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Objectives: Methamphetamine (METH) is a central nervous psychostimulant and one
of the most frequently used illicit drugs. Numerous genetic loci that influence complex
traits, including alcohol abuse, have been discovered; however, genetic analyses
for METH dependence remain limited. An increased histone deacetylase 3 (HDAC3)
expression has been detected in Fos-positive neurons in the dorsomedial striatum
following withdrawal after METH self-administration. Herein, we aimed to systematically
investigate the contribution of HDAC3 to the vulnerability to METH dependence in a Han
Chinese population.

Methods: In total, we recruited 1,221 patients with METH dependence and 2,328
age- and gender-matched controls. For genotyping, we selected 14 single nucleotide
polymorphisms (SNPs) located within ± 3 kb regions of HDAC3. The associations
between genotyped genetic polymorphisms and the vulnerability to METH dependence
were examined by single marker- and haplotype-based methods using PLINK. The
effects of expression quantitative trait loci (eQTLs) on targeted gene expressions were
investigated using the Genotype-Tissue Expression (GTEx) database.

Results: The SNP rs14251 was identified as a significant association signal (χ2
= 9.84,

P = 0.0017). An increased risk of METH dependence was associated with the A allele
(minor allele) of rs14251 [odds ratio (95% CI) = 1.25 (1.09–1.43)]. The results of in silico
analyses suggested that SNP rs14251 could be a potential eQTL signal for FCHSD1,
PCDHGB6, and RELL2, but not for HDAC3, in various human tissues.

Conclusion: We demonstrated that genetic polymorphism rs14251 located at 5q31.3
was significantly associated with the vulnerability to METH dependence in Han
Chinese population.
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INTRODUCTION

Methamphetamine (METH), a well-known powerful central
nervous psychostimulant, is currently the most commonly
used illicit drug in China (1). METH can cause damage
to multiple organs, such as the heart, gut, and brain (2).
Meanwhile, individuals with a history of chronic METH
use are likely to develop METH-related psychosis, including
auditory hallucinations and paranoid thinking (3). METH
dependence is a huge financial burden on people with
addiction and their families. In addition, it can provoke a
series of violent events, leading to several social problems.
Although the precise mechanism underlying METH
dependence remains unknown, METH-induced changes
in gene expression were shown to be closely related to
severe dysregulation of normal neurophysiological brain
activity. More recently, genome-wide association studies have
been extensively employed to detect correlations between
genetic variants and complex diseases, such as schizophrenia,
coronary heart disease, and height in samples from various
populations (4, 5). Numerous loci that influence complex
traits, such as alcohol and other substance abuse, have been
identified, facilitating our understanding of underlying
molecular mechanisms (6–8). However, data on METH
dependence remains scarce despite multiple reports of candidate
genes (9).

Epigenetic alterations can lead to persistent structural
chromatin adaptations, indicating that epigenetic modifications
may play a critical role in the METH-induced gene expression
changes (10, 11). Furthermore, abnormal microRNA expression
is known to mediate METH dependence (12). Histone
deacetylases (HDACs) are proteins involved in histone
acetylation and can be classified into four classes according
to the homologous similarity of their sequences. Class I,
including HDAC1, HDAC2, HDAC3, and HDAC8, is considered
critical for transcriptional repression and epigenetic modulation
(13). As HDAC3 is highly expressed in the adult brain, its
effects on transcriptional regulation related to learning and
memory have attracted considerable attention (14). In the
METH-induced conditioned place preference (CPP) model,
an increased histone 3 acetylation was identified in the limbic
forebrain of mice and found in specific gene-promoter regions
related to synaptic plasticity, such as Nrxn, Gria1, Grin2a, and
Grin2b, thus indicating its essential role in METH dependence
(15). An increased expression of HDAC3 mRNA has been
noted in Fos-positive neurons in the dorsomedial striatum after
withdrawal following METH self-administration (16). Studies
have shown that sodium butyrate, a non-selective inhibitor of
class I/II HDACs, can help overcome a previously established
CPP and suppress the reinstatement of METH-induced CPP
(17). These findings suggest that HDAC3 may be a key molecule
for regulating METH-associated gene expression and clarifying
the underlying biological mechanism. However, the relationship
between the HDAC3 gene and METH dependence remains
elusive. In this study, we aimed to systematically explore the
risk susceptibility of HDAC3 to METH dependence among Han
Chinese population.

