occasional smokers 155 103 258

Mean CPD for ‘‘Habitual Smokers’’ 6 SD (N) 19.3368.41
(950)

18.9169.20
(1,020)

19.1168.83
(1,970)

Smoking status (Male sample) Never smoked 306 501 807

Mean CPD for ‘‘Former Smokers’’ 6 SD (N) 19.60611.76
(481)

19.52612.06
(812)

19.55611.94
(1,293)

Number of occasional smokers 118 81 199

Mean CPD for ‘‘Habitual Smokers’’ 6 SD (N) 19.8168.20
(887)

19.2369.19
(978)

19.5168.74
(1,865)

Smoking status (Female sample) Never smoked 2,186 2,150 4,336

Mean CPD for ‘‘Former Smokers’’ 6 SD (N) 6.3564.96
(31)

7.0767.53
(30)

6.7266.35
(61)

Number of occasional smokers 37 22 59

Mean CPD for ‘‘Habitual Smokers’’ 6 SD (N) 12.4268.30
(63)

11.1865.34
(42)

11.9367.28
(105)

doi:10.1371/journal.pone.0012183.t001
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1.31), and SC (P = 0.01; OR = 1.18; 95% CI: 1.04, 1.34), and

rs951266 (A) in CHRNA5 and rs6495308 (T) in CHRNA3 were

nominally significantly associated with SI and SQ, respectively. In

addition, we found that SNPs rs4887077 (T) and rs11638372 (T)

in the intergenic region downstream from the 59 end of CHRNB4

were nominally significantly associated with SQ. Of these

associations, only that of rs951266 in CHRNA5 with SQ and

rs11072768 in CHRNA4 with SI remained significant after

correction for multiple testing.

We did not perform the association analysis on the female

sample because fewer than 5% of these subjects smoked, such that

the sample was too small to derive any meaningful conclusions.

Haplotype block structure and LD analysis
The pair-wise D’ values of 32 SNPs within CHRNA5/A3/B4

were determined using the Haploview program [30]. On the basis

of the block definition proposed by Gabriel et al. [31], we found

three discernible haplotype blocks within the cluster in the total

sample (Figure 1). The first block, with a size of about 10 kb,

contains four SNPs between rs169669920 and rs7163730; the

second block, with a size of 46 kb, contains 12 SNPs; the third

block, with a size of 23 kb, contains only two SNPs — rs11072793

and rs11072794. Considering that (1) no haplotype block was

detected within a genomic region of about 108 kb between

rs481134 and rs6495316, and (2) the three discernible haplotype

blocks did not correspond to the defined genes within this region,

we decided to perform haplotype-based association analysis using

a sliding window approach with a window size of three consecutive

SNPs [32], as described in the following section.

Haplotype-based association analysis
Using the Haplo.stats R statistics package [33], we performed

haplotype-based association analysis for the three smoking-related

phenotypes in both the total and male samples (Tables 3 and 4). In

the total sample, we found five major haplotypes between SNPs

rs16969948 in CHRNA5 and rs6495316 in the intergenic region

downstream from the 59 end of CHRNB4 that were significantly

associated with SI under the additive or dominant model. Of these

haplotypes, two were positively, and the remaining three were

negatively, associated with SI, with P values ranging from 0.013

for the haplotype ACT, formed by rs950776-rs11072768-

rs7166158, to 0.047, for the haplotype TCC, formed by

rs16969948-rs481134-rs951266.

For SQ, we found seven major haplotypes between SNPs

rs16969948 in CHRNA5 and rs6495316 in the intergenic region

downstream from the 59 end of CHRNB4 that showed significant

associations. Of these haplotypes, two were positively, and the

remaining five were negatively, associated with SI, with a P value

ranging from 0.014 for the haplotype CCT, formed by rs481134-

rs951266-rs514743, to 0.044 for the haplotype GGA, formed by

rs4887077-rs11638372-rs6495316. Although we performed iden-

tical association analyses for SC, we found no significant

haplotypes in the total sample. By comparing significant

haplotypes with SI and SQ, we found four haplotypes, GAA

(rs6495308-rs950776-rs11072768), ACT (rs950776-rs11072768-

rs7166158), CTC (rs11072768-rs7166158-rs8043123), and GGA

(rs4887077-rs11638372-rs6495316), to be significantly associated

with both phenotypes under identical genetic models, indicating

that they contribute to the etiologies of these two behaviors, likely

through a common uncharacterized mechanism.

Similarly, we performed haplotype-based association analysis for

the male sample (Table 4). Altogether, we found that ten haplotypes

between SNPs rs16969948 in CHRNA5 and rs11638372 in the

intergenic region downstream from the 59 end of CHRNB4 showed

significant associations with at least one smoking-related phenotype.

By comparing the haplotype-based association results of the total and

male samples, we found six that were comparable in the two samples,

except that the association signals appear to be much stronger in the

male sample. For example, the P values of associations with SI, SQ,

Table 2. P values for SNPs significantly associated with at least one smoking-related phenotype and their corresponding odds
ratios and 95% confidence intervals under the additive and dominant model.

