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Summary

Pharmaceuticals are often not fully removed in
wastewater treatment plants (WWTPs) and are thus
being detected at trace levels in water bodies all over
the world posing a risk to numerous organisms. These
organic micropollutants (OMPs) reach WWTPs at con-
centrations sometimes too low to serve as growth sub-
strate for microorganisms; thus, co-metabolism is
thought to be the main conversion mechanism. In this
study, the microbial removal of six pharmaceuticals
was investigated in a membrane bioreactor at increas-
ing concentrations (4–800 nM) of the compounds and
using three different hydraulic retention times (HRT; 1,
3.5 and 5 days). The bioreactor was inoculated with
activated sludge from a municipal WWTP and fed with
ammonium, acetate and methanol as main growth sub-
strates to mimic co-metabolism. Each pharmaceutical
had a different average removal efficiency: acetamino-
phen (100%) > fluoxetine (50%) > metoprolol (25%) >
diclofenac (20%) > metformin (15%) > carbamazepine
(10%). Higher pharmaceutical influent concentrations
proportionally increased the removal rate of each com-
pound, but surprisingly not the removal percentage.
Furthermore, only metformin removal improved to 80–

100% when HRT or biomass concentration was
increased. Microbial community changes were fol-
lowed with 16S rRNA gene amplicon sequencing in
response to the increment of pharmaceutical concen-
tration: Nitrospirae and Planctomycetes 16S rRNA rel-
ative gene abundance decreased, whereas
Acidobacteria and Bacteroidetes increased. Remark-
ably, the Dokdonella genus, previously implicated in
acetaminophen metabolism, showed a 30-fold increase
in abundance at the highest concentration of pharma-
ceuticals applied. Taken together, these results sug-
gest that the incomplete removal of most
pharmaceutical compounds in WWTPs is dependent
on neither concentration nor reaction time. Accord-
ingly, we propose a chemical equilibrium or a growth
substrate limitation as the responsible mechanisms of
the incomplete removal. Finally, Dokdonella could be
the main acetaminophen degrader under activated
sludge conditions, and non-antibiotic pharmaceuticals
might still be toxic to relevant WWTP bacteria.

Introduction

In the past years, sensitive mass spectrometry methods
have enabled the detection of organic pollutants at very
low concentrations in nearly all water bodies globally
(Jameel et al., 2020). These organic micropollutants
(OMPs) include diverse chemicals such as pharmaceuti-
cal compounds, and they have detrimental effects on the
development, behaviour and stress response of aquatic
organisms (Gauthier and Vijayan, 2020). Pharmaceutical
compounds are emitted into waste streams from different
sources (i.e. hospitals, households, industries) and are
transported via the sewer system to wastewater treat-
ment plants (WWTPs) where they arrive at very low con-
centrations compared with more common pollutants
such as ammonium and easily degradable organic mat-
ter. During the treatment, many of these pharmaceutical
compounds are not eliminated from the water and end
up in the environment, contaminating surface and
groundwaters that may ultimately be used as drinking
water sources for many organisms, including humans.
Most pharmaceuticals are hydrophilic compounds with

low volatility and are removed to various degrees via
microbial degradation. Other pharmaceuticals, such as
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fluoxetine, can also adsorb significantly to biomass
(Fernandez-Fontaina et al., 2012; Salgado et al., 2012).
Full biodegradation has only been reported in WWTPs
for a few pharmaceuticals such as ibuprofen and aceta-
minophen, and several microorganisms have been impli-
cated in their conversion (Żur et al., 2018). On the other
hand, many other pharmaceuticals are only partially or
not removed at all in WWTPs (i.e. diclofenac, metopro-
lol). The removal differences between compounds are
partially governed by the chemical structure’s properties
(Nolte et al., 2018; Nolte et al., 2020). For example,
charged compounds are less biodegradable than neutral
compounds probably due to a cellular uptake limitation
(Nolte et al., 2018; Nolte et al., 2020). In addition to
chemical properties, the higher the concentration of
pharmaceuticals and other OMPs in the influent of
WWTPs, the more these compounds seem to be
removed (Nolte et al., 2018; Wang et al., 2020). The
same compound can also have different removal
rates/efficiencies in different WWTPs, which may depend
on the operational parameters and the active microbial
community present (Lautz et al., 2017; Kassotaki et al.,
2018; Wang et al., 2020). For example, nitrifying activi-
ties have been correlated with the biodegradation of sev-
eral OMPs, which might be due to the promiscuity of the
ammonia monooxygenase enzyme (Tran et al., 2009;
Fernandez-Fontaina et al., 2012; Men et al., 2017).
Currently, WWTPs are not very effective at removing

OMPs because microorganisms do not share an evolu-
tionary history with these compounds that have only
been introduced into the environment in the last dec-
ades. Furthermore, evolution seems to be slow due to
low concentrations and complexity in chemical struc-
tures. Recently, two studies described a putative evolu-
tion of acesulfame degradation in WWTPs all around the
world (Kahl et al., 2018; Kleinsteuber et al., 2019). Ace-
sulfame was considered recalcitrant in WWTPs until
2014, when several studies started to observe good
biodegradation of this compound. Since then, more
reports showed the significant removal of this compound
in WWTPs. In follow-up studies, microorganisms able to
use acesulfame as carbon source were isolated (Kahl
et al., 2018; Kleinsteuber et al., 2019). This example
demonstrates the ongoing adaptation of microorganisms
towards OMP biodegradation in WWTPs. Mobile genetic
elements (MGEs) have been previously suggested to be
involved in microbial adaptation. MGEs may thus play a
role in the biodegradation of xenobiotics or organic
micropollutants in different environments such as soils
and WWTPs (Top and Springael, 2003; Rios-Miguel
et al., 2020). Furthermore, previous studies found a cor-
relation between pesticide exposure and MGE abun-
dance in soils and agricultural WWTPs (Dunon et al.,
2013; Dealtry et al., 2014). Consequently, MGE

abundance might also be correlated with the pharmaceu-
tical concentration entering WWTPs and the subsequent
adaptation to degrade OMPs.
Membrane bioreactors (MBRs) are known to perform