MATERIALS AND METHODS

Study Subjects
Herein, we enrolled 1,221 patients with METH dependence
and 2,328 age-matched healthy controls from the Chang’an
Drug Rehabilitation Center of Xi’an City and the Second
Affiliated Hospital of Xi’an Jiaotong University, respectively.
All participants were genetically unrelated individuals of Han
Chinese origin (at least three generations were of Han descent
and had no history of migration). The inclusion criteria for
the METH dependence group were as follows: (1) 11 criteria
for substance use disorders (Supplementary Table 1) according
to Diagnostic and Statistical Manual of Mental Disorders-Fifth
Edition (DSM-V); (2) METH use >2 days per week for >1 year;
(3) no use disorders (DSM-V criteria) considering other addictive
substances, including alcohol and marijuana. Participants with
tumors, neurodegenerative disorders, and other severe organic
disorders were excluded from the study. In addition, participants
were excluded if they met the criteria for past or current
manic episodes, schizophrenia, schizoaffective disorder, or other
psychotic disorders based on the DSM-V. Peripheral blood
samples were collected from participants and preserved for
further genotyping experiments. Demographic characteristics
of all participants were collected using questionnaires and are
presented in Table 1. All participants provided written informed
consent. The study procedures were approved by the Medical
Ethics Committee of Xi’an Jiaotong University Health Science
Center and performed in accordance with the ethical guidelines
of the Declaration of Helsinki (version 2013).

Candidate Single Nucleotide
Polymorphisms Selection and
Genotyping
Single nucleotide polymorphisms with a minor allele frequency
(MAF) >0.05 in mixed population data and located within± 3 kb
regions of HDAC3 were selected. This strategy formed a
set of 22 SNPs. We excluded 5 SNPs that were non-
polymorphic in the 1000 Genomes database for the Han Chinese
population. In addition, we excluded 3 indels; accordingly, 14
candidate SNPs were selected for further genotyping experiments
(Supplementary Table 2). Peripheral blood was drawn from each
participant, and genomic DNA was extracted using a commercial
DNA kit according to the manufacturer’s protocol (Axygen
Scientific Inc., Union City, CA, United States). SNP genotyping
experiments were conducted using the Sequenom MassARRAY
platform. The raw data were processed, and the genotypic data
were released using the Typer Analyzer. Technicians involved
in experimental processes were blinded to case or control
labels. A small portion of study samples (5%) were randomly
selected for replication experiments to assess the accuracy
of SNP genotyping.

Statistical Analyses
To estimate the statistical power of the study, a power analysis
was implemented using the Genetic Association Study (GAS)
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TABLE 1 | Sociodemographic characteristics of the study subjects.

Variables Patients with METH
dependence
(N = 1,221)

Controls
(N = 2,328)

Statistics P-Value

Age, years 32.2 ± 6.3 32.2 ± 6.5 t = −0.047 0.96

Gender (%)

Males 748 (61) 1,425 (61)

Females 473 (39) 903 (39) χ2 < 0.001 1.00

Employment status (%)

Yes 673 (55) 2144 (92)

No 548 (45) 184 (8) χ2
= 666.67 <0.01

Marital status (%)

Married 454 (37) 1755 (75)

Single or
devorced

767 (63) 573 (25) χ2
= 495.79 <0.01

METH, methamphetamine. Age (continuous variable) is presented as
mean ± standard deviation (SD).

Power Calculator.1 The power analysis results are summarized in
Supplementary Figure 1. The power analysis results indicated
that the sample size level was sufficient to detect a SNP
with moderate effect. The Hardy-Weinberg equilibrium (HWE)
tests were performed for genotyping quality control based on
obtained data for control individuals. The associations between
genotyped genetic polymorphisms and vulnerability to METH
dependence were examined using single marker- and haplotype-
based methods. Both allelic and genotypic distributions of
genetic polymorphisms in participants with METH dependence
and healthy controls were determined using PLINK (18) for
single marker-based association analyses. Linkage disequilibrium
(LD) patterns of the 14 candidate genetic polymorphisms were
defined based on a standard algorithm (19). Visualization of
the LD structure was achieved using the Haploview version 4.2
(20). The statistical significance of the association analyses was
examined using χ2 tests. Multiple testing was performed using
the Bonferroni corrections. The P-value threshold was set as 0.05
divided by the number of independent tests.

