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Abstract: Next generation sequencing (NGS) technologies produce a huge amount of biological data,
which poses various issues such as requirements of high processing time and large memory. This
research focuses on the detection of single nucleotide polymorphism (SNP) in genome sequences.
Currently, SNPs detection algorithms face several issues, e.g., computational overhead cost, accuracy,
and memory requirements. In this research, we propose a fast and scalable workflow that integrates
Bowtie aligner with Hadoop based Heap SNP caller to improve the SNPs detection in genome
sequences. The proposed workflow is validated through benchmark datasets obtained from publicly
available web-portals, e.g., NCBI and DDBJ DRA. Extensive experiments have been performed and
the results obtained are compared with Bowtie and BWA aligner in the alignment phase, while
compared with GATK, FaSD, SparkGA, Halvade, and Heap in SNP calling phase. Experimental
results analysis shows that the proposed workflow outperforms existing frameworks e.g., GATK,
FaSD, Heap integrated with BWA and Bowtie aligners, SparkGA, and Halvade. The proposed
framework achieved 22.46% more efficient F-score and 99.80% consistent accuracy on average. More,
comparatively 0.21% mean higher accuracy is achieved. Moreover, SNP mining has also been
performed to identify specific regions in genome sequences. All the frameworks are implemented
with the default configuration of memory management. The observations show that all workflows
have approximately same memory requirement. In the future, it is intended to graphically show the
mined SNPs for user-friendly interaction, analyze and optimize the memory requirements as well.

Keywords: DNA; NGS; SNP; Hadoop; Map-Reduce; accuracy; execution time

1. Introduction

The knowledge base of biological data can be collected from natural life, scientific experiments,
and research archives. Classical organism databases are purposeful where species-specific data are
available, as it has great significance in new discoveries. The biological databases have a significant
role in bioinformatics as it helps to approach a wide range of biological data along with increased
varieties of organisms. Many biological research studies have been piloted and formed significant
resources for genomic data. It is often declared that these data resources have not been fully explored
yet [1]. These data sources also posture statistical problems; e.g., the family-wise error rate (FWER) [2]
shows the occurrence probability of at least one false discovery in multiple tests as it is well known
that multiple tests may cause serious false positive problems. The FWER increases with the increase
of marker candidates [2,3]. It is investigated that there is a thoughtful issue of computation slant in
genomic data, i.e., the size of the input file is the same while processing time of variant calling is still
significantly different [4]. Single nucleotide polymorphism (SNP) is a variant of a single nucleotide
which exists at a particular locus in the genome, where respective variant exists up-to noticeable
degree in a population of a residence [5-8]. SNP is a genetic variation triggered by the alteration of a
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single nucleotide base i.e., A, C, G, and T in DNA sequences [9]. It is helpful in biological research to
identify the phenotype and genotype properties of individuals. The phenotype is related to physical
appearance and genotype is the genetic patterns of an individual. SNPs make an individual different
from others as well as helpful to identify the genomic variation in a population. Genomic variation is
the key factor to recognize an individual’s relationship to a population. SNPs play an important role
to detect genome-based diseases, drug design, the reaction of a drug and defenselessness towards
an environmental factor like toxin and risk of evolving disease in a population. The ability of SNPs
based noninvasive prenatal testing to identify unrecognized twin [10] and heritability of a general
psychopathology factor in children [11].

Next generation sequencing (NGS) technology produces a huge amount of biological data that
requires powerful computational devices, large memory and specific hardware and software to
manipulate a particular problem i.e., SNPs detection, microarray analysis, and phylogenetic tree
construction and analysis [12]. Hadoop is a novel platform and uses Map-Reduce functions that run
on any compute cluster in order to provide scalability, reusability, and reproducibility [13]. Hadoop
Map-Reduce can also be used for computation and processing to detect the SNPs [12]. Hadoop
Map-Reduce is helpful to process NGS data to detect the SNPs with optimized processing time. The
study of the genome and related diseases with the help of DNA sequencing is valuable. The emerging
research tends to explore the DNA through NGS techniques. NGS technologies have developed
quickly and are reforming the genomic research scope and drug design improvements [14]. Identifying
genetic variants existing in the genome remains vibrant to explore reasons for phenotype variations
and proneness towards cancers and polymorphic infectious viruses. SNPs are commonly used types to
explore the genetic variation in the genome. NGS helps to efficiently discover more SNPs with respect
to other existing technologies e.g., Sanger sequencing [15].

The Illumina, ABI solid and 454 Life Sciences sequencing technologies have been used in the
detection of genomic variation [3,9,16]. The advancement in technologies used for sequencing has
produced a huge amount of data in the biological field. But this advancement has given rise issues
of the requirement of large memory and computation overhead [17]. The accessibility of technology
with high power and the use of genomics and pharma-co-genomics studies of huge populations are
generating a huge volume of investigational and medical data, over and above specific database extent
in excess of the internet [18]. The storage of big data, preprocessing complexity and investigational
analysis of datasets became the key problems, which create a bottleneck in the exploration of pipelines.
Handling such big datasets obliges data storing excessive capacity along with facilities of processing,
analyzing and sharing. DNA sequencing using NGS technology, the detection of SNPs are being
performed to find the variation in genome sequences [19].

