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We have previously shown that temporal prediction errors (PEs, the differences between
the expected and the actual stimulus’ onset times) modulate the effective connectivity
between the anterior cingulate cortex and the right anterior insular cortex (rAI), causing
the activity of the rAI to decrease. The activity of the rAI is associated with efficient
performance under uncertainty (e.g., changing a prepared behavior when a change
demand is not expected), which leads to hypothesize that temporal PEs might disrupt
behavior-change performance under uncertainty. This hypothesis has not been tested
at a behavioral level. In this work, we evaluated this hypothesis within the context of
task switching and concurrent temporal predictions. Our participants performed temporal
predictions while observing one moving ball striking a stationary ball which bounced off
with a variable temporal gap. Simultaneously, they performed a simple color comparison
task. In some trials, a change signal made the participants change their behaviors.
Performance accuracy decreased as a function of both the temporal PE and the delay.
Explaining these results without appealing to ad hoc concepts such as “executive control”
is a challenge for cognitive neuroscience. We provide a predictive coding explanation. We
hypothesize that exteroceptive and proprioceptive minimization of PEs would converge
in a fronto-basal ganglia network which would include the rAI. Both temporal gaps
(or uncertainty) and temporal PEs would drive and modulate this network respectively.
Whereas the temporal gaps would drive the activity of the rAI, the temporal PEs would
modulate the endogenous excitatory connections of the fronto-striatal network. We
conclude that in the context of perceptual uncertainty, the system is not able to minimize
perceptual PE, causing the ongoing behavior to finalize and, in consequence, disrupting
task switching.

Keywords: prediction errors, predictive coding, response inhibition, insular cortex, cognitive neuroscience

Introduction

Bayes-based theories of brain function state that the brain is a predictivemachine and that perception
is no more than a prediction of the sensorium’s causes (Friston and Stephan, 2007; Friston, 2009,
2010; Friston and Kiebel, 2009; Daunizeau et al., 2012). Predictions produce prediction errors (PEs,
the differences between the predicted and the actual events). In general, PEs are considered to
drive both inference and learning. In predictive coding, this is equivalent to regarding the brain as
a hierarchical Bayesian filter (Friston and Stephan, 2007; Friston, 2009, 2010; Friston and Kiebel,
2009; Daunizeau et al., 2012) whereas in associative learning the classic Rescorla–Wagner model
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(Rescorla and Wagner, 1972) calls upon reward PEs to learn
the value of stimuli or actions. However, Bayesian models
of associative learning also include PEs as a driving variable
(Kruschke, 2008; Gershman et al., 2010). More cognitive models
also state that PEs drive higher order cognition such as
uncertainty-related cognitive control and learning (Carter et al.,
1998; O’Reilly et al., 1999; Cohen et al., 2002; Brown and Braver,
2005; Alexander and Brown, 2010, 2011). Moreover, PEs might
play a central role in explaining psychotic disorders (Braver et al.,
1999; Adams et al., 2012; Bastos-Leite et al., 2015) and intersubject
variability in social cognition of patients with brain damage
(Limongi et al., 2014).

In our recent neurophysiological study (Limongi et al., 2013),
we identified a conjoint effect of uncertainty and PEs as driving
andmodulatory inputs of brain regions. In dynamic causalmodels
of imaging data, a driving input is modeled as an experimental
effect that directly drives the activity of a region whereas a
modulatory effect is modeled as a change in the connection
strength between two regions (Kahan and Foltynie, 2013). In our
previous study, the participants performed temporal predictions
with different levels of temporal uncertainty, and we found that
temporal uncertainty drove the activity of the right anterior
insular cortex (rAI) when the participants predicted the onset
time of an event. However, we also found that the temporal
PEs negatively modulated the excitatory (as assumed in dynamic
causal models) connection strength between neurons of the right
anterior cingulate cortex (rACC) and neurons of the rAI. This
negative modulatory effect counteracted the driving effect of
temporal uncertainty (Figure 1).