well in the removal of pharmaceutical compounds
(Prasertkulsak et al., 2016; Goswami et al., 2018), some-
times even better than conventional activated sludge
systems (Reif et al., 2011; Verlicchi et al., 2012). MBRs
are able to separate the solid retention time (SRT) and
the hydraulic retention time (HRT), thus keeping slow-
growing bacteria at high SRT while treating wastewater
at regular HRT. In general, higher SRTs (with a maxi-
mum of 10–15 days) have been associated with better
removal of pharmaceutical compounds (Clara et al.,
2005; Joss et al., 2005; Achermann et al., 2018; Nguyen
et al., 2020). For some compounds, however, extremely
high SRTs are needed such as for diclofenac (more than
100 days) and metoprolol (60 days) (Clara et al., 2005;
Fernandez-Fontaina et al., 2012; Gurung et al., 2019).
Previous studies also observed a positive correlation
between HRT and the removal of some pharmaceuticals
(i.e. fluoxetine) (Fernandez-Fontaina et al., 2012). How-
ever, recent experiments and models suggested that
pharmaceutical and other OMP removal might not
improve beyond a specific HRT (Gonzalez-Gil et al.,
2018; Jiang et al., 2018; Boonnorat et al., 2019). Fur-
thermore, Gonzalez-Gil et al. hypothesized that this
might be due to an equilibrium in the transformation or
sorption processes (Gonzalez-Gil et al., 2018; Gonzalez-
Gil et al., 2019).
In order to get more insights about the (in)complete

degradation of some pharmaceuticals in WWTPs, we
have studied the effect of concentration and HRT on
pharmaceutical removal in a MBR. We also determined
the changes in the microbial community in response to
higher pharmaceutical concentrations, and finally, we
tested whether higher pharmaceutical concentrations
resulted in higher relative abundance of specific MGEs
previously correlated with pesticide occurrence and
degradation. In our experimental setup, we inoculated a
MBR with activated sludge from a Dutch WWTP and fed
it with ammonium, acetate and methanol as main growth
substrates. We kept all parameters constant except for
the influent pharmaceutical concentration (4–800 nM) or
HRT (1, 3.5 and 5 days). We monitored pharmaceuticals
by liquid chromatography–mass spectrometry (LC-MS),
microbial community changes by bacterial 16S rRNA
gene amplicon sequencing and MGEs by qPCR.

Results and discussion

Bioreactor performance

The bioreactor performance was monitored throughout
the whole experiment using a complementary array of
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methods (Table S3). Total suspended solids (TSS) were
measured every week (Fig. S1) and were stable at
0.2–0.3 g l−1 after the start-up period. Only when the
HRT was reduced to 1 day, TSS increased to 0.9 g l−1.
Activated sludge was diluted around 100× times when
inoculated to the bioreactor so that volatile suspended
solids (VSS) were similar to TSS (data not shown).
Ammonium, acetate and methanol were fully consumed
at all measured times (Fig. S2). Nitrate was measured in
the effluent at concentrations between 500 and 800 µM,
indicating that ammonium was partly converted to nitrate
during the experiment. The remaining ammonium was
likely assimilated. When HRT was reduced to 1 day,
nitrite slightly accumulated (~50 µM) and nitrate concen-
tration considerably increased in the effluent (~1.6 mM).
Since HRT was shortened from 5 days to 1 day in the
short period of 6 days, the accumulation of nitrite and
nitrate could indicate an imbalance between ammonia
and nitrite oxidizers and a decreased use of nitrate for
assimilation, respectively. Pharmaceuticals, 16S rRNA
gene amplicons and mobile genetic element (MGE)
monitoring are addressed in the next sections.

Pharmaceutical removal at increasing concentrations

After the start-up period, the bioreactor was close to a
steady state where all variables remained stable
throughout the operating period: temperature, dO2, pH,
TSS, HRT, SRT and influent concentrations. When the
steady state was reached, the concentration of the phar-
maceutical compounds was step-wisely increased in the
influent every two weeks, from 4 to 800 nM. Removal
percentages of pharmaceuticals under different concen-
tration regimes are shown in Fig. 1. Overall, each phar-
maceutical had a different removal percentage.
Acetaminophen was the only compound that was fully
removed (100%). Metoprolol and diclofenac removal was
between 20% and 40%, carbamazepine removal values
varied between −1% and 20%, and metformin removal
was between −10% and 30%. Fluoxetine removal was
highly variable, between 25% and 70%, and the influent
concentration was around 10 times lower than expected,
probably due to its high sorption behaviour to several
surfaces, including glass (Peake et al., 2015). For phar-
maceuticals with Kd (solid–water distribution coefficient)
values lower than 0.5 l g−1, sorption is considered
insignificant in WWTPs (Ternes et al., 2004; Wang et al.,
2020). For this reason, sorption was only considered as
a removal mechanism for fluoxetine and it was calcu-
lated using Equation 3. The Kd coefficient value (~1.60
l g−1) was taken from a previous study where adsorbed
fluoxetine levels were directly measured in nitrifying
sludge (Fernandez-Fontaina et al., 2012). An average
value of 0.21 g l−1 of TSS was maintained in the

bioreactor at a SRT = 15 days and HRT = 3.5 days.
Thus, the amount of biomass generated per litre of med-
ium treated was 0.049 g l−1, which corresponds to 7% of
fluoxetine sorption. Volatilization was not considered as
a removal mechanism based on the low values of
Henry’s law constants of the selected pharmaceuticals
(taken from the Hazardous Substances Data Bank) and
based on previous studies (Suárez et al., 2008).
The removal efficiencies reported in Fig. 1 are in line

with previous studies, except for metformin, whose
removal in WWTPs has been reported much higher
(usually more than 80%) (Oosterhuis et al., 2013; Bri-
ones et al., 2016). Acetaminophen is known to be
removed very well, and carbamazepine is known for its
high persistence in WWTPs all around the world (Joss
et al., 2005; Falås et al., 2016; Wang et al., 2020).
Negative removals have previously been reported for
carbamazepine (He et al., 2019), but mostly when conju-
gated forms are present in the influent and they trans-
form back to the parent compound in WWTPs. In our
bioreactor, carbamazepine and metformin had some
negative removals (Fig. 1). However, based on the low
values (−1%, −2%) and the presence of an outlier in the
measurement of −12% of metformin removal, we would
need more replicates to truly confirm the negative
removals. Metoprolol and diclofenac removal is variable
in WWTPs, but their removal is often slightly higher than
carbamazepine removal (Falås et al., 2016; Wang et al.,
2020). Diclofenac removal during nitrification has been
recently reported to be higher (~84%) than during het-
erotrophic processes or conventional activated sludge
treatment (~50%) (Tran et al., 2009; Wu et al., 2020).
However, earlier studies did not observe such high

