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Anisotropic Strain Induced 
Directional Metallicity in Highly 
Epitaxial LaBaCo2O5.5+δ Thin Films 
on (110) NdGaO3
Chunrui Ma1,2,*, Dong Han3,4,*, Ming Liu5, Gregory Collins2, Haibin Wang2, Xing Xu2, Yuan Lin6, 
Jiechao Jiang7, Shengbai Zhang4 & Chonglin Chen2

Highly directional-dependent metal-insulator transition is observed in epitaxial double perovskite 
LaBaCo2O5.5+δ films. The film exhibit metallic along [100], but remain semiconducting along [010] under 
application of a magnetic field parallel to the surface of the film. The physical origin for the properties is 
identified as in-plane tensile strain arising from oxygen vacancies. First-principle calculations suggested 
the tensile strain drastically alters the band gap, and the vanishing gap opens up [100] conduction 
channels for Fermi-surface electrons. Our observation of strain-induced highly directional-dependent 
metal-insulator transition may open up new dimension for multifunctional devices.

With development of semiconductor technologies, devices with multifunctional properties are in increasing 
demand. Recently, many researchers are focus on the investigation of multifunction material by fabricating nano-
composite or multilayer thin film1,2. Not only nanocomposite or multilayer thin film with multifunctional prop-
erties but also a material with in-plane anisotropic properties is required for many applications3–6. The in-plane 
anisotropic resistivity induced by strain can be used to detect subtle changes in the external strain field from the 
environment5. Also, the in-plane anisotropic colossal magnetoresistance (CMR) has been demonstrated in epi-
taxial La0.7Sr0.3MnO3 thin film for the magnetic data storage6. Recently, the perovskite cobaltates have attracted 
increased attention due to their application as materials for oxidation catalyst, gas sensor, solid oxide fuel cell, and 
read/write heads in magnetic data storage7. In particular, LaBaCo2O5.5+δ (LBCO) exhibits exotic electronic and 
magnetic properties from the intricate coupling of charge, spin, orbital, and lattice degrees of freedoms8–10. It has 
been reported that different the oxygen content in LBCO can lead to CoO5 pyramidal, CoO6 octahedral or mixed 
structure, and it can significantly influence its electric transport properties11,12. If there are the mixture of  
Co3+/Co4+ in the film, the film will shows the semiconductor or metallic behavior dependent on the test temper-
ature range due to double exchange mechanism. When there is only Co3+ in the film, the film exhibits insulator 
behavior11. It is also found that with the increase of oxygen content in the LBCO thin film, the resistivity decrease 
at the low temperature12. Except the sensitivity to oxygen content, the physical properties of LBCO thin film are 
highly dependent on the type and amplitude of interface strain. It has been demonstrated that the isotropic inter-
face strain induced by different cubic structure substrate improve colossal magnetoresistance of LBCO by 5 times 
of bulk material13, and the anisotropic interface strain (compressive strain along [100] and tensile strain along 
[010] relative to LBCO bulk material) induced by orthorhombic (110) NdGaO3 (NGO) substrate with the lattice 
parameters a =  5.433 Å, b =  5.503 Å, and c =  7.715 Å generate a stable and larger anisotropic resistivity in a wide 
temperature range from 300 K to 130 K14. Compared to the interface strain induced by different cubic substrate, 
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the anisotropic interface strain generated by orthorhombic (110) NGO substrate with different in-plane lattice 
parameters (7.733 Å along the [110]direction and 7.715 Å along [001] direction) can effectively exclude the influ-
ence of different growth modes and crystalline quality on different samples, since there is only variation for the 
sample on (110) NGO substrate. Thus, anisotropic interface strain generated by orthorhombic (110) NGO sub-
strate is a very effective way to uncover the intrinsic nature of strain effects and the relaxation mechanism. 
However, the anisotropic properties of LBCO at low temperature (< 130 K) can’t be investigated due to the resist-
ance of LBCO is beyond the measurement limitation induced by the lower growth oxygen pressure and 
temperature.

Based on the previous study of LBCO thin film14, we plan to tune and optimize its properties by adjusting the 
growth oxygen pressure and temperature, which play a crucial role in determining the physical properties and 
structure of thin film. It is found that the increased growth oxygen pressure and temperature low down the resis-
tivity of LBCO thin film, but the lattice constant of LBCO thin film is enlarged and an metal-insulator transition 
directionally occurs, namely, it only takes place in one of the in-plane directions, and in the other direction, the 
film maintains its semiconducting behavior. First-principle calculations indicate that the energy gap of the sem-
iconducting LBCO decreases with tensile strain, and when the gap closes, electron conduction only takes place 
along one-dimensional channels. The unique directional metal-insulator transition of LBCO under anisotropic 
tensile strain with its clear physical understanding, we found for the first time, can be utilized for designing var-
ious novel devices, such as anisotropic magnetic data storage, simplified the integration of device, which needs 
metal in one direction and semiconductor in other direction, and so on.