Bioinformatics Analyses
We examined the effects of expression quantitative trait loci
(eQTLs) on targeted gene expressions using the Genotype-
Tissue Expression (GTEx) database (21), which integrates
genetic polymorphism information and gene expression
data from various types of human tissues to depict the
patterns of human genome eQTLs. Sorting Intolerant From
Tolerant (SIFT) (22) and Polymorphism Phenotyping v2
(Polyphen-2) (23) were utilized to explore the potential
functional consequences of non-synonymous DNA variants.
Both tools are designed to predict the impact of amino
acid changes on the structure and function of the protein.
The protein-protein interaction (PPI) networks of HDAC3
were explored using the Search Tool for the Retrieval of
Interacting Genes/Proteins (STRING) version 11.5 database
(24). STRING is a publicly available database of PPIs stemming

1https://csg.sph.umich.edu/abecasis/gas_power_calculator

from computational prediction or knowledge obtained from
functional studies.

RESULTS

Demographic and Characteristic
Features of Participants
A total of 1,221 patients with METH dependence and 2,328
controls were enrolled. No significant differences were observed
in terms of age and gender between patients and controls, as
both variables were matched at enrollment (Table 1). We noted
significant differences in employment and marital status between
the patients with METH dependence and controls. In addition,
certain socioeconomic status (SES) variables were distinctly
distributed among the two groups.

Association Between Genetic
Polymorphisms of HDAC3 and
Methamphetamine Dependence
All 14 SNPs showed HWE in the control group, and the
results are presented in Supplementary Table 2. The SNP
rs14251 was identified as a significant signal in the association
analyses (Table 2), and its P-value was significant in allelic
analyses following Bonferroni correction (χ2

= 9.84, P = 0.0017,
Supplementary Table 3). Nominal significance was observed at
the genotype level of this SNP (χ2

= 10.37, P = 0.0056). An
increased risk of METH dependence was associated with the A
allele (minor allele) of rs14251. The odds of exhibiting a copy
of A allele vs. C allele was 25% higher in patients with METH
dependence than in controls [odds ratio (OR): 1.25; 95% CI:
1.09–1.43]. Three LD blocks were constructed and visualized,
as shown in Figure 1. The haplotype-based analyses revealed
significant differences in haplotypic frequencies between patients
and controls in the rs56221992-rs11741808 LD block (Table 3).
Notably, a significant difference was observed between the two
groups for the TA haplotype (χ2

= 47.89, P = 4.50× 10−11).

Functional Consequences of Single
Nucleotide Polymorphism rs14251
The data acquired from the GTEx database suggested that
rs14251 is not involved in the expression level of HDAC3 in
any human tissue (Supplementary Table 4), including 13 brain
tissues. Significant eQTL effects of this SNP were observed for
other genes physically located around HDAC3 (Table 4). These
genes included FCHSD1, PCDHGB6, and RELL2. It should be
noted that SNP rs14251 exerted varying effects on the expression
levels of these genes. The A allele of SNP rs14251 increased the
expression of FCHSD1 and decreased the expression of both
PCDHGB6 and RELL2. Given that SNP rs14251 is located in the
exonic region of RELL2 and is a non-synonymous change, its
functional consequence on this gene was predicted using SIFT
and PolyPhen-2. SIFT indicated this SNP as “tolerated” and
PolyPhen-2 as “benign,” respectively. The PPI network of HDAC3
is depicted in Supplementary Figure 2.
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TABLE 2 | Results of association analyses of SNP rs14251 and METH dependence.

SNP Position Type of analyses Group Patients with METH
dependence (N = 1,221)

Controls
(N = 2,328)

OR (95% CI) χ2 P-Value

rs14251 5:141639543 Genotypic analyses AA (%) 28 (2) 43 (2) 1.33 (0.82–2.15)

AC (%) 327 (27) 518 (22) 1.29 (1.10–1.51)

CC (%) 866 (71) 1767 (76) ref 10.37 0.0056

Allelic Analyses A (%) 383 (16) 604 (13) 1.25 (1.09–1.43)

C (%) 2059 (84) 4052 (87) ref 9.84 0.0017

SNP, single nucleotide polymorphism; METH, methamphetamine; OR, odds ratio; CI, confidence interval. The “ref” indicates the reference group.