Fig. 1. Pharmaceutical removal percentage at different influent con-
centrations and hydraulic retention times (HRTs). Fluoxetine con-
centration was measured in the influent ten times lower than what it
is shown in the graph. Each error bar is the standard deviation of
the removal percentage calculated from the standard deviation of
the technical triplicates. The symbol ‘#’ followed by a number means
the week the measurements were done since the starting of the
concentration increase experiment.
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removal of diclofenac in nitrifying sludge, only when solid
retention time was extended to 150 days removal was
improved to 70% (Fernandez-Fontaina et al., 2012;
Fernandez-Fontaina et al., 2016). It might be that rare
species present in the sludge proliferated during the high
SRT and then started to contribute to metabolize diclofe-
nac. This might explain the differences in removal under
nitrifying conditions. Previous studies showed full
removal of metoprolol after four days in activated sludge
(Rubirola et al., 2014; van Bergen et al., 2020) and after
10–20 days in constructed wetland biomass (He et al.,
2018). Furthermore, the former study also observed an
enhancement of metoprolol removal with more dissolved
organic matter and a decrease in removal during nitrifi-
cation. This was further confirmed by a different experi-
ment with partial nitritation–anammox biomass where
metoprolol removal was higher under aerobic hetero-
trophic conditions than under nitrifying conditions
(Kassotaki et al., 2018). Furthermore, the addition of
allylthiourea (an inhibitor of ammonia monooxygenase
and other monooxygenases) did not result in a signifi-
cant decrease in metoprolol removal. Consequently,
metoprolol was probably removed by heterotrophic bac-
teria in our bioreactor. Furthermore, the removal variabil-
ity of diclofenac and metoprolol in WWTPs might be due
to the differences in nitrification and heterotrophic micro-
bial activities. Fluoxetine has a high Kd, and its sorption
to biomass has a great contribution to the removal
percentage in activated sludge (Fernandez-Fontaina
et al., 2012). Besides sorption, fluoxetine may also be
degraded in nitrifying and heterotrophic cultures
(Fernandez-Fontaina et al., 2016; Velázquez and
Nacheva, 2017). Therefore, fluoxetine removal in our
bioreactor probably happened via sorption and transfor-
mation by nitrifiers and heterotrophic bacteria.
The removal percentage of each pharmaceutical did

not correlate with the influent concentration (Fig. 1). Only
small fluctuations in removal percentage were observed
for each pharmaceutical. In the case of metoprolol, we
observed that higher concentrations slightly decreased
the removal percentage. However, when the highest
concentration was added to the bioreactor (800 nM),
metoprolol removal increased again. In summary, we did
not find any effect of concentration on pharmaceutical
removal percentage under the conditions tested in our
MBR. These results are in contradiction to other studies
reporting a correlation between influent concentration
and removal percentage of some OMPs in WWTPs
(Onesios-Barry et al., 2014; Nolte et al., 2018; Wang
et al., 2020). Onesios-Barry et al. reported a negative
correlation between concentration and removal for some
pharmaceuticals such as fluorouracil in laboratory col-
umns inoculated with wastewater effluent. The lower
removal values at higher concentrations might have

been related to toxicity due to the decrease in protein
content that they measured at higher concentrations
(Onesios-Barry et al., 2014). On the other hand, Nolte
et al. and Wang et al. reported a positive correlation
between OMP concentration and removal. Their data
came from several WWTPs with many different vari-
ables, whereas our experiment relied on a MBR in
steady state. High OMP concentrations over long peri-
ods of time (years) in WWTPs may lead to microbial
adaptation and, consequently, to an increase in removal.
In our bioreactor experiment, we increased concentration
every two weeks, so we did not expect microbial evolu-
tion to occur towards pharmaceutical utilization in this
short time frame. Furthermore, the putative toxicity of
some pharmaceuticals did not result in lower removal
efficiencies probably because the microbial community
composition changed during the increasing concentra-
tions (Fig. 3) and mitigated this effect.
Our results suggest that the incomplete removal of

pharmaceuticals is not dependent on concentration.
Consequently, we could rule out hypotheses that rely on
threshold concentrations as determinants of partial
removal. One example is the cessation of transformation
reactions due to product inhibition or toxicity, which
would be concentration-dependent. As we did not
observe consistent inhibition at one particular pharma-
ceutical concentration, but rather a similar removal per-
centage at all tested concentrations, it is unlikely that
product inhibition or toxicity was an important factor for
the pharmaceuticals in our experiment. The hypothesis
of product inhibition for governing the incomplete degra-
dation of OMPs was also discarded in a previous study
using a mechanistic modelling approach (Gonzalez-Gil
et al., 2018). Another hypothesis for explaining the ces-
sation of transformation reactions relies on catalytic con-
stants of enzyme activity, such as enzyme affinity and
corresponding reaction velocity. When a pollutant is
transformed, its concentration decreases to a point that
might be below the substrate threshold concentration for
efficient catalysis. However, removal percentage would
have increased with pharmaceutical concentration if this
hypothesis was true. As a result, our experimental evi-
dence does not support these hypotheses where the
biodegradation efficiency is dependent on the influent
pharmaceutical concentration under concentration
regimes relevant to real-world scenarios.
Although no correlation was found between pharma-

ceutical influent concentration and removal percentage,
the absolute amount of nmols removed increased pro-
portionally with the concentration (Fig. 2). This indicates
that enzyme saturation was not yet reached and that
bacteria had the capacity to transform more pharmaceu-
tical molecules per time even though they did not fully
convert them at lower concentrations. Previous studies
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reported higher biodegradation rates at higher OMP con-
centrations (in the nM and µM range) in activated sludge,
biofilm reactors, pure enzymes and bacterial isolates
(Leng et al., 2016; Lonappan et al., 2017; Svendsen
et al., 2020; van Bergen et al., 2020). In many cases,
they used the Michaelis–Menten model to describe the
increase in biodegradation rates with concentration. This
model corresponds to a linear relationship between initial
concentration and velocity up until the system saturation,
when biodegradation rates do not increase as fast as
before and they finally reach a limit. In our bioreactor
experiment, the system did not reach saturation probably
because pharmaceutical concentrations were increased
every two weeks, thus leaving time for the microbial
community to shift and adapt.

