
Myopia, characterized by refraction error, is the most 
common ocular disorder in the world [1]. The prevalence 
varies across countries. Multiple studies have reported 
an approximate prevalence rate of 17% in Australia, 26% 
in the United States, and 27% in Western Europe [2]. The 
prevalence in Asian countries, such as China, Singapore, and 
Japan, is even higher, estimated at about 71% to 96% [3-5]. 
With high prevalence, myopia causes a serious social burden, 
and the economic impact is substantial [6,7].

Myopia is usually divided into two groups classified by 
the degree of refraction error. One is common myopia with 
low or moderate refractive error, and the other is high myopia 
[8]. Patients with high myopia have a spherical equivalent 
refractive error more than or equal to −6.0 diopter sphere 
(DS) and an axial length longer than or equal to 26.0 mm. 
High myopia may also present retinal pathological changes 
and ocular comorbidities, such as macular choroidal degener-
ation, retinal detachment, premature cataract, and glaucoma; 

therefore, high myopia is also called pathological or degenera-
tive myopia.

Epidemiology studies have shown that genetic and 
environmental factors contribute the development of myopia 
[9]. Twin and family studies have demonstrated that myopia, 
especially high myopia, has a high heritability [10,11]. A 
dozen linkage regions and several genome-wide significant 
associated loci have been identified in families with high 
myopia and case-control cohorts [12-19]. Familial high 
myopia is usually inherited as a monogenic disorder, and three 
inheritances have been found, including autosomal dominant 
(AD), autosomal recessive (AR), and X-linked inheritance. 
AD inheritance is the most common. Recently, using whole 
exome sequencing, Shi et al. identified a causative gene in a 
Chinese family with AD high myopia, and replicated their 
results in a sporadic cohort [20]. Subsequently, Tran-Viet et 
al. performed mutation screening in an American cohort for 
ZNF644 (gene ID:64146, OMIM number: 614159), and identi-
fied a novel missense mutation, which supports that ZNF644 
may be a causative gene for high myopia [21]. ZNF644 is a 
zinc finger protein that functions as a transcriptional factor. 
In this study, we attempted to replicate the results and enlarge 
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Purpose: Myopia, or near-sightedness, is one of the most common human visual impairments worldwide, and high 
myopia is one of the leading causes of blindness. In this study, we investigated the mutation spectrum of ZNF644, a 
causative gene for autosomal dominant high myopia, in a high-myopia cohort from a Chinese population.
Methods: DNA was isolated with the standard proteinase K digestion and phenol-chloroform method from a case 
cohort of 186 subjects diagnosed with high myopia (spherical refractive error equal or less than −6.00 diopters). Sanger 
sequencing was performed to find potential mutations in all coding exons, flanking splicing sites, and untranslated 
regions (UTRs) of ZNF644 (NM_201269). Identified novel variants were further screened in 526 ethnically matched 
normal controls. Functional prediction and conservation analysis were performed using ANNOVAR.
Results: Five novel variants were identified. Three are missense (c.1201A>G:p.T401A, c.2867C>G:p.T956S, c.3833A>G:p.
E1278G), one is synonymous (c.2565A>G:p.T855T), and one (c.-219C>A) is located in the 5′ UTR. Functional predic-
tion indicates that c.3833A>G:p.E1278G was predicted to be damaging by SIFT and Polyphen2. Conservation analysis 
using PhyloP and GERP++ indicate all of the missense variants are highly conserved. None of these novel mutations 
was identified in 526 normal controls.
Conclusions: ZNF644 is associated with high myopia in a cohort from a Chinese population. ZNF644 mutations have a 
minor contribution to the genetic etiology of high myopia.
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the mutation spectrum of ZNF644 in a separate Chinese high 
myopia cohort.

METHODS

Study subjects: Subjects from Hunan and Henan province 
with a spherical refractive error of −6.00 diopters (D) or less 
were collected as high myopia cases. A total of 186 cases 
(88 males and 98 females, the average age is 38 between 4 
and 74) were recruited and accepted clinical examination and 
blood collection with informed consent. All of the affected 
cases have a history of myopia onset before 10 years of age. 
A comprehensive ophthalmic examination was performed, 
and the refractive error and axial length were measured and 
recorded. All of the affected individuals have no known 
ocular disease or insult that could predispose them to myopia, 
such as retinopathy of prematurity or early-age media 
opacification, and known genetic diseases associated with 
myopia, such as Stickler or Marfan syndrome, were excluded. 
We also collected 526 population-matched subjects with no 
any ocular malformation and high-myopia family history 

as a normal control cohort. The study was approved by the 
Institutional Review Board of the State Key Laboratory of 
Medical Genetics and adhered to the tenets of the Declaration 
of Helsinki.