When we are certain about an event’s onset time, we
anticipatorily prepare the behavior that we will execute at the

FIGURE 1 | Driving and modulatory effects of temporal uncertainty
and temporal PEs in the rACC-rAI coupling as reported by Limongi
et al. (2013). When participants accurately predict an event’s onset time, the
activity of the rAI increases. Additional insular activation is provided by afferent
excitatory projections from the rACC. This extra excitatory effect is dampened
by temporal PEs which suggests that when participants fail to accurately
predict an event’s onset time the performance of an unexpected
secondary-task demand decreases. Notice that in DCM endogenous
connections are assumed excitatory.

event’s onset, we engage temporal preparation (Nobre et al., 2007;
Fischer et al., 2012; Los, 2013; Rohenkohl et al., 2014). However,
if after preparing a behavior we suddenly need to change the
planned action with another, this time, “unprepared” behavior
(e.g., stepping back from a road crossing when a walk signed
changes unexpectedly) we face uncertainty because we are not
expecting a task-switching demand. As mentioned, temporal PEs
exert a negative modulatory effect on the excitatory cingulate-
insular coupling which causes the activity in the rAI to decrease.
Therefore, we should expect a PE-driven dampening effect on
task-switching performance accuracy (e.g., changing a prepared
behavior when a change demand is not expected) when we face
perceptual uncertainty.

The above inference, however, is far from conclusive because,
on one side, the activity of the rACC is also associated
with behavioral contingencies explained in terms of conflict
monitoring (Botvinick et al., 1999), cognitive control (Brown,
2008, 2011; Alexander and Brown, 2010), general attention
(Carter et al., 1998), attention for learning (Bryden et al., 2011),
and response inhibition (Aron and Poldrack, 2006). On the
other side, the activity of the rAI has also been associated with
behavioral contingencies explained in terms of attention (Eckert
et al., 2009;Menon andUddin, 2010; Nelson et al., 2010), response
inhibition (Aron and Poldrack, 2006; Aron et al., 2014; Cai et al.,
2014), and other forms of uncertainty (Preuschoff et al., 2008;
Schultz et al., 2008; Bossaerts, 2010; Jones et al., 2010, 2011;
Sarinopoulos et al., 2010; Payzan-LeNestour and Bossaerts, 2011,
2012; Payzan-LeNestour et al., 2013; Symmonds et al., 2013;
Nursimulu and Bossaerts, 2014). In other words, the sole fact that
the activity in the rAI is negatively modulated by temporal PEs is
not sufficient to conclude that temporal PEs modulate an action
update (i.e., a change in a prepared behavior). Otherwise, we
would be committing a reverse inference fallacy (Poldrack, 2006,
2011). This neurophysiology-driven hypothesis needs specific
behavioral test. In this work, we show that perceptual uncertainty
compromises task switching or action selection when subjects
have to inhibit a prepotent response and replace it with a new
action. We will refer to this as task switching and examine
the effect of perceptual uncertainty on task switching in terms
of performance accuracy. In brief, subjects were required to
report a perceptual decision at a particular peristimulus time. We
introduced perceptual uncertainty by increasing the delay (i.e.,
temporal gap) between the perceptual decision and the time of
response. Crucially, this was repeated with and without a task-
switching demand during response preparation.

Our hypothesis is based upon predictive coding accounts of
sensorimotor integration—and in particular active inference. We
hypothesize that increasing perceptual uncertainty (by increasing
the temporal gap) would compromise task switching and reduce
performance accuracy. Based upon our previous neuroimaging
findings, we suppose that this effect would be mediated by an
encoding of uncertainty or precision. In brief, we argue that
greater temporal gaps (and subsequent uncertainty) would have
two consequences. First, there would be an increase in behavioral
PEs in terms of the timing of the response. Second, this increased
uncertainty or decreased precision would result in a decreased
sensitivity of the rAI to ascending PEs. The subsequent reduction
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FIGURE 2 | Timeline of a single experimental trial depicting the long delay temporal gap during the change condition of the task.

of precise predictions about action selection would reduce task
switching and be revealed as a drop in response accuracy—when,
and only when, task switching is necessary.

Materials and Methods

Participants
Sixteen right-handed students (five males, M age = 22.7 years)
signed an informed consent form and participated in the study.
The study was conducted fulfilling the ethical principles for
medical research involving human subjects comprised in the
Declaration of Helsinski and approved by the Ethics Committee
of Instituto Pedagógico de Caracas.

General Task Description
The participants had to report whether the color of two balls
were the same or different when cued to respond a period of
time after the decision was made. This delay or temporal gap
was progressively increased to induce uncertainty about when
the response would be cued. A trial comprised the appearance
of two balls, where one ball moved toward a center ball from
the periphery of the screen. After the first ball touched the
second ball, the second ball bounced off with a variable temporal
gap. Crucially, the balls could switch their colors shortly before
touching. This meant that some trials required both the inhibition
of the prepotent response to the initial colors and a preparation of
a new response.