Pharmaceutical removal at different hydraulic retention
times

During a second experiment in the same bioreactor, the
HRT was increased to five and decreased to one day to
prolong/shorten the reaction time of the pharmaceuticals
with the microbial community. Influent concentration of

pharmaceuticals was kept at 800 nM, and operational
parameters in the bioreactor remained unchanged. How-
ever, biomass concentration increased 3 times to
0.9 g l−1 at HRT = 1 day due to the increased loading
rate of growth substrates, mostly acetate and methanol
(Fig. S2). Furthermore, higher nitrite and nitrate concen-
trations were observed at HRT = 1 day (Fig. S2). Fig-
ure 1 shows the removal percentage of the six
pharmaceuticals at different HRT. Acetaminophen was
always removed 100% with no effect of HRT on removal
percentage, which means that total removal happened in
the first 24 h. HRT had no effect on carbamazepine and
fluoxetine removal efficiencies as they were in the same
range as with HRT of 3.5 days. Diclofenac removal was
slightly lower at HRT 1 and 5 days. Metoprolol removal
did not change by increasing HRT to 5 days, but it was
lower at HRT = 1 day. Therefore, 10% of the removal
happened in the first 24 h and the remaining 20% in the
following 2.5 days reaching a removal maximum of 30%.
Metformin was the only pharmaceutical removed to a
higher degree by increasing the HRT to 5 days (~95%),
suggesting that the length of the reaction time was
responsible for the incomplete removal of metformin in

Fig. 2. Pharmaceutical removal rate at increasing influent concentrations. Each error bar is the standard deviation of the removal rate calcu-
lated from the standard deviation of the technical triplicates.
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our bioreactor. However, decreasing the HRT to 1 day
maintained a high metformin removal percentage of
80%, which indicates that another factor was affecting
the removal. Biomass concentration at HRT = 1 day
was three times higher than in the other HRTs, so this
might be the reason why removal was higher. These
results suggest that metformin removal depends on the
reaction time or HRT and the biomass concentration pre-
sent in the bioreactor. Metformin is usually very well-
degraded, so its removal efficiency did not increase with
HRT in previous reports from WWTPs and constructed
wetlands (Oosterhuis et al., 2013; Auvinen et al., 2017).
Biomass concentration in WWTPs is usually higher than
what we used in our experiments, indicating that the
data obtained under HRT = 1 day with higher biomass
concentrations are more representative of the in situ
WWTP situation.
Previous studies reported higher removal percentages

at higher HRTs for diclofenac and carbamazepine in
constructed wetlands (from 2 to 6 days), for fluoxetine in
nitrifying and activated sludge (from 0.75 to 1 and
5 days) and for metoprolol in activated sludge (from 1 to
24 h) (Maurer et al., 2007; Fernandez-Fontaina et al.,
2012; Alvarino et al., 2014; Auvinen et al., 2017). How-
ever, other studies in activated sludge and anaerobic
reactors did not observe an increase in diclofenac
removal percentage at higher HRT (at 19–61 h and 5–
11 days, respectively) (Queiroz et al., 2012; Oosterhuis
et al., 2013). A recent study in bioaugmented activated
sludge showed an increase in diclofenac and carba-
mazepine removal percentage from 12 to 18 h, but
removal was no longer improved at 24 h (Boonnorat
et al., 2019). These results suggest that increasing the
HRT of wastewater bioreactors might increase the
removal efficiency of specific pharmaceuticals, but only
up to a specific point. This indicates that there will
always be a removal constrain not related to kinetics.
For example, in our MBR this point was 3.5 days for
metoprolol and 1 day or lower for carbamazepine. Fur-
thermore, we observed a decrease in diclofenac removal
percentage at higher HRT (5 days), which might be
related to a desorption or back transformation from
diclofenac reaction products.
The incomplete removal of diclofenac, carbamazepine,

metoprolol and fluoxetine was not dependent on concen-
tration nor HRT, so only few removal mechanisms are
possible. One hypothesis is that (1) transformation or
sorption reactions are reversible and reach an equilib-
rium between the parent and transformation products or
between the adsorbed and dissolved form of the com-
pound. In such a case, we would always observe the
same removal percentage at different concentrations
and no removal increases with time or HRT. This was
recently proposed by Gonzalez-Gil et al. using a

mechanistic model based on the reversibility of bisphe-
nol phosphorylation by two key enzymes in anaerobic
digestion: hexokinase and acetate kinase (Gonzalez-Gil
et al., 2018; Gonzalez-Gil et al., 2019). Furthermore, He
et al. have reported higher carbamazepine concentra-
tions in the effluent than in the influent of WWTPs due to
reactions transforming conjugates back to carba-
mazepine (He et al., 2019). Another plausible explana-
tion of these results is that (2) removal percentage of an
OMP is related to the amount of growth substrate added
to the medium. Tran et al. reported that the removal per-
centage of diclofenac and carbamazepine was increased
up to a maximum by adding higher concentrations of
ammonium to activated sludge bottles (Tran et al.,
2009). Ievenn our bioreactor, the concentration of growth
substrates in the medium did not change, which results
in a specific and limited number of enzymes and cofac-
tors able to transform the selected pharmaceuticals.
Oxygenases are key enzymes for the biodegradation of
OMPs under aerobic conditions and require reducing
power (i.e. NAD(P)H, FADH) to transfer oxygen atoms to
the respective substrate. When the substrate is used for
growth, the cell first invests reducing power, but the sub-
sequent catabolism of the transformation products
restores the reducing power in the cell (Luo et al., 2014).
In the case of co-metabolism, OMPs undergo only the
first reaction with input of reducing power, which is
energy costly for the cell (Cornelissen and Sijm, 1996).
A previous study used a kinetic model to demonstrate
that external donor and acceptor concentrations affect
the removal percentage of OMPs because they change
the NADH/NAD+ ratio inside the cell (Bae and Rittmann,
1995). Thus, a specific growth substrate concentration
might be able to support only partial biotransformation of
pharmaceuticals in WWTPs. On the other hand, Kennes-
Veiga et al. did not observe a difference in OMP removal
efficiency by increasing acetate concentrations in a con-
tinuous bioreactor (Kennes-Veiga et al., 2020). Instead,
they only reported increasing biodegradation rate con-
stants with increasing acetate loads. Furthermore, other
studies observed different effects (increased, decreased
or unchanged) of growth substrate concentrations on
biodegradation rate constants depending on the OMP
(Su et al., 2015; Liang et al., 2019; Zhang et al., 2019).
Consequently, the co-metabolic effect of growth sub-
strates on pharmaceutical removal might be compound-
specific and might reach a maximum or a decay phase
when there is competition for the same enzyme.