With the emergence of technology, the cost of processing has been decreased but the size of data
has been exponentially increased [18,20,21]. FaSD has based a binomial distribution-based algorithm
and uses mutation likelihood to identify SNPs in NGS data [22]. For FaSD evaluation NGS datasets are
taken from the blood-derived ordinary sample and the GBM (Glioblastoma multiforme) tumor sample
sequenced in the TCGA project (https://gdc.cancer.gov/resources-tcga-users/). These samples were
sequenced on the Genome Analyzer II platform (Illumina, San Diego, CA, USA). All sequences were
in FASTQ format (csfastq for SOLiD), mined from the NCBI database of genotypic and phenotypic
(dbGap) Sequence Read Archive toolkit (SRA) [23]. After alignment, FaSD model is used to call SNPs.
The FaSD-score is calculated to quantify the SNPs likelihood and to determine its equivalent genotype.
If FaSD-score meets the cutoff-score then it is declared as SNP at that specific locus and is donated
as its equivalent genotype. FaSD uses Bowtie for sequence read’s alignment. FaSD variant caller
was developed for sequencing data without molecular barcode. Appropriate analytical methods are
needed to take full advantage of the molecular barcode information [24]. Additionally, it requires high
processing hardware [25]. Several data mining [26] and machine learning [9] methods developed for
SNPs detection in NGS data based on Exhaustive Search Methods, Random Forest, Neural Networks,
Support Vector Machines, Regression Models, Bayesian Approaches and or Ant Colony Optimization
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Approaches. These are powerful methodologies, but prone to infrequent patterns in datasets that tend
to produce false positives results [9].

High-performance computing technology is being developed to process genomic data sources and
perform computational analysis of life sciences [27]. Many researchers discovered filtering approaches
and effective computational algorithms to efficiently detect SNPs [9]. An alternate is cloud computing,
as a replacement for owing and conserving the dedicated hardware. Cloud computing provides the
Map-Reduce as a parallel computing environment. An open-source implementation of the Hadoop
Map-Reduce model is developed for big data analytics, for example NGS data [12]. With the emergence
of technologies, the cost of sequencing has decreased but the cost of processing and storage increased,
while processing of huge amount of data is challenging. NGS takes input data and processes it
to produce output, during the processing that data becomes huge in volume which requires more
space and computing resources [28]. Several distributed computing frameworks, e.g., Apache Spark
have been developed to provide suitable solutions for addressing the scalability issues of variant
calling such as SNPs [29]. A large number of genome analysis tools based on distributed and grid
computing framework has been proposed in [29,30]. The framework presented in [30] is used for
filtering of large genomic data sets called BAMSI, which is multi-cloud service and flexible in the
use of compute and storage resources. The frame presented in [31] called SeqWare Query engine
is used for storing and searching genome sequence data. The Genome Analysis Toolkit (GATK) is
an effective development and determined exploratory tool used for NGS based on the functional
programming of Map-Reduce. GATK is used for accuracy, consistency, CPU and memory effectiveness
that allows shared and distributed memory parallelization [32]. Halvade uses Hadoop MapReduce
based approach for genome analysis, where the variant calling carried out via chromosome divisions.
Due to the noticeable variance in the length of chromosomes, the division may cause load imbalance
issue [33,34]. Churchill is a closely unified DNA analysis pipeline and can be implemented for variant
calling via HaplotypeCalller or FreeBayes [35-37]. The imbalance load created by uneven length of
chromosomes can be reduced by using parallel variant calls. However, the problem is still considered
as computationally intensive. Authors in [38] use Spark for parallel analysis of genomes. The strategy
in the proposed work is simple, but it does not consider the adjacent block overlap. Another tool
named GATK4.0 [39] equipped with many tools for analysis of genome data is also based on the Spark
framework. The tool supports multi-node and multi-core variant calling with parallelization. The
tool demand for high computational resources and memory for large datasets. The shuffle operation
causes performance bottlenecks. To address the issue of SNPs detection, the genome sequence analysis
pipeline also implemented in parallel through a scalable distributed framework e.g., SparkGA [38].
SparkGA has been widely used with the popularity of big data technology. This implementation
is highly capable of parallelizing computation at data-level and highly scalable along with load
balancing techniques. GenomeVIP [40] is an open-source platform for the mining of genomic variant
discovery, interpretation and annotation running on the cloud and or local high-performance computing
infrastructure. Although a number of tools are developed independently, they contain innumerable
configuration options and lack of integration which makes it cumbersome for a bioinformatician to use
properly. SNPs detection in NGS is critical as its analysis used in many applications like genome-based
drug design, disease detection, and microarray analysis. Therefore, more investigations are required
to develop a fast, scalable and more accurate SNPs detection framework. In this research study;,
we proposed a fast and scalable workflow for SNPs detection based on Hadoop Map-Reduce with
the integration of Bowtie aligner and parallelized Heap, which enhanced the SNPs detection rate
and optimized the execution time. Moreover, mining of SNPs is also introduced in the proposed
workflow. The results obtained are compared with state-of-the-art algorithms i.e., GATK [32], FaSD [22],
Halvade [33], SparkGA [38], and Heap [8] algorithms.
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2. Materials and Methods

