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While sexual selection on male coloration has been important in haplochromine cichlid speciation, few studies to date have
examined potential environmental influences on color pattern evolution. Data from multiple sources on male nuptial coloration of
the Lake Malawi endemic genus Labeotropheus were used to examine the relationship between color patterns and the environments
in which these patterns were found. Red- or carotenoid-pigmented males were concentrated in the northwestern portion of
Lake Malawi and were also associated with increasing depth. Further, the presence or absence of L. fuelleborni influenced the
coloration of L. trewavasae populations; when L. fuelleborni was present, L. trewavasae males were more likely to exhibit some
degree of red coloration. While these results support the idea that sexual selection on male coloration is an important factor in the
haplochromine speciation, they also underscore the importance of environmental influences on the evolution of color patterns.

1. Introduction

An organism’s color can serve an adaptive function in
numerous ecological contexts, including crypsis, commu-
nication, and thermoregulation [1, 2]. As such, it is likely
that organismal color reflects a balance among numerous
and perhaps competing demands; a color best suited for
the performance of one function (e.g., cryptic avoidance
of predators) may reflect a trade-off with that suited for
another (e.g., attractiveness to potential mates). This trade-
off is further shaped by the wavelengths of light available in
the organism’s natural environment; a color pattern that is
cryptic in one environment may be conspicuous in another
[1, 3–5]. In other words, the relative strength of the color
signal depends on not only the visual system of the receiver
but also the medium and surrounding environment in which
it is transmitted [3, 6, 7].

This trade-off is especially important in aquatic environ-
ments, where the available wavelengths of visible (and near-
visible) light are highly habitat dependent, thus potentially
placing a limit on the palette of colors available to the
organisms that live there [7–10]. The background against

which the color patterns of aquatic organisms are typically
viewed will also further constrain the efficiency of certain
visual signals [2, 4, 7, 8, 11]. Because of these limitations
on the spectral environment of aquatic systems and their
potential effects on organismal color, aquatic organisms are
excellent choices for studying the interactions of environ-
ment or ecology and the evolution of color patterns.

The bright colors of male haplochromine cichlids have
received much attention from evolutionary biologists. These
colors caused early researchers to speculate that sexual
selection may have played an important role in African
cichlid speciation [12, 13], an idea that was later confirmed
in several lab and field studies [14–17]. Indeed, it has even
been proposed that sexual selection via female choice is
solely responsible for the evolution of these color patterns,
with little or no role allowed for the effects of ecological
and environmental context [18, 19]. And, despite the early
attention paid to female choice, several researchers found
evidence that male intrasexual interactions may play a role
in the diversification of color patterns among haplochromine
species. Pauers et al. [17], working with several Lake Malawi
species, performed a laboratory study in which they found
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that males were more aggressive towards similarly colored
opponents, whether or not they were of the same genus.
Further, Seehausen and Schluter [20] and Young et al. [21]
found that the membership of communities of Lake Victoria
and Lake Malawi species was dictated by male coloration;
in both lakes, communities of cichlids were more likely to
be composed of species in which the males were differently
colored from one another.

Despite this, the evidence regarding the relationship
between color (or color pattern) and environment has been
equivocal. For example, Goldschmidt [22] demonstrated that
the size of anal fin egg spots and, to a lesser extent, egg
spot number, increase with decreasing light intensity in Lake
Victorian haplochromines. McElroy et al. [23] and Deutsch
[18] took spectral measurements from published pictures
of Lake Malawi haplochromines and looked for patterns
among coloration and environment. While Mc Elroy et al.
[23] found some statistically significant correlations, mostly
in terms of substrate preference and diet, Deutsch [18]
found no significant relationships between male color and
ecology, attributing color diversity instead to sexual selection
via female choice. Seehausen et al. [19] examined gross
color pattern type among all lineages of African cichlids and
mapped these color characteristics on a phylogenetic tree.
The resulting phylogenetic associations between color pat-
tern elements and ecology indicated that while various stripe
patterns had strong ecological associations, male nuptial
coloration concomitantly originated with the evolution of
promiscuous mating systems in East African cichlids; further,
male nuptial coloration may have evolved in a direct response
to female mate choice.