Total Sample Male Sample

SI SQ SC SI SQ SC

Gene dbSNP ID
Risk
Allele P

OR
(95% CI) P

OR
(95% CI) P

OR
(95% CI) P

OR
(95% CI) P

OR
(95% CI) P

OR
(95%CI)

CHRNA5 rs951266 A 0.023a 1.32
(1.04, 1.67)

0.008a 1.48
(1.11, 1.98)

0.405a 1.14
(0.84, 1.55)

0.006a 1.46
(1.11, 1.91)

0.001a 1.71
(1.24, 2.34)

0.351a 1.16
(0.85, 1.60)

CHRNA3 rs6495308 T 0.150a 1.06
(0.98, 1.16)

0. 110a 1.09
(0.98, 1.21)

0.287a 1.06
(0.95, 1.19)

0.023a 1.11
(1.02, 1.22)

0.046a 1.12
(1.00, 1.26)

0.230a 1.07
(0.96, 1.20)

CHRNB4 rs11072768 G 0.015d 1.14
(1.03, 1.27)

0.028d 1.17
(1.02, 1.34)

0.018a 1.16
(1.03, 1.31)

0.001d 1.22
(1.08, 1.37)

0.016a 1.16
(1.03, 1.31)

0.010a 1.18
(1.04, 1.34)

Intergenic
region

rs8043123 C 0.329d 0.93
(0.80, 1.08)

0.022d 0.84
(0.73, 0.98)

0. 218a 0.94
(0.85, 1.04)

0.422a 1.05
(0.94, 1.17)

0.092d 0.88
(0.75, 1.02)

0. 256a 0.94
(0.85, 1.04)

Intergenic
region

rs4887077 T 0.079a 1.39
(0.96, 2.01)

0.022a 1.51
(1.06, 2.14)

0.575d 0.90
(0.63, 1.30)

0.063a 1.58
(0.98, 2.55)

0.008a 1.68
(1.15, 2.47)

0.552d 0.89
(0.61, 1.30)

Intergenic
region

rs2869550 C 0.554d 1.03
(0.92, 1.16)

0.659d 1.03
(0.89, 1.19)

0.047d 1.16
(1.00, 1.35)

0.538d 1.04
(0.92, 1.18)

0.819d 1.02
(0.87, 1.19)

0.079d 1.15
(0.98, 1.34)

Intergenic
region

rs11638372 T 0.102a 1.36
(0.94, 1.96)

0.027a 1.48
(1.05, 2.09)

0.645d 0.92
(0.64, 1.32)

0.081a 1.52
(0.95, 2.43)

0.010a 1.65
(1.13, 2.41)

0.623d 0.91
(0.63, 1.32)

(1) OR = odds ratio; CI = confidence interval; SI = smoking initiation; SC = smoking cessation, SQ = smoking quantity. (2) Significant associations at the 0.05 level
before Bonferroni correction for multiple testing are given in bold and those significant after Bonferroni correction for multiple testing are in bold and underlined
(corrected P value at a 0.05 significance level is 0.0016 ( = 0.05/32). (3) Superscripts indicate the genetic model used in the analysis: a = additive and d = dominant. (4)
For each sample, age, sex, and area were used as covariates.
doi:10.1371/journal.pone.0012183.t002
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and SC for the haplotype ACT, formed by rs950776-rs11072768-

rs7166158 under the dominant model, are, respectively, 0.001, 0.014,

and 0.019 in the male sample and 0.013, 0.033, and 0.06 in the total

sample. Very interestingly, we found that haplotypes ACT, formed by

rs950776-rs11072768-rs7166158, and CTC, formed by rs11072768-

rs7166158-rs8043123, were nominally significantly associated with all

three smoking-related phenotypes in the male sample, suggesting that

this region is a good target for further sequencing analysis with the

hope of identifying variants that contribute to our observed association

of the cluster with these smoking-related phenotypes.

Interaction analysis of CHRNA5/A3/B4 with SI, SQ, and SC
To further determine a genetic contribution of the CHRNA5/

A3/B4 cluster to the three smoking-related phenotypes, we

Table 3. Statistics estimates and P values for major haplotypes showing significant associations at the 0.05 level with at least one
smoking-related phenotype under the additive and dominant models in the total sample.

SNP Number SNP combinations
Haplo-
type Freq SI SQ SC

Esti-mate P
Global
P value Esti-mate P

Global
P

Esti-
mate P Global P

18-19-20 rs16969948-rs481134-rs951266 TCC 0.76 20.304d 0.047d 0.108d 20.248d 0.087d 0.209d 20.013d 0.928d 0.261d

19-20-21 rs481134-rs951266-rs514743 CCT 0.81 20.326d 0.092d 0.233d 20.147a

20.457d
0.017a

0.014d
0.006a

0.050d
20.105d 0.579d 0.299d

21-22-23 rs514743-rs6495308-rs950776 TGA 0.73 20.081a 0.056a 0.263a 20.111a 0.038a 0.134a 20.072a 0.198a 0.324a