FIGURE 1 | Linkage disequilibrium (LD) structure of 14 selected single nucleotide polymorphisms (SNPs). Values of D’ are indicated in each cell. The LD blocks are
shown in thick-lined boxes, and SNPs of the haplotype blocks are highlighted in bold font.

DISCUSSION

A variety of neurotransmitter and receptor system-related genes,
including BDNF, DRD2, and GABRB2, were found to contain
genetic variants that contribute to the vulnerability of METH use
disorder (9). Although multiple lines of evidence have associated
epigenetic alterations with METH dependence (25, 26), no
relevant population-based studies focusing on epigenetic-related
genes have been conducted. To the best of our knowledge, this
study is the first to link DNA variants of HDAC3 and vulnerability
to METH dependence in a population-based study. Recently,
Rudzinskas et al. have indicated that METH alters HDAC and

DNA methyltransferase (DNMT) activity in the posterior dorsal
medial amygdala of rats (26); therefore, our findings align with
these results. Genetic markers of specific genes may modify the
effects of METH on human epigenetic patterns.

Significant associations between haplotypes and vulnerability
to METH dependence have been previously reported. Both SNPs
rs56221992 and rs11741808 showed moderate levels of LD with
rs14251 (r2

= 0.3 for rs56221992 and r2
= 0.3 for rs11741808,

respectively). Although we cannot exclude the possibility that this
haplotypic association signal occurred by chance or originated
from other underlying independent association signals, it could
probably arise from SNP rs14251.
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TABLE 3 | Results of the haplotype-based association analyses.

Locus SNPs Length (kb) Haplotype F_A F_U χ2 DF P-Value

H1 rs56221992| rs11741808 0.345 OMNIBUS – – 48.630 2 2.75 × 10−11

TG 0.09 0.10 1.277 1 0.26

TA 0.03 0.01 47.890 1 4.50 × 10−11

CA 0.88 0.89 2.496 1 0.11

H2 rs2547547| rs188494342 0.667 OMNIBUS – – 0.698 2 0.71

GG 0.10 0.09 0.409 1 0.52

AG 0.08 0.08 0.354 1 0.55

AA 0.83 0.83 0.005 1 0.94

H3 rs12655779| rs2530223 2.265 OMNIBUS – – 6.224 2 0.04

GC 0.10 0.09 1.599 1 0.21

AC 0.24 0.26 5.533 1 0.02

AT 0.66 0.64 1.839 1 0.18

SNP, single nucleotide polymorphism; F_A, haplotypic frequency in patients; F_U, haplotypic frequency in controls; DF, degree(s) of freedom.
Significant results were highlighted in bold font.

TABLE 4 | The effects of SNP rs14251 on target gene expressions that achieved P-Value < 1.00 × 10−4.

Gene SNP Ref_allele Alt_allele P-Value NES Tissue

FCHSD1 rs14251 C A 9.90 × 10−8 0.12 Artery–Tibial

FCHSD1 rs14251 C A 4.10 × 10−6 0.10 Adipose–Subcutaneous

FCHSD1 rs14251 C A 1.00 × 10−5 0.10 Cells–Cultured fibroblasts

FCHSD1 rs14251 C A 1.30 × 10−5 0.09 Whole blood

FCHSD1 rs14251 C A 3.80 × 10−5 0.09 Nerve–Tibial

FCHSD1 rs14251 C A 5.40 × 10−5 0.08 Lung

PCDHGB6 rs14251 C A 7.90 × 10−5
−0.18 Esophagus–Muscularis

RELL2 rs14251 C A 5.30 × 10−25
−0.36 Thyroid

RELL2 rs14251 C A 1.90 × 10−7
−0.29 Spleen

RELL2 rs14251 C A 1.10 × 10−6
−0.14 Esophagus–Mucosa

RELL2 rs14251 C A 1.20 × 10−6
−0.16 Breast–Mammary Tissue

RELL2 rs14251 C A 3.20 × 10−6
−0.14 Skin–Not sun exposed (Suprapubic)

RELL2 rs14251 C A 1.00 × 10−5
−0.12 Whole blood

RELL2 rs14251 C A 4.30 × 10−5
−0.14 Brain –Caudate (basal ganglia)

RELL2 rs14251 C A 6.20 × 10−5
−0.09 Brain–Cortex

RELL2 rs14251 C A 8.70 × 10−5
−0.16 Artery–Aorta

RELL2 rs14251 C A 9.90 × 10−5
−0.11 Skin–Sun exposed (Lower leg)

SNP, single nucleotide polymorphism; Ref_allele, reference allele; Alt_allele, alternative allele; NES, normalized effect size.