Additionally, two more recent, largely field-based studies
also drew contrasting conclusions regarding the relationships
among male nuptial coloration and the spectral environ-
ment. Seehausen et al. [24] found that at populations of
a polychromatic Lake Victorian haplochromine in which
there was a moderate spectral gradient between shallow
and deep habitats, there was a distinct gradient of male
coloration, with blue males inhabiting the shallows and
red males living at deeper depths. On the other hand, at
populations in which there was a steep spectral gradient, the
variation among nuptial color types was muted and no clear
pattern was found. Interestingly, patterns of female mate
choice closely followed these patterns of male nuptial color.
Dalton et al. [25] found that among cichlid species within
a single Lake Malawi location, there was no relationship
between any aspect of male coloration and any feature of the
environment, including depth.

Further complicating our understanding of the relation-
ship between color and environment is the relationship
between cichlid visual sensitivity and the environment. In an
important early study, Muntz [26] found that Lake Malawi
cichlids had different complements of visual pigments
depending upon the depths at which they live. This was
confirmed for African cichlids in general by Spady et al.
[27], who found that cichlids from clear habitats expressed
different photopigments or differently tuned versions of the
same photopigments; this was also found in Lake Victorian
cichlids by Terai et al. [28] and Carleton et al. [29].

Furthermore, there is evidence that turbidity constricts male
cichlid coloration to those colors that best match or contrast
with the surroundings. Lake Malawi is a clear, bright lake
and tends to have fish with predominantly blue and yellow
coloration. Lake Victoria, being more turbid, tends to have
more fish with red and green pigments [18, 23–25]. Given
this, it is reasonable to expect that changes in light at various
depths could constrain male nuptial coloration (but see
Dalton et al. [25]).

The African cichlid genus Labeotropheus (Ahl 1927;
[30]) is one of the rock-dwelling haplochromine “mbuna”
endemic to Lake Malawi. It contains two recognized species,
L. fuelleborni and L. trewavasae. L. fuelleborni is a deep-
bodied, shallow-dwelling algae scraper often found in asso-
ciation with large rocks, while L. trewavasae is a slender-
bodied, deeper-dwelling algae scraper that prefers the bot-
toms and sides of smaller rocks [31, 32]. Despite these
differences in ecology, the two species share a cosmopolitan
distribution throughout the lake, as well as differing male
nuptial colors among populations [31–34]. Further, while
L. fuelleborni and L. trewavasae may be found at the same
location, the males of these species very rarely have similar
nuptial colorations when found in sympatry [33, 34]. As with
many other mbuna populations, Labeotropheus populations
are isolated from each other by a combination of habitat
discontinuities and behavioral mechanisms, so it is likely that
there is very little, if any, gene flow among them [31, 32, 35].

Lake Malawi is a large and heterogeneous lake, which
suggests that isolated populations of Labeotropheus may
experience unique visual environments that could influence
the evolution or development of their visual systems [24,
31, 36]. Since both intra- and intersexual selection have
been demonstrated to play important roles in the evolution
of male nuptial coloration in the mbuna in general and
in the Labeotropheus in particular [15, 16, 37], differing
spectral environments among populations could, in turn,
have an effect on male nuptial coloration. Thus, the analysis
described below is an attempt to explore possible rela-
tionships among environmental features of Labeotropheus
populations and male nuptial coloration and to explore the
relative contributions of natural and sexual selection to the
evolution of male color patterns in the Labeotropheus.

2. Methods

2.1. Data Collection. Pictures or descriptions of Labeotro-
pheus color patterns were obtained from six sources [31–
33, 38–40]. The information from all five sources was
sufficient to classify each Labeotropheus populations as one
of Seehausen et al.’s [41] three general haplochromine
nuptial color pattern types: Blue, Red Dorsal, or Red Ventral
(Table 1). In applying these color categories to Lake Malawi
cichlids, it should be noted that the adjective “red” refers
to carotenoid pigmentation in general, including hues of
orange, yellow, and ochre, as there are very few examples
of pure red coloration in these fishes [23, 41]. In addition,
I further classified fish based on the pigment (“Red” or Blue)
that colored the majority (i.e., greater than 50%) of the
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body of the fish, excluding the fins. This was done for two
reasons. First, I wanted to separate coloration that might
be more influenced by environmental factors (i.e., the trunk
of the fish) from that which might be more influenced by
female mate choice (i.e., the fins). For example, a common
color pattern in Lake Malawi cichlid fishes is a version of
Red Dorsal in which the entire body of the fish is blue and
only the dorsal fin is red (Table 1). While swimming, with
the median fins clamped closely to the body, this fish may
appear to other organisms to be entirely blue; however, when
engaged in display activity, whether warding off a competitor
or attempting to attract potential mates, its full color pattern
is visible. Secondly, I wanted to control for the degree to
which a particular population expresses one of these nuptial
color types (e.g., both a blue-bodied fish with a red dorsal fin
and a red-bodied fish with a white belly are considered Red
Dorsal under this classification; Table 1).