22-23-24 rs6495308-rs950776-rs11072768 GAA 0.70 20.088a 0.031a 0.141a 20.116a 0.025a 0.131a 20.097a 0.073a 0.279a

23-24-25 rs950776-rs11072768-rs7166158 ACT 0.12 0.163d 0.013d 0.144d 0.176d 0.033d 0.200d 0.165d 0.06d 0.244d

24-25-26 rs11072768-rs7166158-rs8043123 CTC 0.15 0.118a 0.034a 0.103a 0.145a 0.038a 0.229a 0.136a 0.068a 0.014a

26-27-29 rs8043123-rs4887077-rs11638372 TGG 0.45 20.051d 0.375d 0.327d 20.172d 0.020d 0.009d 20.038d 0.626d 0.344d

27-29-30 rs4887077-rs11638372-rs6495316 GGA 0.88 20.634d 0.028d 0.073d 20.531d 0.044d 0.125d 0.023d 0.931d 0.869d

(1) SI = smoking initiation; SQ = smoking quantity; SC = smoking cessation; (2) Significant associations at the 0.05 level before Bonferroni correction for multiple
testing are given in bold; (3) Superscripts indicate the genetic model used: a = additive; d = dominant; (4) For each sample, age, sex, and geographic area were used as
covariates.
doi:10.1371/journal.pone.0012183.t003

Figure 1. Haploview-generated LD patterns for 32 SNPs within the CHRNA5/A3/B4 cluster in the Korean total sample. Pair-wise LD
between all SNPs was evaluated using the Haploview program [30] with the option of determining haplotype blocks according to the criteria defined
by Gabriel et al. [31]. The number in each box represents the D’ value for each SNP pair.
doi:10.1371/journal.pone.0012183.g001
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performed a gene-gene interaction analysis for the total and male

samples as we did previously for nAChR genes alpha 4 (CHRNA4)

and beta 2 (CHRNB2) [34] and GABA-B receptor subunits 1

(GABAB1) and 2 (GABAB2) [35]. By using the generalized

multifactor dimensionality reduction (GMDR) approach [36], we

performed the interaction analysis for all possible combinations of

two to six SNPs within CHRNA5/A3/B4 for SI and SC in both the

total and the male sample. Among these gene-gene interaction

analyses, a significant result emerged only in the male sample for

SI, with the best interaction model consisting of SNPs rs7163730

in LOC123688, rs6495308 in CHRNA3 and rs7166158, rs8043123,

and rs11072793 from the downstream region of CHRNB4; the

corresponding P value was 0.011 (Table 5). Because of the

limitation of the current GMDR version, which cannot handle

ordinal phenotypes such as SQ, we could not carry out gene-gene

interaction analysis on this particular phenotype in our samples.

However, we did perform interaction analysis on SQ by

employing a cumulative logit model, which revealed no significant

interactions of SNPs located in this genomic region in affecting

SQ.

Discussion

In the current study, we examined genetic associations and

epistatic variants in CHRNA5/A3/B4 with SI, SQ, and SC in the

total and male samples. Individual SNP-based association analyses

revealed that seven SNPs within this region showed significant

associations with at least one smoking behavior in either or both

samples. Of these polymorphisms, rs951266 in CHRNA5 showed

the strongest association with SI (P = 0.006) and SQ (P = 0.001)

and rs11072768 in CHRNB4 with all the three smoking-related

phenotypes in the total (SI: P = 0.015; SQ: P = 0.028; SC:

P = 0.018) and male (SI: P = 0.001; SQ: P = 0.016; SC:

P = 0.010) samples. Furthermore, we found multiple haplotypes

between rs16969948 in CHRNA5 and rs6495316 or rs11638372 in

the intergenic region downstream from the 59 end of CHRNB4 that

were associated significantly with the three smoking-related

phenotypes in both the total and the male sample. Finally,

considering the fact that the protein products of these nAChR

subunit genes must assemble in order to form functional nAChRs,

we also performed gene-gene interaction analysis on all SNPs in

Table 4. Statistics estimates and P values for major haplotypes showing significant associations at the 0.05 level with at least one
smoking-related phenotype under the additive and dominant models in the male sample.

SNP Number SNP combinations
Haplo-
type Freq SI SQ SC

Esti-
mate P

Global
P

Esti-
mate P

Global
P

Esti-
mate P Global P

18-19-20 rs16969948-rs481134-rs951266 TCC 0.77 20.102a 0.034a 0.023a 20.108a 0.069a 0.003a 20.050a 0.401a 0.276a

19-20-21 rs481134-rs951266-rs514743 CCT 0.82 20.173a 0.020a 0.037a 20.186a 0.005a 0.001a 20.011a 0.869a 0.529a

20-21-22 rs951266-rs514743-rs6495308 CTG 0.74 20.114a

20.265d
0.015a

0.025d
0.008a

0.137d
20.124a

20.307d
0.032a

0.031d
0.003a

0.158d
20.077a 0.186a 0.303a

21-22-23 rs514743-rs6495308-rs950776 TGA 0.74 20.118a 0.011a 0.071a 20.134a 0.019a 0.060a 20.082a 0.155a 0.411a