This research aims to improve SNPs detection in order to enhance the accuracy rate and optimize
execution time. Our proposed framework relies on the Hadoop Map-Reduce programming model [41]
which enables parallel and in-memory distributed computation. Hadoop is a free and open-source
software platform that is used to process huge amounts of data and run applications in parallel on
a cluster environment. It works on divide and conquer based techniques and concludes the results.
It consists of a map and reduce functions for processing and Hadoop Distributed File System (HDFS)
for storage [13]. Map-Reduce works by breaking the processing into two phases i.e., map phase and
reduce phase. The fundamental concept of Map-Reduce is based on <key, value> pairs. The map phase
takes input in <key, value> pairs. It produces the output in the form of a <key, value> pairs. The output
key-value can be different as compared to the input key-value. The output of various map tasks is
group together. The keys and associated set of values are sent to the Reduce phase. The Reduce phase
operates on keys and an associated list of values. The output of Reduce is being concatenated and
written on HDFS. The proposed framework for SNPs detection using the Map-Reduce paradigm is
presented in Figure 1. The stepwise processes are shown in Figure 2; Figure 3 respectively. Moreover,
the proposed framework also utilizes a dynamic load balancing algorithm based on [38] with some
preprocessing of data format for compatibility to efficiently use the available resources. The proposed
model consists of preprocessing, sequence alignment, and SNPs calling and mining integrated with
dynamic load balancing as discussed next.
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Figure 1. The graphical representation of the proposed workflow. Both target and reference sequences
are given as input to the model. Both inputs files are preprocessed as described in Section 2.1. Then
the generated segments, i.e., interleaved and non-overlapping segments are uploaded to Hadoop
Distributed File System (HDFS) for onward processing. In the map phase, the input data is aligned
to the reference genome using Bowtie v.2 aligner as described in Section 2.2. The output of the map

phase is collected in a reduce phase for SNPs detection, then Heap is used for detecting the single

nucleotide polymorphisms (SNPs) as described in Section 2.3. Finally, the detected SNPs are mined,

and the output is generated into a single variant calling format (VCF) file.
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Step 1: Sequences are fed o sequence aligner and aligner alignes these sequences

{A[SequenceReads:GA I TCGGGCAGTCTCGACT=-==G
Reference Reads: GACTGC AGTCTCGACATC---0G

BEequenceReads:GA‘TGGG' AGTCTCGACTTCG
(B) J
eference Reads: GACTG - - CAGTCTCGACATCG

Step 2: Perform the Idexing, Concatenation, Sorting and intermediate output is fed to Hadoop based Heap.

(a) Indexing (b) Concatenation (c) Sorting
Index function performs indexing || Concatenation function is process intermediate SAM and BAM files. It||Sort algorithm sorts
BAM (binary conversion of SAM) || replaces groups of reads in BAM file. It allow user to replace all|land merges BAM or
file and index a coordinate-sorted || groups of reads in input file with a single new read group and allocate || SAM file and also removes
BAM file for fast random access. || all reads to this read group in the output BAM file. the duplication.

Re: GAC TGIGIG[CIAIGIT GAC TG|G|G[CIAIGTC TC GAC T- = = Gftpg aligned sequence reads
S: GACTGICIAIGITCITGACTGELCIAIG|TICITC TC GA C T- - - Gwith reference sequsenF?e

. . o - € sed to detect the SNPs.
s2 GAC TG|G|G|clAGITGAC TGG|GIC|A|IG|TC TC GAC T- - —~Glrhe getected SNPs are
S GACTG|[T JAIGITGACT G|T! AlGITCTC GAC T- - -Gfshown in vertical boxes.

Step 3: Mining of SNPs
|It finds the length of regions where the SNPs are
detected. It gives the position
|ID (start point and end point) where SNPs are exiting.

Figure 2. The stepwise procedure of proposed workflow i.e., (Step 1): sequences are aligned using the
Bowtie aligner version 2. (Step 2): Indexing, Concatenation, and Sorting operations are performed
then SNP caller is used to detecting SNPs in target sequences in comparison of a reference sequence.
(Step 3): The mining of detected SNPs is performed to find out the regions where SNPs exist.

Sequence Reads: GACTGGGCAGTCTCGACTTCG

|1 1 T O Y O
Reference Reads: GAC TG == CAGTCTCGACATCG

Figure 3. Alignment of target sequence read with reference genome read. The nucleotide of the target
sequence read, and a reference sequence is aligned using one-to-one corresponding. The bar sign
shows the matched alignment, dashes show the spaces and alignment without bar sign shows the
mismatched positions.

2.1. Preprocessing

The FASTA [42] and FASTQ [43] programs are widely used for biological sequences because
they are fast, sensitive, and readily available. FASTA and FASTQ have emerged as a common file
format for sharing sequencing reads data and are associated with per base quality score. Initially,
the segmentation utility [44] which runs on master node locally takes input dataset in FASTA and
or FASTQ format to make them accessible for all active computing instances, e.g., map tasks. The
segmentation utility creates compressed segments of the default size of the HDFS block, e.g., 64 MB
for parallel execution using map tasks. For example, it reads “N” number of blocks in one iteration
from a file, where ‘N’ represents the number of map tasks available for execution. Upon reading the
specified blocks, each block is assigned to separate map task. All map tasks are executed in parallel to
compress the assigned blocks, which are then uploaded to HDFS. The utility used here reads a block of
data at once from the input file and looks for the read’s boundary at the end of each block in order to
check the ending of last read. The data is taken till the last read and stores the leftover portion in a
buffer, which is then appended with next block of incoming data. Meanwhile, the data for a segment
is interleaved in map tasks, e.g., a particular map task interleaving data and writing it to segment.
Block-by-block reading of dataset is one of the reasons that the proposed model performs significantly
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better than other programs e.g., Halvade [33,34], which reads the data line-by-line. A status file is
also uploaded in order to keep track record of input segments. The status file is used to inform the
alignment program that particular segment has been uploaded. The status file contains IDs starting
from 0; therefore, segments from 0 to ‘N-1" will be uploaded first in case if there exist ‘N’ number of
map tasks available for execution and the segments from ‘N’ to ‘N X 2-1” are uploaded next, and so on.
When all the segments uploads then a signal in the form of a sentinel file sent to show that all input
datasets have been uploaded.