Two sources [31, 32] provided information on the mini-
mum, modal, and maximum depths observed, gross habitat
type (mainland, island, or rock/reef) and latitude/longitude
for some populations of Labeotropheus (n = 35). Konings
[39] was useful in determining some habitat types and
latitude/longitude for some additional populations (n = 36).
For populations where direct information was not available,
depths were estimated based on species and habitat type.
These depth estimations are reasonable because Ribbink et
al. [32] demonstrate that Labeotropheus populations tend
to have characteristic depth distributions based on both
species and gross habitat type. Mainland populations of
either species tend to be shallower than island populations,
which are shallower than rock/reef populations (see [32,
Figure 3, Page 228]). Therefore, those populations for which
depth information was unavailable (n = 43) were assigned
the mean values of minimum, modal, and maximum depths
for populations of the same species occurring at the same
type of habitat, making habitat type a satisfactory surrogate
for depth.

It should be further noted that, in the descriptions
and discussions that follow, when I refer to any category
(minimum, maximum, or modal) of depth, what I am
actually referring to is the depth at which Labeotropheus are
found.

Data were compiled with separate entries for each species
at each location. The data included information on male
nuptial, body color, and environmental information (depth,
latitude, longitude, habitat type, and whether one or both
species of Labeotropheus were present at a given location).

2.2. Statistical Analyses. The data were analyzed using a
multivariate general linear model in the Set Correlation
module in Systat (v. 10.0) [42, 43]. The data were subdivided
into two distinct sets; data regarding the fish themselves
(species, nuptial color, and body color) were considered
to be one set, while the environmental parameters (depth,
latitude, longitude, habitat type, and presence of one or
both Labeotropheus species) were considered to be another.
Using the fish data as a set of dependent variables and
the environmental data as a set of independent variables,

I looked for patterns of correlation and predictability both
within and between these sets with Set Correlation. The
Set Correlation module provides two types of output: (1)
basic correlations among variables both within and between
sets and (2) a regression of the independent set against
the dependent set, in order to find possible predictive
relationships among the variables. Further, a categorical
variable with n possible states was collapsed into n-1 factors
using a Canonical Correlation Analysis [43]; thus, nuptial
color, with three possible states (Blue, Red Dorsal, and Red
Ventral), was collapsed into two factors, identified as Nuptial
Color (1) and Nuptial Color (2), respectively.

Within the independent set, habitat type was collapsed
into two distinct habitat factors based on differences in
Labeotropheus depth and geographical distribution. While
Systat does not identify the particular habitat most strongly
associated with these factors, examining the depth and
geographical factors that have the highest correlations with
each habitat can identify the habitats designated as Habitat
(1) and Habitat (2), respectively; this same approach can
identify the dependent factors as well. In the dependent set,
nuptial color yielded two separate nuptial color factors and
body color was reduced into a single factor. Further, the two
species of Labeotropheus were similarly reduced to a single
species factor.

Correlations between the dependent and independent
sets were used to determine which color patterns were asso-
ciated with which environmental variables. Identification of
predictive relationships between sets was accomplished by
evaluating the standardized regression coefficients and their
respective P values for relationships among variables between
the dependent and independent sets. Canonical correlations
between sets were generated from the rotated canonical
factors for both the independent and dependent sets.

Because of the estimation process used to generate some
of the depth data, I used the semipartial correlation of known
versus estimated depth data type with the independent
set of variables, yielding an X semipartial correlation [43].
Partialling, which is a generalization of residualization
procedures common to multiple regression and correlation,
allows one or more variables to be “partialled out” of either
(or both) the dependent or independent sets, thus creating a
new set (or sets) in which the variables have zero correlations
with the original set (or sets) [42]. This procedure helps
to minimize any possible spurious effects of the estimation
of depth data and has the further effect of reducing error
variance, thus increasing statistical power [42, 43]. In this
case, the Systat created a dummy variable for depth data
type, giving a value of 1 or 0 for known or estimated data,
respectively, and then performed the partialization on the
independent set [43]. Thus, partialling the independent set
by the type of depth data removed any effects of estimating
the depths of the various Labeotropheus populations.