22-23-24 rs6495308-rs950776-rs11072768 GAA 0.70 20.132a 0.003a 0.038a 20.140a 0.011a 0.103a 20.107a 0.054a 0.288a

23-24-25 rs950776-rs11072768-rs7166158 AAT 0.57 20.101a 0.018a 0.024a 20.116a 0.029a 0.112a 20.072a 0.180a 0.161a

ACT 0.12 0.168a

0.238d
0.009a

0.001d
0.024a

0.013d
0.173a

0.214d
0.026a

0.014d
0.112a

0.117d
0.162a

0.210d
0.043a

0.019d
0.161a

0.154d

24-25-26 rs11072768-rs7166158-rs8043123 ATC 0.38 20.094a

20.141d
0.032a

0.029d
0.010a

0.073d
20.047a 0.393a 0.208a 20.050a 0.359a 0.009a

CTC 0.15 0.157a

0.149d
0.010a

0.035d
0.010a

0.073d
0.159a 0.031a 0.208a 0.159a 0.036a

26-27-29 rs8043123-rs4887077-rs11638372 CGG 0.53 20.229d 0.022d 0.035d 20.134d 0.128d 0.021d 0.122d 0.158d 0.369d

(1) SI = smoking initiation; SQ = smoking quantity; SC = smoking cessation; (2) Significant associations at the 0.05 level before Bonferroni correction for multiple
testing are given in bold and those after Bonferroni correction for multiple testing are given in bold and underlined (corrected P value at a 0.05 significance level is
0.0125 under the assumption of a maximum of four major haplotypes for each SNP combination); (3) Superscripts indicate the genetic model used: a = additive; d =
dominant; and (4) For each sample, age, and area were used as covariates.
doi:10.1371/journal.pone.0012183.t004

Table 5. A significant interactive model for CHRNA5/A3/B4 cluster with SI in KARE male sample on the basis of the prediction
accuracy and the sign test P value.

No. of
Loci Best Model Prediction Accuracy Sign Test (P) CVC

5 LOC123688: rs7163730
CHRNA3: rs6495308
Inter-genic region: rs7166158, rs8043123, rs11072793

0.517 9 (0.011) 10/10

(1) SI = smoking initiation; (2) CVC = cross-validation consistency; and (3) In GMDR analysis, age and area were used as covariates.
doi:10.1371/journal.pone.0012183.t005
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this genomic region and found the best interactive model involved

five SNPs located in LOC123688, CHRNA3, and the intergenic

region at the 59 end of CHRNB4 that influences SI in the male

sample.

To assess ND, various scales have been developed, which

include the Diagnostic and Statistical Manual of Mental Disorders

(DSM)-IV criteria [4], Fagerström Test for ND (FTND) [37], HSI

[38], the Nicotine Dependence Syndrome Scale (NDSS) [39], and

the Wisconsin Inventory of Smoking Dependence Motives

(WISDM-68) [40], to name a few. Among them, FTND is the

most widely used instrument, primarily because of its succinctness

and ease of administration [41]. The FTND score is commonly

treated as a continuous variable, and an FTND $4 is typically

defined as highly dependent [28,42]. CPD, the most commonly

used consumption measure [38], is both highly heritable [7] and

predictive of ND [24,38]. SQ is an ordinal variable based on CPD,

which provides a simple, quantified index of the amount of

cigarette consumption. It should be noted that SQ and FTND are

correlated but different psychometric measures of smoking

behavior. To date, associations of variants in the CHRNA5/A3/

B4 cluster with smoking have been detected for both SQ and

FTND phenotypes, but signals appear to be stronger for SQ than

for FTND (Figure 2), which is also true for linkage study on ND

based on a review of more than 20 independent studies [43].

There are several strengths of this study. First, although

significant associations of variants within the CHRNA5/A3/B4

cluster with smoking have been replicated in multiple independent

samples, almost all these studies were concentrated on smoking

dependence in samples of European origin [14,18,19,20,21,

22,23,24,25]. Very recently, relatively weak associations of some

variants of this gene cluster with ND were reported in two African

American samples [18,28]. Among the 76 SNPs investigated by

Saccone et al. [28], eight showed nominally significant association

with ND (P value = 0.0147,0.0443), with rs16969968 in

CHRNA5 being the strongest, at a P value of 0.0147. Similarly,

in a prior study [18], we analyzed 22 SNPs within the gene cluster

and found that only rs8040868 in CHRNA3 showed a nominally

significant association with ND (P = 0.017,0.039). However, none

of these associations survived correction for multiple testing in the

two African American samples [18,28]. Although there were two

studies investigating potential associations of variants in the gene

cluster with LC and smoking in Chinese [44] and Japanese [45]

subjects, no previous reports have examined the involvement of

variants of this cluster with smoking behavior in a strictly Asian

Figure 2. A summary of all reported SNPs that have been significantly associated with different smoking behaviors. Of these reported
studies mentioned in the figure, most were investigated on nicotine dependence except that the study authored by Keskitalo et al. [55] was on serum
cotinine level and that by Schlaepfer et al. [23] was on smoking initiation.
doi:10.1371/journal.pone.0012183.g002
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sample. Therefore, this study represents the first report on a

potential association of the CHRNA5/A3/B4 cluster with smoking

behaviors in an Asian population. By identifying risk alleles for

smoking and LC and comparing their frequencies in different

ethnic populations, it is easy to see that they are quite different,

which further underscores that different variants in this genomic

region contribute importantly to variations in disease risks among

different ethnic populations [12].