More, some preprocessing steps are also applied to the reference genome prior to the actual
execution of Map-Reduce functions, e.g., the reference genome is divided into a preset number of
non-overlapping segments. This segmentation is performed on chromosomal regions of approximately
equal-sized; where, the chromosomal regions corresponds to the reduce tasks available for execution.
The number of reduce tasks can be configured in advance based on the size of the reference genome.
Moreover, it is also ensured that all the required data i.e., configuration files and binaries are accessible
to each compute node. When all the required data are fetched to each compute node then these
preprocessing phases can be ignored. Performing preprocessing on datasets to make them available on
each corresponding compute node before actual execution minimizes the overhead of file I/O.

2.2. Map Function and Sequence Alignment

The input sequence reads are divided into segments as the default size of HDFS i.e., 64 MB. The
Bowtie aligner v.2 [45] is used for aligning reads. Bowtie is a very fast and memory-efficient sequence
aligning tool with the existence of reference genome sequences. Bowtie performs chromosome-wise
data partitioning and shuffling and aligns the sequence reads with reference reads. It performs the
exact matching, which is the foremost feature of Bowtie and helpful to detect more SNPs. In the map
phase, each segment is considered as a separate split, hence processed as a single aligner instance.
These are parallel executed on each compute node while utilizing all available mappers. Generally,
the number of map tasks is much greater than the number of mappers, means that several map tasks
will be processed by each mapper. In order to reduce the cost of network communication overhead
and to minimize the repeated access of files stored remotely, our proposed model preferably makes
use of map tasks that have locally input segments as part of HDFS. The indexing, concatenation,
and sorting functions are based on Hadoop BAM [46] as shown stepwise in Figure 2. Hadoop BAM
utilizes the Java libraries to manipulate the files in communal bioinformatics formats through the
Hadoop Map-Reduce framework along with Picard SAM JDK as well as command-line tools, e.g.,
SAM-tools. Hadoop BAM is a novel library for the scalable manipulation and aligning next-generation
sequencing data in the Hadoop distributed computing framework. The genome reads are parsed
through Hadoop-BAM and aligned to the reference genome as shown in Figure 3, that are already
available on each compute node. It acts as an integration layer between analysis applications and
BAM files that are processed using Hadoop. Hadoop BAM solves the issues related to BAM data
access by presenting a convenient API for implementing map functions that can directly operate on
BAM records. It builds on top of the Picard SAM JDK, so tools that rely on the Picard API are easily
convertible to support large-scale distributed processing. Upon successful completion of all alignments,
the reads are transformed to <key, value> pairs, where each key is generated from SAM records i.e.,
<id_chromosomal_region, position_of_mapping>; the key shows the exact location (mapping position)
of mapping in the reference genome. Index function performs indexing BAM (binary conversion of
sequence alignment map [SAM]) file and index a coordinate-sorted BAM file for fast random access.
The concatenation function processes intermediate SAM and BAM files. It replaces groups of reads
in the BAM file. It allows us to replace all groups of reads in the input file with a single new read
group and allocate all reads to this reading group in the output BAM file. Sort algorithm sorts and
merges BAM or SAM file and removes the duplicate reads. Genome reads that are aligned to the same
chromosomal region are grouped together to form a single reduce task.
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2.3. Reduce Function and Genome Single Nucleotide Polymorphisms (SNPs) Calling

Generally, the number of reduce tasks as much greater than the number of reducers; a number
of reduce tasks are executed parallel. A particular task accepts all sorted intermediate <key, value>
pairs as input for the single chromosomal region, which is stored in SAM or BAM file format. Here,
multiple instances are created to perform SNPs calling. Heap is an accurate and highly sensitive SNP
detection tool for high throughput sequencing data and offers equally dependable SNPs with distinct
locus to genomic prediction (GP) and genome-wide association studies (GWAS) [8]. Heap performs
the read filtering in order to obtain a high-quality score based on Phred-scale as shown in Equations
(1) and (2). The reads having scored less than 20 and the bases with a score less than 13 are removed
from the search scope of valid SNP calling sites. Based on quality filtering the frequency of an allele is
computed on all nucleotide sites in order to determine genotype sampling. Heap then performs actual
SNPs calling while comparing the genotypes between the reference genome and sample available
at each compute node. The reducer function extracts the keys and associated values. It mines the
bases A, T, C, and G through the utilization of a fast algorithm for statistical assessment of very
large-scale databases [47], that fundamentally one time executes the itemset mining algorithm, while
the other algorithms execute several times. Then, counts each base in reading and check either match
or mismatch with the corresponding reference sequence. It also maintains the definite record based
on the base quality which is very helpful to realign and recall of SNPs if detection accuracy remains
inconsistent. The reduce function to release the <key, value> pairs. Variant calling format (VCF) file is
generated at the end of each reduce task. VCF file consists of the SNPs detected in the corresponding
chromosomal region. Finally, all the VCF files are merged into a single VCF file to present all the
SNPs detected among the samples. The mining of SNPs generates the output to show the region-wise
saturation. SNP caller calls the SNPs and generates the output which provides the number of SNPs.
This study has improved the SNP caller results and SNP mining which shows the specific positions in
the genome where the SNPs exist. It is more helpful for the target-based investigation of SNPs in a
specific range of a genome.