Stimuli and Procedure
A single trial comprised three events: linguistic cue (2000 ms),
fixation point (540 ms), and visual animation (2700 ms). The
linguistic cue informed on the magnitude of the temporal gaps
(“no delay,” 0 ms; “short delay,” 150 ms; and “long delay,” 300 ms).
The fixation point announced the animation’s onset. At the
animation’s onset, two colored balls (1.30° of visual angle in
diameter) simultaneously appeared on the left and center of a
computer screen. Then, the left-most ball (first ball in Figure 2)
moved to the center of the screen at a constant speed (17.32 deg/s)
until it stopped 900 ms later at the edge of the second ball. After
a delay (temporal gap) of 0, 150, or 300 ms, the right-most ball
(second ball in Figure 2) began moving to the right.

The participants had to press a response key when they
predicted the second ball’s onset time. They pressed the “S” key
if the balls’ colors were the same and the “D” key if the colors were
different.

Critically, there were three task conditions: change, false-
alarm, and no change. Our condition of interest was the change
condition, but the false-alarm and the no-change conditions were
included as control conditions and to prevent the participants
from anticipating a task-switching demand which would improve
their performance (Jahfari et al., 2012). Each task condition
comprised 33% of the trials. In the change condition, the balls’
colors changed at some random time within a time window
between 250 and 500 ms after the animation’s onset time. For
example, if the initial colors were “red” and “red” they changed
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to “blue” and “white.” We will refer to the change time of the
balls’ colors as the change-signal onset time (CSO). In the false-
alarm condition, the balls changed in color, but the relational
value remained the same. For example, if the initial colors were
“red” and “white” (for the first and second ball respectively)
they could change to “yellow” and “blue.” Notice that despite this
change, the colors’ relational value (i.e., different) was the same.
In the no-change condition, the balls’ colors did not change. Four
colors were used (red, white, blue, and yellow). The stimulus
delivery program randomly chose the combination of colors. The
program also randomly varied the initial positions of the balls
in the horizontal axis across trials; however, the initial distance
between the balls remained constant across trials. Figure 2 shows
the sequence of events in a single trial.

The experimenter explicitly instructed the participants to press
the appropriate key just at the “exact” onset time of the second
ball. Eight participants used the index finger to press the “S” key
(middle finger to press the “D” key) whereas eight participants
used the middle finger to press the “S” key (index finger to
press the “D” key). The participants used the same hand in
all of the trials. The dependent variables of interest were the
response accuracy based upon the balls’ relational value and the
absolute temporal PEs ( |response time − second ball’s onset
time| ). Regardless of the duration of the temporal gap, the
subjects sometimes made predictions before the second ball’s
onset time (early predictions) and sometimes after the second
ball’s onset time (late predictions). Young et al. (2005) showed
that the absolute value of the temporal PE would better account
for the effect of the temporal gaps than the relative (early/late)
values. Moreover, we recently found that the absolute value of the
temporal PEs better accounts for the neurophysiological effects
of temporal gaps estimation than the relative values (Limongi
et al., 2013). Notice that the absolute value of the behavioral PEs
is related to their squared values. This means that the absolute
values can be taken as a proxy for the precision (inverse variance)
of behavioral response times.

Design
We constructed a 3 × 3 factorial design: temporal gaps (with
three levels: no delay, short delay, and long delay) times tasks
(with three levels: change, no change, and false alarms). Each
participant performed 450 trials (50 trials/condition) divided
into 10 blocks (45 trials/block and five randomly intermixed
trials per condition within each block). The participants also
performed a familiarization block. Between blocks, a display
message encouraged the participants to relax during a short
break and to decide when to continue with the experiment. The
experimenter provided feedback to the participants only during
the familiarization block. The stimulus delivery program was
E-Prime 2.0 (Psychology Software Tools, Pittsburgh, PA, USA).

Data Analysis
To verify that the temporal gaps actually produced different PEs
beyond random fluctuation, we performed a simple linear-mixed
effects regression analysis with all of the valid responses. To make
sure that we considered predictions of the second ball’s onset time
rather than reactions to the second ball’s motion, we excluded

late predictions if these were greater than 200 ms. This exclusion
criterion yielded 91%of valid responses.We regressed the absolute
PEs against the temporal gaps and included the subjects as a
random effect.