3. Results

The overall analysis is significant and robust (Rao’s F32, 219.2

= 5.459; P ≤ .001) and only slightly affected by shrinkage
(R2 = 0.881; shrunk R2 = 0.803).
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Table 1: Possible nuptial color and body color combinations in Labeotropheus. Photos generously provided by Ad Konings/Cichlid Press.

Nuptial color
pattern

Possible body
color

Example
Number of populations

L. fuelleborni L. trewavasae

Blue Blue 25 14

Red Dorsal

Blue 4 8

Red 1 10

Red Ventral

Blue 1 0

Red 5 4

3.1. Within-Independent Set Correlations: Habitat Type Dis-
crimination. The within-independent set correlations are
presented in Table 2. Habitat (1) is moderately and negatively
correlated with latitude and longitude and strongly and
negatively correlated with minimum depth, suggesting a
habitat type with a northwestern bias in its distribution
at which Labeotropheus are found at relatively shallow
depths. Figures 1(a) and 1(b) demonstrate that mainland
populations of Labeotropheus are more prevalent in the
northern and northwestern portion of the lake than island
or rock/reef habitats and that, as found by Ribbink et al. [32],
these mainland populations have the shallowest distributions
of Labeotropheus; thus, Habitat (1) is indicative of main-
land habitats. Habitat (2) has strong, positive correlations
with all three measures of Labeotropheus population depth.
This association with depth suggests that the habitat with
the deepest distribution of Labeotropheus is identified by
Habitat (2); therefore, this factor identifies rock/reef habitats
(Figure 1(b)).

3.2. Within-Dependent and Between-Set Correlations: Iden-
tification of Species and Color Pattern. The identification of
species, nuptial color patterns, and body color identified

Table 2: Identification of habitat type (Mainland, Island, or Rock/
Reef) from within-independent set correlations; informative values
bolded.

Habitat (1) Habitat (2)

Latitude −0.279 0.050

Longitude −0.226 0.050

Minimum depth −0.471 0.549

Maximum depth −0.127 0.435

Modal depth −0.237 0.550

Number of Labeotropheus species 0.008 −0.06

by the Set Correlation procedure requires both the within-
dependent and between-set correlations, as some of the
correlations for a given factor are stronger in one type of
correlation versus the other; this is especially the case with
the nuptial color factors.

Table 3 contains the between-set correlations, which are
helpful in identifying both the species and body color
factors. The species factor, Species (1), shows a strong,
positive association with depth; thus, L. trewavasae is the
Labeotropheus identified by this factor. Body Color (1) is
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Figure 1: Within-independent set correlations and habitat type identification. (a) Geographic distribution of habitats at which
Labeotropheus populations are found in Lake Malawi. (b) Maximum depths at which Labeotropheus populations are found at each habitat
type.

strongly and negatively correlated with both longitude and
latitude, suggesting a northwestern bias in the distribution
of this coloration. Red body color displays this kind of
geographic distribution (Figure 2(a)); thus, Body Color (1)
represents Red body coloration.

Both nuptial color factors have slight to moderately
negative correlations with longitude and latitude, suggesting
a northwestern bias in their distributions; this is especially
the case for Nuptial Color (2) (Table 3). Also, as shown in
the within-dependent set correlations (Table 4), both have a
strong correlation with Body Color (1), suggesting that they
are comprised of mostly carotenoid pigmentation. Further,
the strong correlation between Nuptial Color (1) and Species
(1) indicates that it is most common in L. trewavasae. As
shown in Figure 2(b), the most common male color pattern
in L. trewavasae is Red Dorsal; thus, Red Dorsal is the color
pattern identified by Nuptial Color (1). Figure 2(c) displays
the geographic distributions of Labeotropheus color patterns,
and the pattern with the most distinct northwestern bias in
its distribution is Red Ventral; Nuptial Color (2) identifies
the Red Ventral pattern.