Second, most previous association studies of the CHRNA5/A3/

B4 cluster were focusing on ND or related measures

[14,15,19,24,25], although a few studies were focused on SI

[23,27] or SC [26,46,47]. Given the significant overlap of genetic

underpinnings among these three smoking-related phenotypes

[48,49], it is of great interest to investigate these phenotypes

systemically in one sample. This is especially true for the

CHRNA5/A3/B4 cluster, as it has been associated with ND in

several reports, especially in samples of European origin

[14,18,19,20,21,22,23,24,25]. However, association of the variants

of this cluster with SI and SC has not been well established. By

analyzing the three major smoking-related phenotypes together in

the Korean sample, we found significant associations of some

variants in this cluster with the three smoking-related phenotypes

at both the individual SNP and the haplotype levels.

Third, in this study, we not only performed association analyses

of this region with the three major smoking-related phenotypes at

the SNP and haplotype levels, as in most reported association

studies of the region with smoking, but also performed extensive

gene-gene interaction analysis exclusively in this region. This is

important in that: (1) all nAChR subunits except alpha 7 must

assemble under appropriate compositions in order to form

functional receptors; and (2) it is still undetermined whether other

uncharacterized genes of this region contribute to smoking-related

phenotypes [12]. Our gene-gene interaction results in the male

sample indicate clearly that some variants exist within the region

between rs7163730 in LOC123688 and rs11072793 in the

intergenic region downstream from the 59 end of CHRNB4 that

are contributing to SI through gene-gene interactions. This

appears consistent with findings from our recent study showing

an association of the region with ND in European American and

African American samples [18]. This has been the case for several

other genes also. For example, we recently detected a significant

interaction between variants of CHRNA4 and CHRNB2 in affecting

ND, such that CHRNB2 contributes significantly to the etiology of

ND together with CHRNA4 through gene-gene interaction [34].

Similarly, in another study, we found that GABAB1 contributes to

ND through its interaction with GABAB2, although no

significant association was observed for GABAB1 with ND directly

[35].

There exist several limitations to this study. First, we did not

consider Bonferroni correction for all possible multiple testing,

primarily because we consider this study a replication of a positive

association of this cluster with ND in an independent sample. A

similar approach has been adopted by other researchers [25]. If we

include correction for multiple testing, most detected associations

of variants within this cluster with SI, SQ and SC at both the

individual SNP and haplotype levels become non-significant, with

the exceptions that rs951266 in CHRNA5 remained significant for

SQ and rs11072768 in CHRNB4 for SI in the male sample (see

Table 3). Similarly, we found that associations of four major

haplotypes with SI and two major ones with SQ remained

significant after Bonferroni correction for multiple testing of major

haplotypes (Table 4). However, no significant associations of any

SNPs or haplotypes with SC remained after Bonferroni correction

for multiple testing. Also, we did not correct for our testing of two

genetic models and three phenotypes, as they are highly related,

which violates the assumption of independence for Bonferroni

correction. Because of the aforementioned concerns, to some

extent, we consider this study explorative, and more replication in

Korean or other Asian samples is greatly needed. Second,

although we defined the three smoking-related phenotypes on

the basis of all the related information collected from each smoker,

we are not fully convinced this is the best sample for investigation

of this gene cluster and smoking behaviors, as this work was not

designed originally as a genetic study on smoking, and the

information collected from each smoker is limited. For example,

SQ was assessed by CPD instead of ND determined by the FTND

or DSM-IV criteria commonly used in other studies. Also, there

was no SQ information (i.e., a 5-category ordinal trait based on

CPD) for light or occasional smokers, although we do know they

smoked only when they were in specific social circumstances such

as during a party or gathering with their friends. Further, the SC

status was based on individual self-reports, which were not

biochemically verified, and this might lead to potential bias in

phenotyping. Nevertheless, we do not feel this bias would greatly

affect our results, as the definitions used in the current study have

been used in other studies of this type as well [27,43]. This is

especially true for SQ, as it produces significantly more positive

findings than any other smoking measures for ND in both linkage

and association analyses [43]. Third, we investigated the

association of this cluster with three smoking-related phenotypes

only in the Korean total and male samples. We did not perform a

similar analysis of the female sample because of the small sample

size attributable to the small percentage of female smokers (3%),

which is the case for many other Asian countries such as China

(,4% of Chinese women aged 15 years or older are smokers [50]).

Thus, we could not determine whether this gene cluster has any

significant impact on smoking behaviors in Korean women.