PCR and resequencing: Genomic DNA was extracted from 
leukocytes from 5 ml of peripheral blood from all individuals 
with the standard proteinase K digestion and phenol-chloro-
form method. PCR primer pairs for ZNF644 (NM_201269) 
spanning all exons, splicing sites, and untranslated gene 
regions (UTRs) were designed by the online program 
Primer3. In total, 14 primer pairs were selected to cover all 
exons, UTRs, and intron-exon boundaries. Primers were 
provided in Table 1. PCR was performed in a touchdown 
procedure. The first phase: 95 °C 30 s denaturation, 65 °C 
30 s (0.5 °C touchdown every cycle) annealing, 72 °C 30 s 
extension, for a total of 10 cycles. The second phase: 95 °C 
30 s, 60 °C 30 s, 72 °C 30 s, for a total of 22 cycles. A 95 °C 
5 min (hotstar) for the first cycle and 72 °C 10 min for the 
final cycle. Amplified products were separated with poly-
acrylamide gel electrophoresis (PAGE) and visualized with 

Table 2. summary of The refraCTive error and axial lengTh for The 186 PaTienTs in This sTudy.

Category Age
Refractive Error [DS] Axial Length [mm]
OD OS OD OS

Min 3 6.40 6.50 26.50 26.20
Max 77 30.00 30.00 44.38 35.00
Mid 41 11.75 12.00 27.52 27.46
Avg 39 13.64 14.31 28.07 27.99

Table 3. all variaTions idenTified in 186 high myoPia Cases.

Variantsa Amino acid 
change Exonic function

Number case 
(n=186)

Number control 
(n=526)

MAF in 1000 
genome project Snp ID

c.+1250T>A NA UTR3 32 NA 0.09645 rs17131232
c.+1015T>C NA UTR3 13 NA 0.02284 rs76101054
c.+676C>T NA UTR3 85 NA 0.1421 rs1188952
c.3833A>G p.E1278G Missense 1 0 0 Novel
c.3266A>G p.Y1089C Missense 1 NA 0.01015 rs193167060
c.2867C>G p.T956S Missense 1 0 0 Novel
c.2565A>G p.T855T Synonymous 1 0 0 Novel
c.1338G>A p.R446R Synonymous 1 NA 0.002538 rs200221992
c.1212C>T p.T404T Synonymous 5 NA 0.01523 rs41286763
c.1201A>G p.T401A Missense 1 0 0 Novel
c.913G>A p.E305K Missense 4 NA 0.01523 rs149597385
c.-219C>A NA UTR5 3 0 0 Novel

Note: a. nucleotide and amino acid position is according to isoform NM_201269; b. minor allele frequency in Chinese population (CHB 
and CHS) from 1000 genome project data released in April, 2012.

http://www.molvis.org/molvis/v20/939
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silver staining. Sequencing was performed on both strands 
of each amplicon with the ABI PRISM3100 automated DNA 
sequencer (Life Technologies, Carlsbad, CA). Sequences 
were analyzed using the Seqman program to detect variants, 
and compared against the Reference Sequence. All sequences 
were visualized. A sequence reaction was considered 
successful if the sequence contained high-quality base calls 
for at least 90% of the bases. If a sequence failed the quality 
control, resequencing was performed. Association analysis 
was performed with the chi-square test or Fisher’s exact test 
in R. Functional prediction and conservation analysis were 
performed using ANNOVAR.

RESULTS

All subjects with high myopia are from a Chinese population 
and received full ophthalmologic examinations before being 
included. The average refractive error of the 186 patients 
with high myopia was −13.10 DS for the right eye (OD) and 
−12.39DS for the left eye (OS), and ranged from −6.00 DS 
to −30.00 DS (OD) and −6.25 DS to −30.00 DS (OS). The 
average axial length was 28.18 mm for the right eye (OD) and 
28.16 mm for the left eye (OS), and ranged from 26.17 mm to 
44.38 mm (OD) and 26.2 mm to 44 mm (OS). Further detailed 
clinical information is summarized in Table 2.

Thirteen variants were identified (Table 3). Five are novel 
variants that are not reported in dbSNP137, 1000 Genomes, 
and NHLBI ESP6500 exome sequencing data (Table 3, Figure 
1). All of these novel variants were also evaluated in 526 
population-matched normal controls, and none were identi-
fied in the control individuals. Functional prediction using 
SIFT and Polyphen2 indicated that p.T401A and p.T956S were 
either tolerant or benign, whereas p.E1278G was predicted to 
be damaging by SIFT and Polyphen2 (Table 4). Although 
p.T401A and p.T956S were not predicted to be damaging, 
conservation analysis using PhyloP and GERP++ indicated 
that all are highly conserved (Table 4). The missense and 
synonymous mutations were identified in only one patient; 
however, the mutation located in the 5′ UTR was identified 
in three patients. The phenotypes of the cases with the novel 
variants are serious. All had refractive error more than −10 
DS, except one case (M21787) whose refractive errors were 
−7.5 DS for right eye and −9 DS for left eye. Detailed clinical 
information for the patients with these novel variants is 
described in Table 5.