Single nucleotide polymorphism rs14251 is located in the 3′-
untranslated region of HDAC3. It is also located in the exonic
region of RELL2 as a non-synonymous change. This double
identity increases the complexity of predicting its functional
consequences. Both SIFT and PolyPhen-2 predicted that this SNP
exerts mild functional consequences on the protein structure of
RELL2. Nevertheless, our in silico analyses revealed that SNP
rs14251 could affect the expression levels of RELL2, FCHSD1,
and PCDHGB6 (but not that of HDAC3) in various kinds of
human tissues. A recent study has linked HDAC3 expression
to schizophrenia (27). However, neither RELL2 nor FCHSD1
appears to be associated with psychiatric or brain-related traits.
RELL2 reportedly encodes receptors expressed in lymphoid
tissues such as 2 protein, which participates in the positive
regulation of the p38MAPK cascade and is speculated to be
a human tumor necrosis factor (28). FCHSD1 encodes F-BAR

protein and double SH3 domains protein 1. A recent study
by Kawasaki et al. has indicated that the loss of FCHSD1
could ameliorate chronic obstructive pulmonary disease (29).
In addition, the third gene, PCDHGB6, encodes a calcium-
dependent cell-adhesion protein, potentially related to the
activity of specific neuronal connections in the human brain (30).
However, this study results are insufficient to functionally map
SNP rs14251 to any of the four genes. Therefore, it might be more
appropriate to map this SNP to the 5q31.3 genomic region instead
of a specific gene.

Although eQTL data in the GTEx database indicated that
SNP rs14251 could be mapped to the three surrounding genes,
the results of in silico analyses should be cautiously interpreted.
First, SNP rs14251 is related to gene expressions in various
kinds of human tissues; however, 13 types of brain tissues
(e.g., cortex, cerebellar, and others) are not listed. In other
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words, METH-dependence targeted tissues are not included.
In addition, the METH addiction status for patients whose
data were obtained from the GTEx database remains largely
unknown. A gene expression pattern has specific spatial and
temporal features, and it may considerably differ between patients
and healthy participants. Accordingly, animal-based functional
studies remain crucial to properly map SNP rs14251 to its
functionally relevant gene and unravel potential consequences.

The PPI network constructed in this study indicates that
HDAC3 interacts with several other genes for implementing
its biochemical and biological functions. Among the genes
included in this network, PPARG is of particular interest.
PPARG is known to encode peroxisome proliferator-activated
receptor (PPAR) gamma, which is a member of the PPARs,
a subfamily of nuclear receptors (31). A recent genome-
association study has linked PPARG genetic polymorphisms to
human cognitive measurements (32). As METH-use disorders
are widely associated with cognitive functions, this study
highlights the complexity of pathogenic mechanisms underlying
METH dependence.

In addition, the limitations of this study need to be addressed.
Although we have selected SNPs located at the gene region
of HDAC3 with MAF >0.05, the genetic information coverage
may be insufficient. Recent studies on several psychiatric
disorders, including bipolar disorder and nicotine dependence,
have indicated that genetic variants with low frequency
might substantially contribute to the susceptibility of relevant
disorders (33, 34). In the future, low-frequency and rare
DNA variants should be explored to exhaustively examine
the genetic contribution of HDAC3 to the vulnerability to
METH dependence. Replication studies are also needed to
rule out the “winner’s curse.” In addition, the controls
recruited in this study might not be comparable with METH-
dependent individuals. To examine the vulnerability to METH
dependence, ideal controls would be those individuals who use
METH but are not addicted; this, in turn, might affect the
association measures.

CONCLUSION

In summary, we demonstrated that genetic polymorphism
rs14251 located at 5q31.3 was significantly associated
with the vulnerability to METH dependence in a Han
Chinese population.
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