To specifically test our hypothesis, we fit a series of mixed-
effects linear models to the task-switching performance
accuracy. More specifically, we defined a model space with
four models representing our hypothesis and one additional
model representing an alternative hypothesis. All of the models
included subjects as a random effect.

First, it is possible that task-switching performance accuracy is
disrupted by PEs but not by temporal gaps. Model 1a represented
this possibility. It comprised the main effect of task, the main
effect of PE, and the Task × PEs interaction. PEs were indexed in
term of Vincentiles (Balota and Yap, 2011). At a subject level, the
distribution of PEs was ordered and divided into 10 Vincentiles.
Large Vincentiles represented large PEs.

Second, it is possible that the accuracy in sudden task switching
is affected not only by the PEs, but also by temporal gap-induced
uncertainty. Model 2a included all of the effects of model 1,
the main effect of temporal gap, and the Temporal Gap × Task
interaction.

Third, although the temporal window comprising the CSO
was constant across temporal gaps, the CSO varied with respect
to the second ball’s onset time. Therefore, it is possible that the
CSO also accounts for some proportion of variance (Verbruggen
et al., 2008). To model this possible confounding variable, we
constructed two additional models (models 1b and 2b) by adding
the Task × CSO interaction to the effects of models 1a and 2a.

Fourth, it is possible that neither PE nor temporal gap
account for the decrease in task-switching performance accuracy.
Alternatively, it is possible that only the CSO accounts for this
effect. Therefore, model 3 included the main effect of task, the
main effect of CSO, and the Task × CSO interaction.

To select the best model, we relied upon the models’ corrected
Akaike information criterion number (AICc) as a measure of
the best compromise between generalizability, complexity, and
goodness of fit (Myung, 2000; Pitt et al., 2002; Myung and
Pitt, 2004; Myung et al., 2009). We also included the relative
merits of the different models in terms of their Akaike weights
(Wagenmakers and Farrell, 2004; Anderson, 2008). The Akaike
weight (w) of a model i is defined by

wi =
e

−1∆i
2

∑ r
r=1

e
−1∆r

2

(1)

where, ∆i = AICci − AICcmin.
Notice that the Akaike weight of a specific model changes
depending on the number of competing models (i.e., the model
space). Moreover, we complemented the models comparison
strategy with traditional F tests on the fixed effects.

Results

A simple linear mixed-effects regression model shows that, as
expected, the absolute values of the PEs increased as a function of
the temporal gap (β = 0.26, SE= 0.01, Figure 3), which replicates
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FIGURE 3 | Absolute PEs as a function of the temporal gaps.

FIGURE 4 | Akaike weights of the hypothesized models. The Akaike
weights show the support that each model receives from the data relative to
all of the other models within a specific model space.*Akaike weight
approaches 0.

previous results (Young et al., 2005; Limongi et al., 2013). The
slope (β) indicates that the absolute PE increased 0.26 ms per each
millisecond of temporal gap increment.

The models comparison procedure shows that model 2a
(AICc = 6301) better accounts for the observed effects than
the other three models (AICc model 1a = 6351, AICc model
1b = 6391, AICc model 2b = 6340, AICc model 3 = 6561).
Figure 4 shows the Akaike weights of the models. Clearly, Model
2a surpasses all of the other models in the defined model space.
Therefore, we selected model 2a as the simplest model that best
fits the collected data and best generalizes to other data samples.
The fixed effects tests confirmed the main effect of task, F(2,
6571) = 192.2, p < 0.0001; the main effect of temporal gap,
F(1, 6572) = 39.6, p < 0.0001; the main effect of Vincentile, F(1,
6573) = 22.91, p< 0.0001, the Temporal Gap × Task interaction,
F(2, 6571) = 36.03, p < 0.0001; and the Vincentile × Task
interaction, F(2, 6571) = 27.28, p< 0.001.

Figure 5 shows the observed effects and the fitted lines as
yielded by the parameters estimates (Table 1) of the winning
model. The disrupting effect of the PEs on task-switching

FIGURE 5 | Observed and fitted performance accuracy as a function of
the PEs across the three task conditions. PEs are represented in terms of
Vincentiles.

performance accuracy is fairly evident. Specifically, the slope
of the regression line between Vincentile and color comparison
accuracy was steeper for the change condition than for both
the non-change and false-alarm conditions, meaning that the
task-switching performance accuracy strongly decreased as a
function of the temporal PEs. Finally, the parameter estimates
also show that the slope of the regression line between
temporal gap and the color comparison accuracy was steeper
for the change condition than for both control conditions. It
is relevant that the effects of PEs and temporal gaps were
not collinear as verified by the small variance inflation factors
(VIF).