To test whether the identified common SNPs with 
minor allele frequency (MAF) larger than 1% (rs17131232, 
rs76101054, rs1188952, rs193167060, rs41286763, rs149597385, 
Table 3) are associated with high myopia, we performed 

Figure 1. Mutation spectrum of ZNF644 in patients with high myopia up to now. A: Mutation locations in the ZNF644 DNA sequence. The 
mutations colored blue were found by Shi et al., the mutation colored red was identified by Tran-Viet et al., and the mutations colored green 
were identified in this study. B: Sequence chromatogram of the novel variants identified in this study compared with the normal controls. 
C: FASTA alignment analysis for the missense mutations identified in this study.

http://www.molvis.org/molvis/v20/939
http://www.dnastar.com/
http://www.ncbi.nlm.nih.gov/projects/SNP/
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http://mendel.stanford.edu/sidowlab/downloads/gerp/
http://www.ncbi.nlm.nih.gov/snp/?term=rs17131232
http://www.ncbi.nlm.nih.gov/snp/?term=rs76101054
http://www.ncbi.nlm.nih.gov/snp/?term=rs1188952
http://www.ncbi.nlm.nih.gov/snp/?term=rs193167060
http://www.ncbi.nlm.nih.gov/snp/?term=rs41286763
http://www.ncbi.nlm.nih.gov/snp/?term=rs149597385
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association analysis using 197 Chinese subjects (CHB, CHS) 
who had no phenotype record from the 1000 Genome project 
as the controls. Unfortunately, we failed to find an associa-
tion of these polymorphisms between the patients with high 
myopia and the controls (rs17131232: p=0.81; rs76101054: 
p=0.43; rs1188952: p=0.06; rs193167060: p=0.37; rs41286763: 
p=1.00; rs149597385: p=0.75).

DISCUSSION

We performed a mutation screening of ZNF644 in a separate 
high-myopia cohort from a Chinese population, and identified 
five novel variants that had not been reported in dbSNP137, 
1000 Genomes, and NHLBI ESP exome in seven patients. All 
of the variants were also absent in 526 population-matched 
normal controls. These novel variants were all identified in 
sporadic cases.

Until now, three studies, including this study, have 
investigated the mutations of ZNF644 in patients with high 
myopia [20,21]. A total of 12 novel variants have been iden-
tified (Table 5). Three were identified in the 3′ UTR, nine 
were identified in coding regions (one synonymous and eight 
missense), and one was identified in the 5′ UTR. Functional 
prediction for the missense variants demonstrated that 
p.E1278G, p.R680G, p.S672G, p.E274V, and p.C699Y were 
predicted to be damaging by either SIFT or PolyPhen2 or 
both; however, p.T956S, p.I587L, and p.T401A were predicted 
to be either benign or tolerant. Conservation analysis revealed 
that p.E1278G, p.T956S, p.R680G, p.E274V, p.C699Y, and 
p.T401A are conserved, but p.S672G and p.I587L failed to 
survive the conservation threshold (Table 4). Variants p.I587, 
p.C699Y, c.+592G>A, and c.-219C>A were recurrently identi-
fied in more than one case. All variants were identified in 
sporadic cases except p.S672G, which was identified and 
cosegregated with the phenotype in a large family with high 
myopia [20].

Genetic studies have revealed that high myopia has an 
extremely high genetic heterogeneity. For example, 19 linkage 
peaks have been identified up to now, and most cannot be 
replicated in independent study; a genome-wide association 
study also revealed dozens of risk variants or susceptible 
genes [22]. Mutations of genes identified in Mendelian 
inheritance families and sporadic cases, such as ZNF644, 
SCO2 (gene ID:9997, OMIM number: 604272), LRPAP1 
(gene ID:4043, OMIM number: 104225), and LEPREL1 
(gene ID:55214, OMIM number: 610341), explain only a small 
proportion of the subjects with high myopia [23-25]. There-
fore, ZNF644 mutations identified in sporadic patients with 
high myopia must be evaluated in a larger cohort of patients 
with well-characterized high myopia and normal controls 
to determine whether these variants are associated with the 
clinical outcome or not.

ZNF644 encodes zinc finger transcription factor, which 
is ubiquitously expressed in several tissues such as the eye, 
liver, and placenta. The biologic function and the mechanism 
of this gene in high myopia pathogenesis are still unclear, 
although this gene was revealed to be associated with high 
myopia three years ago. Further studies should be conducted 
to investigate the functional consequence of these mutations, 
or at least the mutation cosegregating with high myopia in 
the large family (p.S672G). An animal model study should 
also be conducted to analyze the phenocopy and molecular 
mechanism of ZNF644 in the development of myopia.
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