Bacterial community changes

Biomass samples were taken from the inoculum and from
the bioreactor at different time points reflecting different
pharmaceutical micropollutant influent concentrations
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(4 nM, 200 nM and 800 nM) for bacterial 16S rRNA gene
amplicon sequencing. Two time points with 4 nM were
selected to account for the bacterial community changes
inherent to the bioreactor maintenance and not to the
shift in pharmaceutical concentration. Furthermore, tech-
nical triplicates were independently analysed for each
time point.
Figure 3 shows the relative 16S rRNA gene abun-

dance at the phylum level in the inoculum and bioreac-
tor. First of all, the inoculum had a different bacterial
community composition than the biomass in the bioreac-
tor, where Nitrospirae and Planctomycetes increased in
abundance and the rest decreased (i.e. Actinobacteria
and Chloroflexi) or remained similar (i.e. Proteobacteria
and Acidobacteria). Furthermore, the increase in phar-
maceutical concentration in the bioreactor also induced
a community shift. Overall, we saw an increase in Aci-
dobacteria and Bacteroidetes and a decrease in Nitrospi-
rae and Planctomycetes phyla. However, samples taken
at two different time points (July and August) but with
the same influent pharmaceutical concentration (4 nM)
show a decrease in Nitrospirae, which suggests that this
phylum is highly sensitive to small fluctuations during the
bioreactor operation. On the other hand, a great
decrease of around 50% in Nitrospirae relative abun-
dance at the highest pharmaceutical concentration points
towards a putative toxic effect. Similarly, Planctomycetes
also showed a slight shift in the two time points with the
same concentrations, but ultimately, increasing pharma-
ceutical concentrations removed Planctomycetes to
undetectable levels.
The relative abundance of ammonia-oxidizing bacteria

(AOB) significantly decreased with increasing pharma-
ceutical concentrations (data not shown). AOB consisted

mainly of members of the Nitrosomonadaceae family
and they considerably decreased in relative abundance
in the bioreactor compared with the inoculum, in contrast
to Nitrospirae. Due to the low abundance of AOB (less
than 0.3%), the Nitrospirae might include complete
ammonia-oxidizing (comammox) species in addition to
canonical nitrite oxidizers (van Kessel et al., 2015).
Since it is not possible to distinguish between comam-
mox and nitrite-oxidizing Nitrospira using 16S rRNA
gene sequencing methods (Koch et al., 2019), a PCR
was performed using specific primers for comammox
amoA (Pjevac et al., 2017). Primers targeting the clade
A comammox amoA gene produced a single band of
approximately 500 base pairs coinciding with the theoret-
ical fragment length amplified by the primers. However,
primers targeting clade B produced several bands not
corresponding to the desired fragment. Therefore, we
can conclude that clade A comammox may be present
in the bioreactor and coexisted with AOB.
Previous studies reported a putative toxic effect of

several pharmaceuticals towards Nitrospira and Nitro-
somonas spp. (Dokianakis et al., 2004; Kraigher et al.,
2008; Wang and Gunsch, 2011a,b; Bian et al., 2020;
Park and Seungdae, 2020). Nitrosomonas spp. resisted
higher concentrations of paracetamol and triclocarban
than Nitrospira spp. (Bian et al., 2020; Park and Seung-
dae, 2020). Furthermore, heterotrophic activity for chemi-
cal oxygen demand removal was more robust than AOB
activity in the presence of gemfibrozil and naproxen
(Wang and Gunsch, 2011b). Wang et al. also reported
that these two individual pharmaceuticals did not have
an effect on ammonium removal, while the mixture of
them inhibited nitrification and altered AOB community
composition. In conclusion, each pharmaceutical has a
different effect on Nitrospira and Nitrosomonas sp. and
this effect is dose-dependent and stronger in a mixture.
In our MBR, Nitrospira and Nitrosomonas spp. signifi-
cantly decreased in relative abundance, but no effect
was observed on nitrification. However, if there was inhi-
bition it might not have been noticed due to the high
HRT applied (3.5 days).
Acidobacteria and Bacteroidetes were the two phyla

that increased in relative abundance with increasing
pharmaceutical concentration. These phyla did not
change in abundance at the two time points where the
bioreactor had the same influent concentration of phar-
maceuticals. Therefore, the relative abundance
changes can be directly associated with the pharma-
ceutical concentration increase. Higher Bacteroidetes
abundance has been previously associated with
increased concentrations of pharmaceuticals and other
OMPs in activated sludge reactors and river sediments
(Drury et al., 2013; Jiang et al., 2017). Furthermore,
there are several Bacteroidetes species able to