2l

P =10 1)

where P represents error probability
Q = ~10logy,P @)

where Q represents quality score (Phred Score).

2.4. Dynamic Load Balancing

In order to get the best performance from available resources, a dynamic load balancing algorithm
as shown in Algorithm 1 is applied to balance the load, which remains active in process execution.
A region with too many reads can be further divided via dynamic load balancing, so the execution time
for several procedures in the workflow depends on the number of reads being processed. It is used as a
local resource manager and is responsible for managing computing resources. Particularly, the dynamic
load balancing algorithm consists of load estimation and resource management components. The load
estimation component is used to calculate a load of a task instance while considering the size of data
and training parameters, which are used to represent the computational complexity. The resource
management component is used to assign the estimated amount of resources physically. It is worthful
to note here that the dynamic load balancing algorithm does not change the resource scheduling
algorithm of the Hadoop framework. Rather, it takes over the resources that have been pre-assigned
for each lunched task. Then, the dynamic load balancing algorithm is used to re-assign the resources
for sub-constitute tools in each task via reconfiguring their runtime parameters.
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Algorithm 1. Dynamic load balancing algorithm

Procedure_generate_BAM _files
1. Elements of the distributed dataset {region_id, (region_id, (segment_id, number_of_reads)}
Input « seq_read_info (dynamic_load_balancing_info).cache()
2. Obtain the number of sequence reads for each segment
Seq_reads_per_segment « input.map|[(region_id,{segment_id, number_of_reads)} => number_of_reads
3  Obtain the total number of sequence reads
Total_number_of_reads <« number_of_reads_per_segment.reduce_by_key()
4. Obtain chromosomal region-based input data and group them
Chromosomal_region « input.group_by_key()
Chromosomal_region.cache()
5. Compute the average number of reads based on load balancing region
Avg_seq_reads « total_reads/chromosomal_region.count()
6. Generate BAM to further divide a region (if required) and build BAM files
Chromosomal_region.foreach{(region_id, list_info) — generate_BAM(region_id list_info, avg_seq_reads_region)}
end procedure

2.5. Experimental Setup

Experimental datasets are obtained from NCBI [23] and DDB]J DRA [48,49] web portals, which
provide free access to biomedical and genomic data along with verified statistics. Two benchmark
datasets are selected for experiments based on compatibility of parameters, e.g., Sorghum and the human
genome. Three datasets of Sorghum e.g., GULUM_ABIA (DRR045054), RTx430 (DRR045061), SOR 1
(DRR045065) consist of 1,573,011, 2,251,325, and 2,942,974 number of reads respectively. The number
of base pairs in each dataset is 158,874,111, 227,383,825, and 297,240,374 respectively. Each dataset
consists of 1,000,000 genome length and 101 read length. The reference genome Sbicolor_v2.1_255
is used for Sorghum datasets. The human genome dataset NA12878 consists of 1.6 billion 101 bp
paired-end reads stored in two FASTQ files of 97 GB in size compressed with gzip compression tool
(https://www.gzip.org/). The human genome hg19 resource bundle available from [50] is used for
reference. For results visualization and ease of understanding the results obtained for both datasets are
separately plotted, while same parameters and experimental setup is used for comparison and analysis.

Various experimental setups are used for the evaluation of the proposed framework in comparison
with other state-of-the-art models e.g., GATK 4.0, FaSD, Halvade, and SparkGA. Single node pseudo
cluster and real clusters consist of 8, 16, and 32 working nodes are used for scaling and analysis.
Single node pseudo cluster consists of Intel® Core™ i7-7700K with four cores @ 4.20 CPU having eight
threads along with 64-GB of memory installed, running on 64-bit instruction set kernel Linux (Ubuntu
16.04.6 LTS) operating system (OS). The real clusters comprise of 8, 16, and 32 compute nodes, the
machine used in single node pseudo cluster are configured as server and rest of each node consist of
Intel(R) Core i5-7600K with four cores @ 3.8 GHz CPU, 16-GB of memory installed, running on 64-bit
instruction set kernel Linux (Ubuntu 16.04.4 LTS) OS. All the nodes are connected through the 10Gbit/s
Ethernet network.

2.6. Measurement Metrics

Sensitivity, Specificity, and Accuracies are the terms that are mostly associated with a classification
test and they statistically measure the performance of the test. In classification, we divide a given data
set into two categories based on whether they have common properties or not by identifying their
significance in a classification test. In general, sensitivity indicates, how well the test predicts one
category and specificity measures how well the test predicts the other category. Whereas Accuracy
is expected to measure how well the test predicts categories. If an SNP detected, further it has two
possibilities as either it is true or not which is termed as a true positive (TP) and false positive (FP)
respectively. Similarly, on the other hand, if an SNP is not detected, then it has also two categories i.e.,
true negative (TN) or false negative (FN). In [8], true detection of SNPs is based on sensitivity, positive
predictive value (PPV), F-score, and accuracy. With the use of efficient SNPs detection algorithmic
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solution, the rate of TP and TN helps to increase the F-score and accuracy rate. The detected SNPs
through GATK, FaSD, and Heap SNPs caller along with the integration of BWA and Bowtie aligner,
SparkGA and Halvade are compared with the results of proposed framework i.e., Hadoop based
Heap SNP caller integrated with Bowtie aligner. The F-score and accuracy of SNP callers are also
recorded, where TP, FP, FN, TN, and PPV are considered as standard measurement parameters. The
computational processes of chosen parameters are presented in Equations (3)—(6).