3.3. Regression Analysis: Predictive Relationships. The results
of the regression analyses show that Species (1), Nuptial
Color (1), and Body Color (1) have significant relationships
predicted by at least one of the independent variables;
none of the relationships involving Nuptial Color (2) and
any of the independent variables are significant (Table 5).

Species (1), which represents L. trewavasae, has significant
relationships with all measures of depth and Habitat (2). The
signs of the coefficients for minimum depth and Habitat (2)
are negative, while those for maximum depth and modal
depth are positive, suggesting that L. trewavasae is found
most often at deeper, mainland habitats (Figure 3(a)).

Body Color (1), representing Red body coloration,
also has a significant and positive relationship with depth
(Figure 3(b)). Further, Body Color (1), as the between-set
correlations above demonstrate, has a significant, negative
relationship with latitude, suggesting a northern bias in its
distribution (see Figure 2(a)). Nuptial Color (1), represent-
ing the Red Dorsal nuptial color pattern, has significant,
positive relationships with maximum depth (Figure 3(c))
and with the number of Labeotropheus species present at a
given location (Figure 4).

4. Discussion

The set correlation analysis performed on the Labeotro-
pheus biogeographical dataset recovered several correlations
between coloration and environment, as well as some
predictive relationships among the color and environmen-
tal variables. The correlations found included correlations
between L. trewavasae and depth, Red Dorsal nuptial col-
oration and depth, and a correlation between a northwestern
geographical distribution and both Red Ventral nuptial
coloration and Red body coloration. The regression analysis
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Table 3: Between-set correlations; informative values bolded.

Species (1) Nuptial Color (1) Nuptial Color (2) Body Color (1)

Latitude −0.247 −0.039 −0.340 −0.466

Longitude −0.200 −0.060 −0.306 −0.383

Minimum depth 0.308 −0.074 −0.056 −0.082

Maximum depth 0.768 0.267 −0.161 0.135

Modal depth 0.737 0.155 −0.095 0.029

Habitat (1) 0.126 0.089 0.049 0.249

Habitat (2) 0.097 −0.003 −0.101 −0.171

Number of Labeotropheus species 0.007 0.190 −0.118 −0.049

Table 4: Within-independent set correlations; informative values bolded.

Species (1) Nuptial Color (1) Nuptial Color (2) Body Color (1)

Species (1) 1.000

Nuptial Color (1) 0.387 1.000

Nuptial Color (2) −0.080 −0.275 1.000

Body Color (1) 0.248 0.307 0.558 1.000

also recovered the relationships between L. trewavasae and
depth, as well as those between both geography and depth
and Red body coloration. The most interesting result of the
regression analysis, however, is the predictive relationship
between Red Dorsal nuptial coloration and sympatry of the
Labeotropheus species; when found at the same location,
the males of the deeper-dwelling L. trewavasae adopt a Red
Dorsal nuptial color pattern.

It is not surprising that this analysis recovered the well-
documented relationship between L. trewavasae and depth;
L. trewavasae is found most frequently at and prefers water
depths of typically more than 15 meters [32]. On the
other hand, the disjoint geographical distribution of color
patterns in Labeotropheus is interesting, with red-pigmented
populations concentrated in the northwestern portion of
Lake Malawi; a similar pattern of geographic bias in male
nuptial color types has been found in the Metriaclima [44].
This suggests two possible explanations. First, it may be that
natural or sexual selection favors red-/carotenoid-pigmented
individuals in the northwest part of the lake; the spectral
properties of the water and backgrounds in this area of Lake
Malawi could possibly favor reddish coloration for crypsis
or communication. There is some corroborating evidence
for this possibility, as the northern portion of Lake Malawi
experiences a significant amount of rainfall, so the nearshore
waters here could be more turbid than in other parts of the
lake (H. Bootsma, pers. comm.). Thus, the abundance of
reddish Labeotropheus in this region would be expected, as
African cichlids in more turbid environments display more
red coloration in their nuptial coloration [18, 23]. A second
possibility for the disjoint geographical distribution of color
patterns in Labeotropheus is that the populations clustered
within either the northwestern or more southern regions of
the lake could be more closely related to each other than
to populations from the other region. Recent investigations
of genetic relatedness among populations suggest that this
may be the case [35, 44], though there is some evidence

to the contrary [44, 45]. In order to address these two
hypotheses regarding the distribution of male coloration,
investigations of habitat light and background color (e.g.,
[8, 25]), and geographic patterns of genetic relatedness
(sensu [35]), should be carried out on the Labeotropheus
populations in these portions of Lake Malawi.