Finally, the number of informative SNPs genotyped within

this region was limited. To have a better coverage for these

samples, more SNPs with a high density are greatly needed for

further analysis of this cluster in relation to smoking-related

phenotypes.

As shown in Table S1, the allele frequencies of an array of

genetic variants (e.g., rs7168796, rs16969922, and rs1979906, to

name a few) located in CHRNA5/A3/B4 differ dramatically across

ethnic and geographical populations (i.e., the Caucasian [CEU],

African [YRI], and Asian [CHB, JPT, and Korean] samples).

Therefore, this study provides an essential basis for genetic

association analysis by comparing different frequencies of SNPs of

this region between smoking and non-smoking populations to

examine whether such associations are consistent in different

ethnicities. Indeed, different genotype frequencies have been

compared in smoking and non-smoking populations in different

ethnic groups for several polymorphisms of CYP2A6 [51] as well

as a 44-bp insertion/deletion polymorphism of the serotonin

transporter (5-HTT) gene [52], and such studies may shed new

light on what molecular variants have diverging effects, and what

molecular variants have converging effects in populations of

different ancestries. This approach is termed ‘‘cross-population

contrast mapping’’ based on the hypothesis that important

biological mechanisms underlying a disease of interest are shared

by various human populations, although differences in allele

frequencies at risk loci could result in different prevalences in

different populations [53]. Because smoking is a significant risk

factor for LC, and the association of CHRNA5/A3/B4 with

smoking or LC risk had been reported in many other populations,

the present work should contribute to establishing that different

polymorphic CHRNA5/A3/B4 patterns associate with the physi-
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ology of smoking and LC in ethnically and geographically different

populations.

To compare the association signals detected by this study with

those detected in other populations from previous studies, we have

summarized both individual SNP and haplotype results in

Figures 2 and 3, respectively. To our knowledge, approximately

25 SNPs in this region are reported to be associated with smoking-

related and LC phenotypes. Among the 7 SNPs found to be

nominally associated with SI, SQ, and SC, rs6495308 in CHRNA3

was also found associated with CPD in two European American

samples [24]. All the remaining 6 SNPs (1 in CHRNA5, 1 in

CHRNB4, and 4 in the intergenic regions) were unique to this

Korean sample. It would be of great interest to individually

genotype additional SNPs in this region in the sample, especially

rs1051730 and rs16969968, which showed unequivocally signif-

icant association signals with SQ or CPD in several previous

studies [15,54,55]. Recently, Le Marchand et al. [56] used urinary

biomarkers to test whether rs1051730 and rs16969968 are

associated with a higher level of nicotine and exposure to

tobacco-specific carcinogenic substances per cigarette dose in a

Hawaii study of 583 men and women of European, Japanese, or

Native Hawaiian ancestry who were long-term smokers of more

than 10 cigarettes per day. Although the T of rs1051730 and A of

rs16969968 alleles were less common in Japanese Americans (3%)

and Native Hawaiians (,19%) than in European Americans

(34%), those investigators found that carriers of T of rs1051730 or

A of rs16969968 extract a greater amount of nicotine (P = 0.004

and 0.003, respectively) and those A carriers of the rs16969968

had a higher internal dose of total 4-(methylnitrosamino)-1-(3-

pyridyl)-1-butanol (P = 0.03) per cigarette than non-carriers. In

another study with a sample size of ,17,300 subjects from five LC

studies and four upper aerodigestive tract cancer studies, Lips et al.

[57] revealed no association between rs16966968 and SI or SC,

age at SI, or age at SC. However, when cancer cases and controls

were combined (after adjustment for case/control status), the

adjusted mean difference between the two homozygote genotypes

was 1.2 CPD (P,0.0001). Moreover, the rs16969968 genotype

was associated with LC in both former (P,0.0001) and current

(P,0.0001) smokers, and a marginally significant trend was

observed in never smokers (P = 0.07).

At the haplotype level, in the three long-term EA smoker

cohorts recruited in Utah, Wisconsin, and by the NHLBI Lung

Health Study, Weiss et al. [19] found that a 5-SNP haplotype HA

(CCAGA) formed by rs680244-rs569207-rs16969968-rs578776-

rs1051730 (denoted EA_H1), had a risk effect on high FTND

score (.6) compared with low FTND score (,4) (OR = 1.50, 95%

CI: 1.21, 1.86, P = 1.361024), and the 5-SNP haplotype HC

(CTGAG) formed by the same SNPs as in HA had a protective

Figure 3. A summary of all reported haplotypes that have been significantly associated with different smoking behaviors in the AA,
EA and Korean samples.
doi:10.1371/journal.pone.0012183.g003
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effect on high ND (OR = 0.66, 95% CI: 0.52, 0.85,

P = 1.0761023). Such findings corroborated for ND assessed by

Primary Dependence Motives (PDM) score [46]. Further, our

previous study in the Mid-South Tobacco Family (MSTF) cohort

revealed 3 additional haplotypes in EAs [18], formed by

rs6495308-rs3743075-rs8040868 (EA_H2), rs3743075-rs8040868-

rs6495309 (EA_H3), and rs17408276-rs16969968-rs615470

(EA_H4), that were associated with smoking-related phenotypes.