Discussion

In the causality literature, there is a well documented hypothesis
stating that temporal contiguity of dynamics events is strongly
associatedwith causal attribution and temporal prediction (Young
et al., 2005; Young and Sutherland, 2009). Moreover, anticipatory
(i.e., predictive) smooth pursuit eye movements are strongly
associated with both temporal contiguity and causal attribution
(Badler et al., 2010, 2012). This might suggest an alternative
hypothesis on the observed increased in PEs associated with
the increase in temporal gaps: Violation of causality rather than
temporal uncertainty would induce temporal PEs. Although this
alternative hypothesis deserves further studies, the independent
contributions of both behavioral PEs and temporal gaps on
task-switching performance accuracy are fairly supported by the
data, providing behavioral evidence to the neurophysiologically
motivated hypothesis that temporal PEs modulate unexpected
task-switching performance.

A challenge to cognitive neuroscience is proposing brain-
based mechanisms of cognition without appealing to ad hoc
constructs such as a “central executive” or a “homunculus”
(Hazy et al., 2006, 2007; O’Reilly and Frank, 2006). With
this challenge in mind, we think that our results are entirely
consistent with the predictive coding hypothesis: the experimental
manipulation of delay (temporal gaps) induces a delay-specific
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TABLE 1 | Parameters estimates of the linear mixed-effects model.

Parameter Estimate SE DF t Ratio P Lower 95% Upper 95% VIF

Intercept 0.8618 0.0276 19 31.19 <0.0001 0.8040 0.9196
Task [change] −0.1221 0.0067 6571 −18.3 <0.0001 −0.1352 −0.1090 1.328
Task [false-alarm] 0.0197 0.0067 6571 2.92 0.004 0.0065 0.0328 1.327
Task [change] × (Vincentile-5.16315) −0.0175 0.0026 6571 −6.71 <0.0001 −0.0226 −0.0124 1.534
Task [false-alarm] × (Vincentile-5.16315) 0.0158 0.0026 6571 6.06 <0.0001 0.0107 0.0210 1.506
Vincentile −0.0088 0.0018 6572 −4.79 <0.0001 −0.0124 −0.0052 1.142
Temporal gap −0.0003 0.0000 6571 −6.3 <0.0001 −0.0003 −0.0002 1.142
Task [change] × (temporal gap-144.473) −0.0005 0.0001 6571 −8.45 <0.0001 −0.0006 −0.0004 1.547
Task [false-alarm] × (temporal gap-144.473) 0.0003 0.0001 6571 5.02 <0.0001 0.0002 0.0004 1.520

Vincentile and temporal gap values are mean centered.

encoding of uncertainty and precision. The ensuing reduction in
precision explains the increase in behavioral PEs and reduces task-
switching performance accuracy (through a decreased sensitivity
to ascending PEs). In other words, in the absence of precise
information, the brain relies on its prior beliefs and is more
likely to emit prepotent responses. Crucially, the brain knows
when sensory information is likely to be imprecise. This
computational explanation fits comfortably with the decreased
sensitivity of the rAI to ascending connections when stimuli
have greater temporal uncertainty or less precision (because
precision is thought to be encoded by the gain or postsynaptic
sensitivity of neurons encoding PEs). Following, we expand
upon this explanation. First, we will introduce general concepts
of the predictive coding approach. Second, we will propose a
neurophysiological model that would give rise to these behavioral
results.

Predictive Coding: Free Energy and the
Hierarchical Minimization Process of PEs
The predictive coding theory of brain function defines perception
as exteroceptive predictions (Adams et al., 2012). A percept is
a hypothesis of the sensory data, and the perception process
ends with the best hypothesis at hand in terms of Bayes optimal
estimates of the sensorium’s causes. The mechanism through
which the organism reaches this optimal hypothesis comprises the
minimization of PEs as a hierarchical process.