Sensitivity = S v
(TP +FN)
PPV = L ?
(TP + FP)
; . PPV = Sensitivity ©)
- re —
score (PPV + Sensitivity)
Accaracy TP + TN (6)
(TP + FP + TN + FN)

Table 1 shows the empirical results of F-score and accuracy for all algorithms and respective
datasets used. Figures 4 and 5 show the comparative results of accuracy and F-score for all frameworks
respectively. The frameworks GATK and FaSD are integrated with BWA and Bowtie aligners. Results
show that the Bowtie aligner produces better results than BWA in terms of F-score while the accuracy
of BWA is better than the Bowtie aligner. Heap SNP caller is then integrated with BWA aligner and
results are recorded for comparison. The comparative analysis of Heap integrated with BWA shows
better results than GATK and FaSD integrated with BWA and Bowtie aligners. The SparkGA model is
also executed, where its results are slightly better than previous frameworks. The Halvade framework
results are also compared with other frameworks, however, its results are not significant on selected
parameters. The results analysis of the proposed framework shows that it outperforms than existing
algorithms in terms of parameters used in the comparison.
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Table 1. Comparative measurement analysis of proposed workflow with other frameworks in terms of mean F-Score and mean accuracy. Bold is used to highlight the

proposed method and its results.

Algorithm Datasets TP FP FN TN PPV Sensitivity F-Score Accuracy %  Mean F-Score ~ Mean Accuracy
Cenome Human Genome ~ 4217,638 42983 20,871  2,995718,508 098991156 0.99507586  0.992487  99.9978715
. . GULUM_ABIAD 2649 421 4912 992,018 0.86286645  0.35035048  0.49835387 99.4667
’(\é‘leyIs(l)s E%O‘ﬁt RTx430 3248 763 8229 987,760 0.80977312  0.28300078  0.41942149 99.1008 0.56823916 99.1739429
SOR_1 5320 1281 17,415 975,984 0.80593849  0.23400044  0.3626943 98.1304
Human Genome 4218954 41,768 17524  2,995721,754 099019697  0.99586355  0.99302217  99.9980236
. GULUM_ABIAD 2070 1242 2269 994,419 0.625 0.47706845  0.54110574 99.6489
GATK + Bowtie RTx430 3084 1019 3778 991,919 076318847 046502407 057791465  99.5203 0.66755026 996017809
SOR_1 4801 2188 5413 987,598 0.68693661  0.47004112  0.55815846 99.2399
Human Genome  4217,748 40,158 25474  2,995716,620 09905686  0.99399654  0.99227961  99.9978123
GULUM_ABIAD 2036 1778 856 995,330 053382276  0.70401107  0.60721742 99.7366
FaSD +BWA RTx430 2438 2334 817 994,411 05108969 074900154  0.60744986  99.6849 0.70102669 997179531
SOR_1 4058 3176 2299 990,467 056096212  0.63835142  0.59715989 99.4525
Human Genome 4218962 41,718 19874  2,995719,446 099020861  0.99531145  0.99275347  99.9979469
. GULUM_ABIAD 2933 1170 2539 993,358 07148428 053600146  0.61263708 99.6291
FaSD + Bowtie RTx430 3739 1162 3185 991,914 0.76290553  0.54000578  0.63238901 99.5653 0.71574353 996295367
SOR_1 5623 1855 4887 987,635 075193902  0.53501427  0.62519457 99.3258
Human Genome 4219867 41,875 19724  2,995718534 099017421  0.99534766 09927542  99.9979467
GULUM_ABIAD 4183 1611 1026 993,180 072195375  0.80303321  0.76033809 99.7363
Heap + BWA RTx430 5352 251 1279 991,118 070393266  0.80711808  0.75200225 99.647 0.81385601 99.7553367
SOR_1 5408 2231 1368 990,993 070794607  0.79811098  0.75032952 99.6401
Human Genome ~ 4217,945 42,893 17,890  2,995721,272 09899332  0.99577651  0.99284626  99.9979739
GULUM_ABIAD 4189 1745 1180 992,886 070593192  0.78021978  0.74121915 99.7075
SparkGA RTx430 5395 2358 1157 991,090 0.69585967  0.8234127  0.75428172 99.6485 0.81260408 99.7523685
SOR_1 5517 2198 1247 991,038 071510045  0.81564163  0.7620692 99.6555
Human Genome 4215987 42598 18574  2,995722,841 098999715  0.99561371  0.99279749  99.9979609
GULUM_ABIAD 4171 1869 1247 992,713 0.69056291  0.76984127  0.72805027 99.6884
Halvade RTx430 5487 2498 1024 990,991 0.68716343  0.84272769  0.75703642 99.6478 0.73330211 994933902
SOR_1 5687 2359 11,247 980,707 070681084  0.33583323  0.45532426 98.6394
Human Genome 4,325,715 41,350 17,865  2,995,615070  0.9905314  0.99588703  0.993202  99.9980262
GULUM_ABIAD 5680 1458 1024 991,838 0.7957411  0.84725537  0.82069065 99.7518
1 _ ,
Proposed mode RTx430 6214 1458 1025 991,303 0.80995829  0.85840586  0.83347864 99.7517 0.86552278 99.8031315
SOR_1 6354 1532 1358 990,756 0.80573168  0.82391079  0.81471984 99.711