In comparison with EA_H1, although EA_H4 was physically

encompassed by EA_H1, and they share 1 SNP (i.e., rs16969968),

EA_H2 and EA_H3, which have 2 overlapping SNPs (i.e.,

rs3743075 and rs8040868), were physically separate from EA_H1.

Also in the MSTF cohort, we detected two AA haplotypes formed

by rs1317286-rs12914385-rs2869546 (AA_H1) and rs2869546-

rs6495308-rs3743075 (AA_H2), which share 1 SNP (i.e.,

rs2869546) (Figure 3). Comparing the detected haplotypes in

AAs and EAs, AA_H1 does not physically overlap with any of the

4 EA haplotypes, and AA_H2 shares 2 SNPs (i.e., rs6495308 and

rs3743075) with EA_H2, as well as 1 SNP (i.e., rs3743075) with

EA_H3. Although the overall physical region spanned by the 9

overlapping Korean haplotypes identified in this study from

rs16969948 to rs6495316 does encompass all 4 EA haplotypes (i.e.,

EA_H1, EA_H2, EA_H3, and EA_H4) as well as both AA

haplotypes (i.e., AA_H1 and AA_H2), these 9 Korean haplotypes

do not share any SNPs with EA_H1 EA_H3, EA_H4 or AA_H1.

Nevertheless, 3 Korean haplotypes (Korean_H3, Korean_H4, and

Korean_H5) do share an SNP (i.e., rs6495308) with EA_H2 and

AA_H2. Overall, the Korean haplotypes provide some support for

the importance of the EA and AA haplotypes previously associated

with smoking-related phenotypes However, because the SNP

compositions differ across EA, AA and Korean haplotypes, the

haplotype association signals are not directly comparable. To get a

clearer picture of cross-population haplotypic effects, it is essential

to examine the effects of haplotypes with the same SNP

combinations on smoking behavior across different ethnic

populations given that haplotype frequencies differ so dramatically

in populations of different ancestries.

The problem of multiple hypothesis testing in biomedical studies

is an important yet complex issue that needs to be considered

carefully [58]. For complex traits such as smoking behavior,

variants in genes of multiple biological pathways are likely to be

involved in producing the phenotype through their mutual

interactions and interactions with environmental factors. There-

fore, genetic effects of common variants for smoking behavior are

often weak secondary to genetic heterogeneity, variable expres-

sivity, and low penetrance; and exactly how to correct for multiple

testing remains a debatable and profound topic. For example, for

gene-based studies such as this study focusing on the CHRNA5/

A3/B4 cluster, Neale and Sham [59] have emphasized the

importance of replication rather than the sole interest of detecting

association signals with very low P values, and the authors have

challenged the need for correcting for multiple testing in this

specific scenario. Conversely, from a statistical viewpoint, when a

data set is tested in multiple angles, the threshold for statistical

significance should be adjusted to reduce the inflated type I error.

To correct for multiple testing, as suggested by Feise [60], a

prudently chosen balance needs to be reached for a study’s

statistical significance in consideration of multiple factors such as

the magnitude of the genetic effect, biological function(s) of the

marker(s) of interest, the study’s quality, as well as the collective

supportive evidence of the genetic locus from other independent

studies [60]. Specifically, in this study, we applied the Bonferroni

correction procedure for the number of SNPs analyzed within

each sample for a given phenotype, but we did not correct for the

number of smoking-related phenotypes (i.e., SI, SQ, and SC), the

number of genetic models employed (i.e., recessive, additive, and

dominant), or the number of study samples (i.e., total and male

sample). The rationales underlying our decisions are that the

smoking-related phenotypes are highly inter-related, the male

smokers constitute the predominant fraction of all smokers in the

total sample, and the three genetic models cannot be treated as

totally independent. Therefore, given that the variants in

CHRNA5/A3/B4 have been associated with smoking behavior in

various independent samples of European origin, the correction

employed was a balanced decision between the application of a

relatively stringent Bonferroni correction and a precaution in

guarding against an over-correction that could result in unintend-

ed losses of power and valuable information [61,62].

In sum, this is the first genetic study aimed at investigating any

association of the variants of the CHRNA5/A3/B4 cluster with SI,

SQ, and SC in Korean smokers. Despite the caveats regarding

correction for multiple testing, our replication of prior reported

significant associations of CHRNA5/A3/B4, combined with the

convergent biological data implicating the functional roles of

nAChR subunit genes residing in this cluster in addiction,

strengthens the notion that the multiple nominally significant

association signals we detected at both the SNP and haplotype

levels in the Korean sample are true positives. Moreover, our study

is the first to show that the nominally significant association signals

have extended beyond the 59 end of CHRNB4 to the flanking

intergenic region. Further, we found that the associations of this

cluster region with SI and SQ phenotypes appeared to be stronger

than those with the SC phenotype in Koreans smokers. Finally, we

provided evidence for nominally significant interactions among

variants studied in affecting SI in the male sample. Although these

findings are novel and encouraging, they do need to be confirmed

in larger, independent studies of subjects with Asian ancestry.