A hierarchical minimization process assumes that higher
cortical areas (e.g., the prefrontal cortex) sends prediction signals
to lower cortical areas and subcortical areas (e.g., primary visual
cortex and fronto-basal ganglia circuits). At a given cortical level,
the internal neural circuit (i.e., within the six-layer cannonical
cortical column) computes a PE. This PE is sent forward to
higher levels in the hierarchy (e.g., secondary visual area) to
revise higher level representations. These updated representations
then reciprocate descending or backward predictions to suppress
PEs at the lower level. This process continues at all hierarchical
levels until the PE has been minimized throughout the hierarchy
(Figure 6).

The minimization of PEs gains physiological meaning in
terms of free energy minimization. The free energy principle
states that an organism tends to change its internal state to
minimize free energy (Friston and Stephan, 2007). The free energy

principle is congruent with the physiological tendency of an
organism to reach equilibriumwhich is referred to as homeostasis.
Therefore, free energy minimization is an adaptive “goal” of an
organism while interacting with the environment. Critically, the
minimization of the sensory PEs (i.e., perception) is only one
mechanism available to this end.

Predictive coding also proposes that “action” or, in general,
“behavior” is another way to minimize PEs (Friston et al., 2006,
2010), and, in consequence, free energy. Action commands
are no more than proprioceptive predictions. Moreover, actions
can be understood as being mediated by exactly the same
mechanisms as exteroceptive predictions or perceptions (Adams
et al., 2013). Histological data support this hypothesis. Specifically,
the infragranular layers in the motor cortex and primary
sensory neurons (projecting from muscle spindles to the dorsal
horn of the spinal cord) comprise prediction units whereas
alpha-motor neurons represent proprioceptive PEs units. Both
types of proprioceptive predictions are compared in the ventral
horn of the spinal cord, resulting in a proprioceptive PE
that is minimized via discharges of alpha-motor neurons.
Notice that whereas exteroceptive PEs minimization takes
place in the granular layers of the cortex, proprioceptive PEs
mimization takes place in the ventral horn of the spinal cord
via alpha-motor neurons discharges. This histological difference
between both systems accounts for the agranular property of
the primary motor area (Adams et al., 2013; Shipp et al.,
2013).

It follows that in pursuing adaptive homeostatic responses,
optimal free-energyminimizationmust comprise explaining away
exteroceptive and proprioceptive PEs in coordination. Echopraxia
exemplifies this homeostatic need. An organism experiences
echopraxia when it simultaneously perceives (observes) and
executes an action, meaning, in the context of predictive
coding, that exteroceptive and proprioceptive PEs are being
simultaneously minimized. To counteract echopraxia (because it
is not an adaptive homeostatic response), one type of PEs should
not be minimized while the other is being explained away. In
the context of active inference, this is exemplified by the dual
physiological role of the so-called mirror neurons (Shipp et al.,
2013) in the motor cortex. Mirror neurons fire when a primate
either executes an action or observes the execution of such action.
However, they do not fire when the primate simultaneously
executes and observes the action.
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FIGURE 6 | Hypothetical model of the exteroceptive and proprioceptive
PEs minimization in the context of task switching during temporal
predictions. The rAI links a circuit mostly engaged in minimization of
exteroceptive PEs (associated with temporal predictions) with a circuit mostly
engaged in the minimization of the proprioceptive PEs (associated with the
control of action). Temporal uncertainty would drive the activity of the
exteroceptive circuit whereas temporal PEs would modulate the effective

connectivity of the fronto-basal ganglia network (the proprioceptive circuit). We
hypothesize that whereas the activity of the rAI would facilitate temporal
estimation, temporal PEs would negatively modulate the behavior-change
performance. The net effect would be the execution of the anticipatorily
prepared (but innacurate) behavior which would release proprioceptive-related
free energy that could not be minimized via the exteroceptive circuit.

In the current paradigm, a reactive response elicited by a task-
switching demand decreases proprioceptive precision (increases
uncertainty). This is because large proprioceptive PEs result from
the comparison between the highly precise ongoing or prepotent
response and the descending predictions of the unprepared
behavior. Mechanistically, the reactive response translates into
descending predictions originating in the infragranular layer of
the primary motor cortex that opposes primary somatosensory
signals, resulting in large and imprecise PEs (i.e., uncertainty).
We speculate that if this situation occurs when exteroceptive PEs
are minimized (e.g., in the 0-ms temporal gap condition), the
organism successfullyminimizes the proprioceptive PEs, resulting
in successful task switching. In contrast, if this situation occurs
in the context of large and not minimized PEs (e.g., in the
300-ms temporal gap condition), the organism increases free
energy (analog to what happens during episodes of echopraxia)
which is not an adaptive homeostatic response. Therefore, a
predictive-coding based mechanism explaining how temporal
PEs affects task-switching performance accuracy should include
the coordination between exteroceptive and proprioceptive PEs
minimization.