Fig. 3. Relative abundance of 16S rRNA genes in the inoculum and
bioreactor at different time points and different pharmaceutical con-
centrations added in the influent.
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degrade complex organic molecules (Kwon et al.,
2019). Some studies have also associated Acidobacte-
ria with micropollutant removal in soil and river sedi-
ments (Nogales et al., 1999; George et al., 2009; Njeru
et al., 2017; Posselt et al., 2020). It is important to men-
tion that an increase in abundance of these two phyla
does not necessarily mean that they degrade pharma-
ceuticals. They could also be more resistant to toxic
effects than other taxa giving them a growth advantage.
The genus Dokdonella (Proteobacteria) significantly

increased in abundance from 0.5% to 17% of the total
relative abundance in the microbial community at the
highest pharmaceutical concentration in the bioreactor
(800 nM) (Fig. S3). Dokdonella spp. consist of aerobic
denitrifiers (Pishgar et al., 2019), and in addition, they
have been previously suggested to be responsible for
the degradation of acetaminophen (Palma et al., 2018).
In another study with activated sludge, Dokdonella spp.
increased in abundance after adding around 400 µM of
ibuprofen and 1 µM of tetracycline, so they might
degrade other pharmaceuticals as well (Abdelrahman
et al., 2018). Furthermore, this genus has been previ-
ously suggested as a pesticide and polycyclic hydrocar-
bon degrader (Bacosa and Inoue, 2015; Qi and Wei,
2017; Romero et al., 2019). Many other taxa (i.e. Pseu-
domonas, Bacillus, Flavobacterium, Ensifer, Delftia spp.)
have been isolated from activated sludge and soil and
have been shown to degrade acetaminophen in pure
and mixed cultures (Żur et al., 2018; Akay and Tezel,
2020; Chopra and Kumar, 2020; Park and Oh, 2020). In
our bioreactor, some of these genera were not present
and others did not show an increase with higher phar-
maceutical concentrations (data not shown). For this rea-
son, we propose Dokdonella as the main
acetaminophen degrader in our bioreactor experiment.
Alpha diversity was analysed with three different

indices: Chao1, Shannon and Simpson (Fig. S4). The
richness (number of different species), calculated with
the Chao1 index, decreased in the bioreactor compared
with the inoculum, and it further decreased with the high-
est pharmaceutical concentration. The main driver of this
change could be the synthetic medium used to feed the
bioreactor: we simplified the influent organic matter to
acetate and methanol compared with the large variety of
carbon sources usually found in the influent of WWTPs.
Furthermore, a decrease in richness with pharmaceutical
concentration could be explained by a toxicity effect.
Shannon index measures the richness and evenness (a
measure of how close the relative abundance of each
taxa is) of a sample, whereas Simpson’s index of diver-
sity (1 – Simpson index) gives more weight to the abun-
dance and evenness of species (Lemos et al., 2011).
Both indices considerably decreased in the bioreactor
biomass compared with the inoculum. In the middle of

the experiment, they increased again and decreased
during the highest pharmaceutical concentration. The
samples taken at two consecutive time points at the
same pharmaceutical concentration (4 nM) have very dif-
ferent evenness values, so this diversity characteristic
cannot be associated with the pharmaceuticals. As seen
in Fig. S2, there are small fluctuations in the influent
growth substrate concentrations that might be responsi-
ble of these changes. Previous studies have correlated
biodiversity (richness and evenness) with higher bio-
transformation rates of specific micropollutants (Johnson
et al., 2015; Torresi et al., 2016; Stadler et al., 2018).
However, those studies did not correlate the diversity
changes to the addition of micropollutants, which might
increase diversity due to a putative cooperation of differ-
ent taxa in order to degrade the chemicals (Vasiliadou
et al., 2018) or decrease diversity due to putative toxic
effects (Chonova et al., 2016).

Mobile genetic elements relative abundance

In this study, we tested whether increasing pharmaceu-
tical concentrations in the bioreactor led to an increase
in the relative abundance of IncP-1 plasmids and
IS1071 insertion sequences as a measure for MGEs.
We performed a qPCR of the trfA replication gene of
different IncP-1 plasmids and the tnpA transposase
gene of the IS1071 insertion sequence. As internal
standard, the bacterial 16S rRNA gene was used.
Interestingly, higher pharmaceutical concentrations did
not significantly increase relative abundance of MGEs
(Fig. S5). The studied MGEs remained stable in the
bacterial community independent of the pharmaceutical
concentration. This result does not necessarily mean
that plasmids are not being transferred, as they can
also remain in a dynamic equilibrium in the bioreactor.
Yang et al. observed that the relative abundance of an
external plasmid remained unchanged despite being
transferred in a MBR (Yang et al., 2013). The biomass
density in the bioreactor presented in this study was
ten times lower than a common WWTP activated
sludge reactor. As conjugation events are more likely
to happen at higher densities or in environments where
cells are in close contact such as granules and bio-
films (Rios-Miguel et al., 2020), this experiment might
underestimate the true role that MGEs play in the
degradation of pharmaceutical micropollutants. Further-
more, previous studies reported higher relative abun-
dances of MGEs in sites with higher OMP exposure
over much longer periods of time (years) compared
with our bioreactor experiment that lasted 2.5 months
(Dunon et al., 2013; Dealtry et al., 2014). These might
be reasons why MGE relative abundances were stable
in our bioreactor.
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Conclusions

This study contributes to a better understanding of phar-
maceutical removal limitations in activated sludge pro-
cesses. The observed relative abundance shifts of the
microbial community suggest toxic effects on specific
phyla relevant to WWTP functioning and point out sev-
eral microbial groups potentially involved in degrading
pharmaceuticals. The main conclusions from our experi-
mental data are:

1. Selected pharmaceuticals (diclofenac, metoprolol,
metformin, carbamazepine and fluoxetine) were not
fully degraded under activated sludge conditions in a
MBR. Only acetaminophen was fully removed.

2. Higher pharmaceutical influent concentration propor-
tionally increased the removal rate of each com-
pound.

3. The removal percentage was not correlated with influ-
ent concentration and remained relatively stable in
the order: acetaminophen (100%) > fluoxetine (50%)
> metoprolol (25%) > diclofenac (20%) > metformin
(15%) > carbamazepine (10%).

4. Metformin removal increased to 80–100% when HRT
or biomass concentration increased in the bioreactor.
Removal % of the other pharmaceuticals could not be
improved by extending the HRT nor increasing bio-
mass concentration.

5. The microbial community changed in response to
higher pharmaceutical concentrations: Nitrospira and
Planctomycetes decreased and Bacteroidetes and
Acidobacteria increased in relative abundance.

6. Dokdonella spp. could be the main acetaminophen
degraders under activated sludge conditions.

7. Increasing pharmaceutical concentrations did not
increase relative abundance of mobile genetic ele-
ments (IncP-1 plasmids and IS1071). The biomass
density or the pharmaceutical concentration in the
bioreactor might have been too low to increase con-
jugation.