True positive (TP), false positive (FP), false negative (FN), true negative (TN), positive predictive value (PPV).
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Percent Accuracy Measurement Analysis
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Figure 4. Comparative results analysis of proposed and existing workflows in terms of percent accuracy measurement on the Human genome, GULUM_ABIAD,
RTx430, and SOR_1 datasets. The figure shows the results for GATK + BWA, GATK + Bowtie, FaSD + BWA, FaSD + Bowtie, Heap + BWA, SparkGA, Halvade and
proposed workflows respectively. The diamond shape marker over the dotted line shows the discrete points for the accuracy of the respective workflow and dataset.
The light blue marker shows the existing workflows, while the solid red filled marker shows the points for the proposed workflow. Results analysis of graphs shows
that the proposed workflow comparatively outperforms than existing workflows.
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F-score Measurement Analysis
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Figure 5. Comparative results analysis of proposed and existing workflows with respect to F-Score executed on the human genome and Sorghum datasets
GULUM_ABIAD, RTx430, and SOR_1. The graph shows the F-score results for GATK + BWA, GATK + Bowtie, FaSD + BWA, FaSD + Bowtie, Heap +BWA, SparkGA,
Halvade and proposed workflows respectively. The solid blue bars show the F-score for existing workflows while the solid filled dark-red vertical bars show the
F-score result for the proposed workflow. From graphs, it is clear that the proposed workflow has achieved better results as compared to others.
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2.7. Single Nucleotide Polymorphism (SNP) Mining

Most of the SNPs caller algorithm detects the SNPs and generates the output in VCF file format.
The output shows the details of SNPs detected and the number of SNPs. SNPs mining facilitates to
identify the region-wise position of SNPs throughout the genome length in terms of position ID. The
ID contains the starting position and ending position of a genomic region where SNPs exist. The region
length tells the length of the region of these SNPs.

3. Results and Discussion

To evaluate the correctness and validity of the proposed framework sample datasets were extracted
from all benchmarked datasets with consistent length i.e., 2000 genome length with 101 read length
and executed on a single node. Each workflow experiment was executed 100 times and average time
in seconds is computed for sample datasets, where the results of real clusters are recorded in minutes
for clear visualization and ease of understanding. Results analysis of sample datasets shows that the
proposed framework produced good results than others. For scalability analysis all the workflows
are evaluated on real compute clusters of different configurations i.e., 8 compute nodes @ 116 GHz
processing power with 32 cores equipped with 112 GB of memory, 16 compute nodes @ 237.60 GHz
processing power with 64 cores equipped with 304 GB of memory and 32 compute nodes @ 471.2 GHz
processing power with 128 cores equipped with 560 GB of memory. All the nodes are connected
through 10 Gbit/s Ethernet network. GATK correctly calls SNPs if enough numerals of reads coverage
are delivered i.e., 20x or more for enough sensitivity in genome re-sequencing, which is difficult
under low read coverage, 7x or lower. FaSD uses the Bowtie for sequence read’s alignment by default.
Additionally, it requires high processing hardware infrastructure. Heap improves the sensitivity and
accuracy of SNPs calling with lower coverage NGS data. Heap reduces the FP rate and accomplishes
the highest F-scores with low coverage (7x). F-score is the harmonic means of sensitivity and PPV.

The default configurations for memory utilization and management are considered for all the
existing workflows. For a fair comparison, the default configuration for memory management of
Hadoop Map-Reduce is also considered for the proposed model as described next. On every node,
Map-Reduce updates mapred-site.xml file with the number of map and reduce slots based on the
number of computing instances available on the node. Traditionally, data are stored in block units. The
memory path is updated upon the writing of each data block and finally reaches to the end of the array
for redirection to the head. To make sure that data are written into the memory, the policy is re-written
for selecting the storage path in the HDFS. Data files are assigned paths with different priorities, sort
them based on priority, and then store the file paths into the array of the data node and check the paths
in the array from the start when data is written. The observations and analysis of memory utilization
show that all the workflows including the proposed model consume approximately the same memory.

GATK uses the BWA aligner as the default aligner, however, in [51] the GATK's results are
reviewed and generated using Bowtie aligner which improves the results with respect to SNPs calling.
Similarly, FaSD uses the Bowtie aligner as default, while in [52] the performance of FaSD with respect
to SNPs calling using the BWA and Bowtie aligner are presented. The integration of Bowtie with FaSD
produces more improved results than BWA as GATK integrated with Bowtie aligner. Heap uses the
BWA for sequence alignment as the default aligner. We have integrated the Bowtie aligner with Heap
and executed on Hadoop clusters and get improved results.

Results given in Figures 4 and 5 show the accuracy and F-score measurement analysis of the
proposed framework in comparison with GATK + BWA, GATK + Bowtie, FaSD + BWA, FaSD + Bowtie,
Heap + BWA, SparkGA, and Halvade pipelines respectively. Results analysis show that the proposed
model is 52.3%, 29.6%, 23.4%, 20.9%, 6.3%, 6.5%, and 18% more efficient in F-score than GATK +
BWA, GATK + Bowtie, FaSD + BWA, FaSD + Bowtie, Heap + BWA, SparkGA and Halvade pipelines
respectively. It also shows that the proposed framework is 0.63%, 0.20%, 0.08%, 0.17%, 0.04%, 0.05%,
and 0.31% more accurate than GATK + BWA, GATK + Bowtie, FaSD + BWA, FaSD + Bowtie, Heap
+ BWA, SparkGA and Halvade pipelines respectively. Results from Table 1 and Figure 4 show that
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the proposed model achieved 99.998% accuracy on the human genome, 99.75% on GULUM_ABIAD,
99.75% on RTx430, and 99.71% on the SOR_1 dataset, its analysis show that the proposed framework is
consistent for accuracy gain as compared to others. The overall analysis of Figure 4; Figure 5 shows
that the proposed framework is 22.46% more efficient and 0.21% more accurate on average empirical
observations comparatively.