Materials and Methods

Ethics statement
Informed written consent was obtained in advance from all

participants using a form approved by all participating Institu-

tional Review Boards. The study likewise was approved by the

Institutional Review Boards of the National Institute of Health of

Korea, Seoul National University, and the University of Virginia

and was in accordance with the principles of the Helsinki

Declaration II.

Subjects and genotyping
The relevant information for the subjects in the current study

has been reported [63]. Briefly, samples from the 10,038

participants in the Korea Association Resource (KARE) Project

were obtained in two recruiting areas, Ansung and Ansan, in

South Korea. Participant ages ranged from 40 to 69 years.

Genomic DNA was available for 10,004 participants and was

genotyped with the Affymetrix Genome-Wide Human SNP Array

5.0. Genotypes were called with Bayesian Robust Linear Modeling

using the Mahalanobis Distance (BRLMM) algorithm. Those

samples with low call rates (N = 401), contamination (N = 11), sex

inconsistencies (N = 41), cryptic relatedness (N = 608), or serious

concomitant illness (N = 101) were removed. After all the samples

had been filtered with this standard quality control procedure [63],

8,842 individual samples remained for the current study (4,183

males and 4,659 females).

Although we had genotyping data available for other SNPs in

these samples, in this study, we focused only on the CHRNA5/A3/

B4 region of chromosome 15, as this region has received much
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attention for its association with smoking and LC [14,15,16,17,24].

According to the genomic locations, 36 SNPs were selected. Of

them, 32 met our inclusion criteria for this study with a satisfying

Hardy-Weinberg equilibrium P value .1026, MAF .0.01, and

genotype call rates .95%. The 36 SNPs are described in Table 1.

Definition of smoking-related phenotypes
On the basis of the survey questionnaire, from which

information on smoking status (i.e., never smoker, former smoker,

occasional or light smoker, and habitual smoker) and CPD for the

habitual smokers were drawn, three smoking-related phenotypes

were defined: SI, SQ, and SC. Regarding SI, the first measure

(called SI-1) was defined as a binary trait comparing ‘‘never

smoked’’ and ‘‘having regular smoking experiences,’’ and the

second measure (called SI-2) was defined as an ordinal trait with

four categories: never, former, light, and habitual. Because the

association results for these two SI measures appear to be similar,

in this communication, we show them together under the SI

phenotype. The SQ phenotype was defined as an ordinal trait with

five categories (1–5) according to CPD: non-smoking, ,10 CPD,

11 to 20 CPD, 21 to 30 CPD, and .31 CPD. Such assessment of

SQ not only has been commonly used in the literature but also is

the most productive in terms of positive findings [43]. Finally, the

SC phenotype was defined as a binary trait comparing ‘‘former

smoking’’ and ‘‘current smoking.’’

Association analysis
Statistical analysis was performed using PLINK [29] and R

software. For the binary phenotypes, SI-1 and SC, the association

tests were performed using logistic regression analysis, with age, sex,

and geographic area of recruitment as covariates under the additive

and dominant models. The cumulative logit model was fit to the

ordinal phenotypes SI-2 and SQ [64]. LD analysis was performed

using Haploview software [30] with the option of determining

haplotype blocks according to the definitions proposed by Gabriel et

al. [31]. Haplotypes were reconstructed using SNPs within the

genomic region containing the CHRNA5/A3/B4 cluster with sliding

window sizes of 3 to 5. Haplotype-based association analysis was

carried out with the haplo.stats R statistics package [33] under

additive and dominant models, adjusting for age, sex, and

geographic area. As we consider this study a replication of reported

significant association of variants of this gene cluster with smoking

behavior in an independent sample [14,15,16,17,24], we did not

correct for multiple comparisons for the two genetic models and

three smoking-related phenotypes, primarily because they are

related, when we interpreted our findings following the concept and

approach used by other researchers [25]. However, we do recognize

a potential limitation of this approach, which is addressed in the

Discussion section herein.

Interaction analysis of variants in the CHRNA5/A3/B4
cluster

For the interaction analysis of variants in the CHRNA5/A3/B4

region, both logistic regression and generalized multifactor

dimensionality reduction (GMDR) analyses [36] were performed

for binary traits (SI-1 and SC), whereas the cumulative logit model

was applied to the ordinal phenotypes (SI-2 and SQ). The logistic

regression model and cumulative logit model included the main

effects of SNPs, interaction effects among the SNPs, as well as

adjusting covariates. The log-likelihood ratio test was performed

for testing the joint significance of SNP main and interaction

effects. The GMDR analysis was carried out only for the binary

traits, as GMDR analysis is not applicable to ordinal traits. Age,

sex, and recruiting area were considered as adjusting covariates for

all interaction analyses. The best SNP combination for all two- to

six-locus models was selected via the prediction rate.

Supporting Information

Table S1 Positions, nucleotide variations, and allele frequencies

for SNPs on chromosome 15.

Found at: doi:10.1371/journal.pone.0012183.s001 (0.09 MB

DOC)
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