Further, the regression analysis revealed that Red Dor-
sal nuptial coloration is also significantly and positively
related with increasing maximum depth, as was Red body
coloration. Red body coloration was also found to have a
significant, negative relationship with latitude, suggesting
that it has a northern bias in its distribution in Lake
Malawi. While the implications of a geographical bias in the
distribution of male nuptial coloration in the Labeotropheus
were discussed in the preceding paragraph, the association
between color and depth merits further consideration. Lake
Malawi is a very clear lake; even so, long wavelength light
acutely attenuates between 0 and 10 meters of depth, which
is much shallower than the maximum depths recorded
for populations of L. fuelleborni, as well as the maximum
or modal depths of many populations of L. trewavasae
[31, 32]. Thus, it seems paradoxical that fish with red or
orange coloration should be found where the strength of
this signal would be constrained. Recent research by Dalton
et al. [25] suggests that, despite the limited amount of
long-wavelength light at these depths, the mbuna visual
system allows for a surprising degree of color constancy, thus
seeming to permit red- or carotenoid-pigmented fish to live
in areas where their coloration would otherwise be obscured.
Further, Dalton et al. [25] found that in one population
of L. trewavasae, the coloration of both male and female
fish is conspicuous against all possible backgrounds in their
environment, suggesting that the saturation of colors on the
fish may also aid in their visibility.

Perhaps the key finding of the regression analysis is
the significant, positive relationship between the number
of species of Labeotropheus present at a given location and
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Figure 2: Between-set correlations and identification of nuptial and body color factors. (a) Geographic distribution of Labeotropheus
body color types in Lake Malawi. (b) Frequency of nuptial color types in L. fuelleborni and L. trewavasae. (c) Geographic distribution of
Labeotropheus nuptial color types in Lake Malawi.

Red Dorsal male nuptial coloration. When both species of
Labeotropheus are present, one of them adopts a Red Dorsal
color pattern. Interestingly, as shown in Figure 4(b), it is the
deeper-dwelling L. trewavasae that adopts this pattern when

found in sympatry with L. fuelleborni. While it has been
previously noted that, when sympatric, the Labeotropheus
tends to adopt different nuptial coloration [33]; this is the
first time this relationship has been confirmed quantitatively.
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Figure 3: Predictive relationships between environmental variables and Labeotropheus color patterns. (a) Frequency of Labeotropheus
species at each habitat type. (b) Maximum depths at which each Labeotropheus body color type is found. (c) Maximum depths at which
Labeotropheus nuptial color types are found.

This finding suggests that male nuptial coloration is a signal
of specific status in the Labeotropheus and is thus probably
an important component of the reproductive isolating
mechanisms or mate-recognition systems between sympatric
pairs of Labeotropheus. Further, male mbuna do not tolerate
similarly colored opponents in their territories [17], so the

different male coloration between the Labeotropheus species
at locations where they are sympatric could also be the result
of intrasexual selection.

The results presented herein strongly suggest that the
nuptial color patterns of male Labeotropheus may be the
result of naturally and sexually selected constraints. This



International Journal of Evolutionary Biology 9

Number of Labeotropheus species present
1
2

Red VentralRed DorsalBlue

Male nuptial color

10

20

N
u

m
be

r
of

p
op

u
la

ti
on

s

(a)

Number of Labeotropheus species present
1
2

Red VentralRed DorsalBlue

Male nuptial color

5

10

15

N
u

m
be

r
of

p
op

u
la

ti
on

s

(b)

Figure 4: Frequency of nuptial color types at sympatric and allopatric populations of Labeotropheus. (a) L. fuelleborni. (b) L. trewavasae.
While the proportions of nuptial colors displayed by L. fuelleborni remain relatively consistent whether found with or without L. trewavasae,
note the marked increase of Red Dorsal coloration in populations of L. trewavasae sympatric with L. fuelleborni.

Table 5: Standardized between-set regression coefficients.