Experimental procedures

Pharmaceutical selection and bioreactor operation

Six pharmaceuticals were selected based on (i) pres-
ence in priority lists, (ii) variability in primary biodegrada-
tion rate, and (iii) their commercial classification as
non-antibiotics. The selected pharmaceuticals were acet-
aminophen, diclofenac, metoprolol, carbamazepine, met-
formin and fluoxetine. They were all purchased in solid
phase from Merck (Darmstadt, Germany), dissolved in
methanol and diluted in water to obtain a 1:1 methanol–
water solution.

A 5L MBR (Applikon Biotechnology B.V., Delft, The
Netherlands) was inoculated with 100 times diluted acti-
vated sludge from a municipal WWTP in Groesbeek, the
Netherlands. The membrane was built at Radboud
University Technical Center and consisted of an integral-
immersed Zenon ZW-1 module with 0.04 µm pore size
hollow fibres from Suez. It was never backwashed or
replaced during the experiment. The bioreactor was fed
with synthetic wastewater containing ammonium
(~3 mM), acetate (~3 mM) and methanol (~1 mM) as
main energy sources. The detailed composition of the
medium can be found in supplement SI1. The medium
was autoclaved, and then, pharmaceuticals were added.
After an acclimatization period of 180 days at a hydraulic
retention time (HRT) of 3.5 days and a solid retention
time (SRT) of 15 days, the pharmaceutical concentration
in the influent was increased every two weeks from
4 nM to 800 nM. These concentrations were chosen due
to their environmental relevance. Methanol concentration
in the influent did not change, as stock solutions with
increasing pharmaceutical concentrations were used.
During the process, pharmaceuticals were monitored by
LC-MS/MS and the microbial community was analysed
by 16S rRNA gene amplicon sequencing. Furthermore,
the MBR was run in the dark at constant mechanical stir-
ring (200 rpm), pH = 7, dO2 = 1 mg l−1, room tempera-
ture (20 � 1 °C) and total suspended solids (TSS) =
0.2–0.3 g l−1. Dissolved oxygen (dO2) and pH sensor
probes were connected to an ADI 1010 controller (App-
likon Biotechnology B.V., Delft, The Netherlands) that
activated a KHCO3 base pump to control the pH and
regulated the O2/CO2 entrance flow in the bioreactor.
Nitrogen (ammonium, nitrite and nitrate) and carbon
(acetate and methanol) balances were measured and
calculated during the experiment. After this first experi-
ment, pharmaceutical removal was measured at HRTs
of 5 and 1 days keeping pharmaceutical concentration at
800 nM.

Carbon, nitrogen and total suspended solid
measurements

Ammonium, nitrite and nitrate assays were performed
with technical duplicates in 96-well microtitre plates
using a plate reader as previously described in van Ber-
gen et al., (2020). Briefly, ammonium was measured col-
orimetrically at 420 nm after reaction with OPA reagent
(0.54% (w/v) ortho-phthaldialdehyde [OPA], 0.05% (v/v)
β-mercaptoethanol and 10% (v/v) ethanol in 400 mM
potassium phosphate buffer (pH 7.3)). Nitrite was mea-
sured at 540 nm using the Griess assay. Afterwards, an
incubation with vanadium chloride at 60 °C reduced all
nitrate to nitrite and the sample was measured again at
540 nm. Methanol was measured colorimetrically with
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the 2,2’-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid)
(ABTS) assay (Mangos and Haas, 1996 and https://
www.sigmaaldrich.com/technical-documents/protocols/
biology/enzymatic-assay-of-alcohol-oxidase.html). We
adjusted the volumes to fit in a 96-well plate. First, a
stock solution was prepared with the following composi-
tion: 14 ml ABTS solution, 100 µl of peroxidase solution
(1 mg ml−1), 3 ml of 100 mM potassium phosphate buf-
fer pH 7.5 and 100 µl of alcohol oxidase solution
(1 mg ml−1). Afterwards, 170 µl of the stock solution and
20 µl of samples or standard were added to each well.
The plate was incubated for one hour in the dark at
room temperature and measured at 405 nm in the plate
reader. Finally, acetate was measured by GC-MS using
the protocol described in a previous study (in ’t Zandt
et al., 2018). Briefly, 200 µl of 100 mM pentafluorobenzyl
bromide solution in acetone, 40 µl of 0.5 M phosphate
buffer pH = 6.8 and 40 µl of sample/standard were
mixed in an Eppendorf tube and incubated for one hour
at 60 °C. Afterwards, 400 µl of 0.1 mM methylstearate
solution in hexane was added and the mixture was vor-
texed and centrifuged for one minute at maximum
speed. The top layer was transferred to a GC vial and
measured in a GC-MS.
TSS and VSS were measured as in Ref. (van Bergen

et al., 2020). Briefly, 40 ml of sample was passed
through a 0.45 µm pore size glass-fibre filter, dried over-
night in the oven at 105 °C and then 4 h at 550 °C. Fil-
ters were weighed in the beginning and after each step
(105 and 550 degrees) to calculate the number of TSS
and VSS respectively.

Pharmaceutical measurements via LC-MS/MS and mass
balances

Samples (2 ml) were taken every week from the medium
(influent) and the bioreactor (effluent) in technical tripli-
cates. Samples were centrifuged at maximum speed,
and the supernatant was immediately treated and anal-
ysed as in Ref. (van Bergen et al., 2020). Briefly, 0.5 ml
of sample was used for liquid–liquid extraction of met-
formin. One ml of sample was used for solid phase
extraction (Oasis HLB 3cc SPE cartridges, sorbent bed
of 60 mg from Waters Corporation, Milford, USA) of the
other five pharmaceuticals. The extracts were directly
injected into an LC-MS system together with the calibra-
tion standards prepared in the same way as samples.
Internal standards (deuterated compounds) were added
to the samples and standards before the extractions.
Only parent compounds were determined.
The removal efficiency or percentage of a compound

was calculated using equation 1. Ci corresponds to the
pharmaceutical concentration in the influent and Ce in
the effluent of the bioreactor (nM).