A Predictive Coding Mechanism to Account for
the Conjoint Effect of Temporal Gaps and PEs on
Behavior-Change Performance
It is possible that in the presence of a large temporal gap
(e.g., long delay) the extereoceptive process would reach a
suboptimal state (large PEs without minimization). Triggering an
anticipatorily prepared action minimizes additional free energy
and compensates for this suboptimal state. A neurophysiological
mechanism implementing this compensatory (i.e., homeostatic)
response must satisfy two conditions. First, it must integrate
exteroceptive and proprioceptive minimizations of PEs, which
is no more than the integration of perception and action in a
simplemechanism. Second, it must include the effects of temporal
gaps (i.e., temporal uncertainty) and temporal PEs as driving or
modulatory inputs.

The first condition is fulfilled with the fact that once the
temporal PEs depart from lower level sensory areas and reach
higher level areas such as the rAI, they would affect motor
regions. Not coincidentally, the rAI is involved in the processing
of both temporal PEs and in the fronto-basal ganglia circuit
of motor control (Bolam, 2010) which is critical for successful
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task switching. The fronto-basal ganglia circuit is engaged during
behavior inhibition1 (Aron et al., 2007). When an organism
engages a behavior inhibition, a GO process (i.e., the prepotent
behavior) triggered by a GO signal competes against a STOP
process triggered by a STOP signal. Each process has a finishing
time. Inhibition would be successful if the STOP process reaches
its finishing time before the GO process.

Successful inhibition is associated with the activity of either the
indirect or the hyperdirect fronto-basal ganglia circuit (Aron et al.,
2007). It is relevant that behavior inhibition is an essential stage of
task switching (Verbruggen et al., 2008; Verbruggen and Logan,
2009). In a stop-change task (Verbruggen et al., 2008; Verbruggen
and Logan, 2009), the organism stops the prepotent behavior (i.e.,
GO1 behavior) before preparing a second behavior (i.e., GO2
behavior). Therefore, our task-switching paradigm might activate
the frontostriatal network. A salient feature in this mechanism
is that the rAI shows strong activity when the participant fails
to inhibit responses (Cai et al., 2014). Furthermore, the rAI
has anatomical connections with the presupplementary motor
area and with the striatum which are part of the indirect
pathway mediating effective behavior inhibition. Therefore, we
suggest that the rAI anatomically connects “exteroceptive-related”
circuits with “proprioceptive-related” circuits in a single network
(Figure 6).

The second condition is fulfilled by the fact that both
temporal gaps and temporal PEs might affect the effective
connectivity (i.e., how the regions affect to each other) of the
fronto-basal ganglia circuit (Figure 6). Based on our current
data and our previous work (Limongi et al., 2013), we predict
that whereas temporal uncertainty (caused by temporal gaps)
would drive activity in the rAI, the temporal PEs would
modulate the effective connections of the fronto-basal ganglia
circuit. If proven true at the neurophysiological level, this
mechanism would account for the modulatory effect of temporal

PEs on task-switching performance that we found in this
work.

Conclusion
In his Principles of Psychology, James (1950) proposed that action
follows perception which in modern neuroscience is referred to
as the perception and action cycle. As a corollary, an accurate
action demands an accurate perception. In consequence, in the
temporal domain, the organism privileges temporal perception
before engaging an action. Inaccurate temporal perceptions (i.e.,
temporal predictions) translate into large and not minimized
PEs. These errors must be minimized before engaging an
action. Therefore, the system must privilege the exteroceptive
error minimization over other tasks (i.e., engaging a new and
“uprepared” behavior). From a free energy perspective, we could
interpret the irreversible (inaccurate) prepotent behavior as a
compensation for imprecise perceptual inference. In other words,
the brain calls upon precise prior beliefs (prepotent responses)
when faced with imprecise sensory information so that to
minimize the left-over free energy associated with the suboptimal
Bayes estimate of the sensorium’s causes (i.e., not minimized
exteroceptive PEs).
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