Species (1) Nuptial Color (1) Nuptial Color (2) Body Color (1)

Latitude −0.021 0.107 −0.346 −0.409∗∗∗

Longitude −0.049 −0.122 −0.061 −0.030

Minimum depth −0.345∗∗∗ −0.341 0.001 −0.071

Maximum depth 0.395∗∗ 0.661∗ −0.479 0.415∗∗

Modal depth 0.819∗∗∗ −0.151 0.294 −0.281

Habitat (1) −0.006 −0.040 −0.119 −0.001

Habitat (2) −0.329∗∗∗ −0.027 −0.115 −0.136

Number of Labeotropheus species 0.109 0.243∗ −0.129 0.010
∗
P ≤ .05; ∗∗P ≤ .01; ∗∗∗P ≤ .001.

conclusion, while in definite need of further confirmation
and refinement through gathering new field and laboratory
data, serves to underline the equivocal nature of the results
of similar studies. Thus, as Dalton et al. [25] suggest,
putative associations between male nuptial coloration and
environmental variables in the haplochromine cichlids
deserve much more attention, especially since much has been
written regarding the importance of male color pattern and
speciation in these fishes. As such, exacting measurements
of the spectral environment made at both shallow and
deep-dwelling populations of Labeotropheus would aid in
understanding the conditions in which these signals and
receivers coevolved. Further, while laboratory studies have
confirmed that male coloration is important in sexual
selection, in situ studies of natural mate choice tendencies

or experimental manipulations of inter- and intrasexual
encounters under natural lighting conditions could be very
useful in further untangling the roles of natural and sexual
selection in the evolution of male coloration.

4.1. A Postscript: Why Red? Why Not “One Fish, Two Fish, Blue

Fish. . .Bluer Fish”?

Red or other carotenoid-based colors present a number
of challenges for fishes. In many cases, such pigments are
derived from dietary sources, necessitating a search for the
foods that will yield the dietary precursors to synthesize these
pigments [46]. The attenuation of long-wavelength light with
depth presents an additional challenge; if a fish wants to
be cryptic or to have a “private,” short-range signal, red
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(a)

(b)

Figure 5: A comparison between the appearance of a predom-
inantly carotenoid-based Labeotropheus color pattern as seen by
a trichromatic human (a) and a protanopic human (b). While
largely heuristic, this figure illustrates that even without a long-
wavelength-sensitive photoreceptor, a protanopic human or mbuna
(like a Labeotropheus) could still perceive the contrast between
the carotenoid patch at midbody and the rest of the fish. It
should be noted that Figure 4(b) does not take into account either
the ultraviolet-sensitive photoreceptor of the Labeotropheus or the
attenuation of red and orange light at the depths at which this fish, a
L. trewavasae from Manda, Tanzania, would typically be found. The
original photo (a) is generously provided by Ad Konings/Cichlid
Press, and the Daltonized photo (b) was produced from the original
using the Vischeck algorithm, available at http://www.vischeck.com.

coloration might be a good option. But what about fish
that visually search for mates and for whom nuptial color
signals are of extraordinary importance in identifying mates
or even competitors (e.g., [17])? Further, for fish like many
of the mbuna, and the Labeotropheus in particular, that lack
a long-wavelength-sensitive photoreceptor [25, 47], the use
of carotenoid-based pigments is even more puzzling; why
utilize pigments to which your visual system is insensitive?
The answer most likely has to do with within-pattern
contrast.

Pauers et al. [16] demonstrated that females of L. c.f.
fuelleborni “Katale” consistently preferred males with the
highest degree of contrast among the various color pattern
elements present on the flanks of the fish. The males of
this population are an example of a Red Ventral nuptial
color pattern, with a prominent orange patch on their sides
below their lateral line; in some individuals, this patch might
comprise more than 67% of the surface area of their flanks.
Further, Dalton et al. [25] found that many of the mbuna
species they examined also had a high degree of contrast

within their color patterns, including species that, like the
Labeotropheus, lack a long-wavelength-sensitive photorecep-
tor. While anthropomorphism is always dangerous, these fish
may see the world, in part, like a protanopic human, who
also lacks a long-wavelength-sensitive photoreceptor, but
sees reds as a different color entirely (Figure 5); indeed, the
inability to discriminate amongst red and reddish hues may
be the reason why there are so few examples of true, saturated
reds in the Labeotropheus and other mbuna. Nonetheless, as
long as an observing fish’s percept of the carotenoid pigment
patch contrasts with the percept of the neighboring patch
or patches, the overall integrity of the signal is maintained,
despite the lack of sensitivity to long-wavelength colors.
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