Removal ð%Þ¼C i�Ce

C i
∗100 (1)

The removal rate of a compound was calculated using
equation 2, where TSS corresponds to the total sus-
pended solids (g l−1) inside the bioreactor. In our experi-
ment, TSS corresponds to the biomass content.

Removal rate
nmol
day∗g

� �
¼ C i�Ce

HRT∗TSS
(2)

The sorption of fluoxetine was calculated using equa-
tion 3 (Ternes et al., 2004), where Kd represents the
solid–water distribution coefficient, and SS, the quantity
of sludge generated per unit of wastewater treated. The
Kd value used in this study was taken from Ref.
(Fernandez-Fontaina et al., 2012).

Sorption ð%Þ¼ K d∗SS
1þK d∗SS

∗100 (3)

Molecular analysis

Sampling and DNA extraction. Samples (8 ml) were
taken every week from the bioreactor in technical
triplicates. The samples were centrifuged at maximum
speed, and the pellet was stored at −20 °C until DNA
extraction. DNA was extracted and purified using the
DNeasy PowerSoil Kit (Qiagen Benelux B.V.) following
the manufacturer’s instructions. The DNA concentration
was determined using the Qubit dsDNA HS Assay Kit
(Thermo Fisher Scientific, Waltham, MA USA) and a
Qubit fluorometer (Thermo Fisher Scientific, Waltham,
MA USA).

Bacterial 16S rRNA gene sequencing and data
analysis. DNA samples were submitted to Macrogen
(Seoul, South Korea) for amplicon sequencing of the
bacterial 16S V3 and V4 regions using Illumina MiSeq
Next Generation Sequencing. The primers used for
amplification were Bac341F (50-CCTACGGGNGGCWG
CAG-30) and Bac785R (50-GACTACHVGGGTATCT
AATCC-30) (Klindworth et al., 2013). Subsequent
analysis on the sequencing output files was performed
within R version 3.4.1 (R Core Team, 2012). Pre-
processing of the sequencing data was done using the
DADA2 pipeline (Callahan et al., 2016). Taxonomic
assignment of the reads was up to the species level
when possible using the Silva non-redundant database
version 128 (Yilmaz et al., 2014). Count data were
normalized to relative abundances. Data visualization
and analysis were performed using phyloseq and ggplot
packages (Wickham and Wickham, 2007; McMurdie and
Holmes, 2013). Chao1, Simpson and Shannon diversity
indexes were calculated using the estimate richness
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function of the phyloseq package. All sequencing data
were submitted to the GenBank databases under the
BioProject ID PRJNA670630.

Comammox amoA gene PCR. The primers and PCR
conditions used to amplify the amoA gene of comammox
bacteria are explained in Pjevac et al., (2017). Two
degenerate primer pairs were used to target the amoA
gene from clade A and clade B comammox (Table S2).
The oligonucleotide primers were obtained from Biolegio
(Nijmegen, The Netherlands). PCRs were performed in a
total volume of 25 µl, which contained 1 µl DNA sample
of 1 to 10 ng µl−1, 0.5 µl of each degenerate primer
solution of 20 µM, 12.5 µl of PerfeCTa Quanta Master
Mix (Quanta Bio, Beverly, MA) and 10.5 µl of autoclaved
Milli-Q water. The PCR protocol consisted of an initial
denaturation step at 94 °C for 5 min, followed by 25
cycles of denaturation at 94 °C for 30 s, primer
annealing at 52 °C for 45 s and elongation at 72 °C for
1 min. Finally, the last step was an elongation at 72 °C
for 10 min.

Quantitative PCR. 16S rRNA genes were amplified
using the above primers. Amplification of the trfA gene
from IncP-1 α, β, ϵ, γ and δ plasmids and the tnpA gene
from the IS1071 insertion sequence was performed with
primers previously used in Ref. (Providenti et al., 2006;
Bahl et al., 2009; Dunon et al., 2013). A summary of all
primers used in this study can be found in Table S2. All
qPCRs were performed using 96-well optical PCR plates
(Bio-Rad Laboratories, Veenendaal, the Netherlands)
with optical adhesive covers (Applied Biosystems, Foster
City, CA) in a C1000 Touch Thermal Cycler equipped
with a CFX96 Touch™ Real-Time PCR Detection System
(Bio-Rad Laboratories, Veenendaal, the Netherlands).
The qPCR total volume was 25 µl containing 1 µl DNA
sample of 1 to 10 ng µl−1, 0.5 µl of each primer solution
of 20 µM, 12.5 µl of PerfeCTa Quanta Master Mix
(Quanta Bio, Beverly, MA) and 10.5 µl of autoclaved
Milli-Q water. Negative controls were added to each run
by replacing the template with sterile Milli-Q water. All
qPCR data were analysed using the Bio-Rad CFX
Manager version 3.0 (Bio-Rad Laboratories, Veenendaal,
the Netherlands). The qPCR protocol consisted of initial
denaturation at 95 °C 3 min followed by 39 cycles of
denaturation, annealing and extending (95 °C 30 s,
60 °C 30 s and 72 °C 30 s respectively), and two final
steps at 65 °C 5 s and 95 °C 50 s.
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Ding, G.-C., Krögerrecklenfort, E., et al. (2014) Shifts in
abundance and diversity of mobile genetic elements after
the introduction of diverse pesticides into an on-farm biop-
urification system over the course of a year. Appl Environ
Microbiol 80: 4012–4020.

Dokianakis, S., Kornaros, M., and Lyberatos, G. (2004) On
the effect of pharmaceuticals on bacterial nitrite oxidation.
Water Sci Technol 50: 341–346.

Drury, B., Rosi-Marshall, E., and Kelly, J.J. (2013) Wastew-
ater treatment effluent reduces the abundance and diver-
sity of benthic bacterial communities in urban and
suburban rivers. Appl Environ Microbiol 79: 1897–1905.

Dunon, V., Sniegowski, K., Bers, K., Lavigne, R., Smalla,
K., and Springael, D. (2013) High prevalence of IncP-1
plasmids and IS 1071 insertion sequences in on-farm
biopurification systems and other pesticide-polluted envi-
ronments. FEMS Microbiol Ecol 86: 415–431.
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