Figure 6a—d show the execution time taken on the human genome dataset while running on a
single node, 8 nodes, 16 nodes, and 32 nodes cluster respectively. The graphs show the comparative
results of the proposed framework and GATK + BWA, GATK + Bowtie, FaSD + BWA, FaSD + Bowtie,
Heap + BWA, SparkGA, and Halvade pipelines executed for human genome dataset. The results
analysis shows that the proposed framework outperforms on the human genome dataset than others.
It shows that the proposed framework gained the benefit of scalability power of Hadoop Map-Reduce.
It achieved high efficiency in terms of execution time on the human genome as it has a large number
of bases. While other workflows remain inconsistent in execution time and have a varying span of
execution time on the human genome dataset. The proposed framework utilizes the power of Hadoop
Map-Reduce integrated with Heap along with Bowtie aligner.

Figure 7a—d show the execution time taken on Sorghum datasets while running on a single
node, 8 nodes, 16 nodes and 32 nodes cluster respectively for all workflows. The analysis of results
shows that the proposed model takes less time as compare to others. However, it is observed that
the proposed framework gain less efficiency as compared to efficiency gain over the human genome
dataset. The reason behind this the size of the dataset and the logic of Hadoop Map-Reduce execution.
The communication overhead cost of other pipelines is much more than the proposed model because
the proposed model utilizes the dynamic load balancing algorithm for maintaining the load balanced
throughout the execution of the workflow.

Figure 8a—c presents the cluster-wise speedup gained by the proposed model over other workflows
while running on 8 nodes, 16 nodes, and 32 nodes clusters respectively for all datasets. The scalability
analysis of all workflows show that the proposed framework is highly scalable as it has achieved good
speedup on §, 16, and 32 compute nodes. Figure 9 shows the average speedup measurement analysis
of 8, 16, and 32 nodes real compute clusters for all datasets its analysis presents that the proposed
framework outperforms than others on all datasets.
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a. Single Node Execution Time Analysis on Human Genome Dataset
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b. 8 Nodes Cluster Execution Time Analysis on Human Genome Dataset
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Figure 6. The execution time of single node pseudo cluster, 8 nodes, 16 nodes and 32 nodes real clusters are shown in part (a—d) respectively for the human genome

dataset. The light blue filled circles over the line show the points for existing workflows and the solid red filled circle shows the values for the proposed workflow.

Its analysis shows that the proposed model takes less time in execution while detecting SNPs in the human genome dataset.
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Figure 7. The execution time analysis of single node pseudo cluster, 8 nodes, 16 nodes, and 32 nodes real clusters are shown in part (a—d) respectively for Sorghum
datasets. The light blue filled circle markers over the line show the values for existing workflows and the solid red filled circle shows the values for the proposed
workflow. Here, it is clear that the proposed workflow takes less time in execution for detecting SNPs as compared to others. It is worth noting that on a larger dataset
the efficiency of the proposed framework is much better than a smaller dataset.
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a. Speedup Analysis on 8 Nodes
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c. Speedup Analysis on 32 Nodes
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Figure 8. The graphs (a—c) show the speed up analysis of the proposed workflow in comparison with

existing workflows running on various nodes: 8, 16, and 32 nodes respectively. On all number of nodes,

the proposed workflow achieved higher speedup as compared to other workflows on both Sorghum

and Human genome datasets. Results analysis elucidates that the proposed workflow is robust in

gaining speed up.
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Average Speedup Analysis
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Figure 9. Average speed up analysis of the proposed workflow in comparison with existing workflows
on a number of various nodes. The graphical representation shows that the proposed workflow achieved
higher speedup performance on average of all clusters and datasets as compared to other frameworks.

4. Conclusions

SNP is a variation of a single nucleotide that exists at a particular locus in the genome, where
respective variant exists to a noticeable degree in the population of a residence. Detecting SNPs
in high dimensional genomic data is difficult, due to the growing number of genetic variations in
genome sequences. It is helpful in biological research to assess an individual’s reaction to certain drugs,
defenselessness towards environmental factors like toxins, and risk of disease. The Hadoop is a novel
platform using the Map-Reduce programming framework which runs on any cluster only with the
prerequisite of Java. It provides the scalability, reusability, and reproducibility features. The Hadoop
Map-Reduce can also be used for fast computation and processing to detect the SNPs in genome
sequences. Hadoop Map-Reduce proves the capability to process NGS data to detect the SNP in less
time with higher accuracy. In this research study, we proposed Hadoop based framework integrated
with Heap for SNPs detection which enhances the SNPs detection rate and optimizes the execution
time. The proposed framework is executed on a various number of nodes with different configurations.
To validate the framework, different benchmark datasets have been used and the results are recorded
for comparison with other state-of-the-art pipelines. This research contributed as a novel framework
for SNP detection which has improved the SNPs detection rate, optimized the execution time and
mined SNPs as well.

In the future, it is intended to identify SNPs associated with complex diseases such as cancer,
diabetes, and heart disease on a large scale, e.g., cloud computing environment integrated with
optimization technique of artificial intelligence and mine them. It is also intended to optimize memory
requirement in the future.
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