Results and Discussion
From the high resolution x-ray diffraction spectra, it is found that only (00 l) peaks appear in the θ-2θ scans, sug-
gesting that the as-grown films are c-axis oriented. The films exhibit excellent epitaxial quality with 
atomically-sharp interfaces, as revealed by the high-resolution cross-sectional transmission electron microscope 
(TEM) image in Fig. 1(a). Inset in Fig. 1(a) shows the selected-area electron-diffraction (SAED) patterns from an 

Figure 1. (a) High-resolution cross-sectional TEM image of LBCO thin films. The inset is the selected-area 
electron-diffraction patterns from an interface area. (b) Resistivity of the films along [100] and [010] change 
with temperature. Reciprocal-space maps around (c) LBCO (001) and NGO (110), (d) LBCO (103) and NGO 
(420), and (e) LBCO (013) and NGO (332).
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interface area that covers both the substrate and thin film. The sharp electron diffraction spots suggest that the 
as-grown LBCO thin films have good single crystallinity, as no evidence of satellites or broadening can be seen. 
The resistivity of LBCO thin film along the [100] and [010] in-plane directions were measured by using the 
Physical Property Measurement System (PPMS)-9. From the Fig. 1(b), it is clearly see that the resistivity of LBCO 
is lowered down by adjusting the growth oxygen pressure, but the resistivity of [100] direction is smaller than that 
of [010] direction, which is opposite to the previous report14. In order to understand the underlying mechanism, 
reciprocal-space maps (RSMs) are recorded around the (001), (013), and (103) reflections of the LBCO films 
(Fig. 1(c)) to get a clear picture on the out-of-plane and in-plane lattice constants. The reflection spot from the 
film overlaps with that from the substrate and no measurable Δ ω can be discerned between the LBCO (001) peak 
and NGO (110) peak. These suggest that the (001) plane of the LBCO film is parallel to the (110) plane of the 
NGO substrate without any detectable tilt. To be more certain on this result, Fig. 1(d) shows the RSMs around the 
asymmetric reflections of LBCO (103) and NGO (420), acquired using a glancing exit scan, and Fig. 1(e) shows 
the RSMs around the asymmetric reflections of LBCO (013) and NGO (332) with the same experimental setting 
but a 90° rotation of φ. It is found that the epitaxial relationship is (001)LBCO//(110)NGO (out-of-plane), 
[100]LBCO//[110]NGO and [010] LBCO//[001]NGO (in-plane), and the in-plane relationship is opposite to the case of 
the lower growth oxygen pressure and temperature ([100] LBCO//[001]NGO and [010]LBCO//[110]NGO)14. From Bragg 
law and the angular relationship between these crystalline planes15, the lattice parameters of the LBCO thin films 
are calculated to be a =  3.995 Å, b =  3.939 Å, and c =  3.845 Å, which is totally different from the case of lower 
growth oxygen pressure and temperature (a =  3.86 Å, b =  3.90 Å, and c =  3.97 Å), indicating that the growth  
oxygen pressure and temperature is a very key factor to determine the growth of the LBCO thin film and its the 
lattice constant. It is very strange that the in-plane lattice parameters a and b are larger than that of ordered 
L a 0.5Ba 0.5C oO 3 bulk  ( = = .a b 3 886LBCO

bulk
LBCO
bulk  Å) 8,  s ince  = .a2 7 772LBCO

bulk  Å  >   bs
[110] =   7 .733 Å and 

2bLBCO
bulk  =  7.772 Å >  as

[001] =  7.715 Å, the substrate is thus expected to cause in-plane compressive strains, as well as 
an out-of-plane tensile strain on the epitaxial LBCO film. Actually, however, the RSM results show in-plane ten-
sile strains and out-of-plane compressive strain for the epitaxial film, which are completely opposite to the predic-
tions by the above simple calculation. To understand the discrepancy, we notice that the thermal expansion 
coefficients of cubic LBCO (αLBCO =  23.47 ×  10−6/°C)16 and NGO (αNGO =  10 ×  10−6/°C)17 are noticeably differ-
ent. At the growth temperature (850 °C), the LBCO film is nearly cubic with a bulk lattice parameter of 3.961 Å, 
namely, its composition is almost that of LaBaCo2O6. As such, the lattice parameters nearly match with those of 
the substrate. Indeed, (7.922–7.780)/7.780 =  1.8% in as

[001] and (7.922–7.797) =  1.6% in bs
[110] are both reasonably 

small. When the samples are annealed to room temperature or below at which electrical measurements were 
taken, due to the epitaxy, the change in the lattice parameters of the thin film follows the thermal expansion of the 
NGO substrate, not that of LBCO. If the tetragonal symmetry of LaBaCo2O6 were maintained, the in-plane lattice 
parameters of the LBCO should be a =  b =  3.929 Å. This is consistent with the RSM result of b =  3.939 Å along 
[010] for LBCO, but is not consistent with the result of a =  3.995 Å along [100]. Given that the strain effect during 
the growth is relatively small, a larger lattice parameter for a ([100]) suggests that the cooling process is accompa-
nied by something else, most likely, by the formation of oxygen vacancies along [100], since the repulsive force 
between cations will enlarge the lattice constant as a result of the missing of oxygen between cations12. The forma-
tion of oxygen vacancies probably results from the increase of the growth temperature, since the amount of 
vacancies is proportional to the temperature in spite of the increase of growth oxygen pressure18. The ordered 
oxygen vacancies in nanoscale already be detected in LBCO thin film19, but it is impossible to accurately figure 
out the amount of oxygen vacancies in LBCO thin films due to the Co L3/L2 intensity ratios between  
stoichiometric and non-stoichiometric layers in the perovskite structure do not show any appreciable changes 
from the electron energy loss spectroscopy (EELS), thus the valence state(s) of the Co cannot be identified from 
EELS20,21. Also, one cannot use the oxygen K edge intensity to estimate the local stoichiometry of the O-depleted 
layers, because with the decrease of the annular dark- field intensity, the EELS intensity also increases. In short, an 
anistropic in-plane tensile strain is generated in the LBCO thin film, and oxygen vacancies induce larger tensile 
strain along [100] direction.

Besides the interesting results in the microstructure, a most striking result is found in the electrical transport 
measurement. As shown in Fig. 2, when a magnetic field of 7 T is applied parallel to the surface of the thin films, 
a metal-insulator transition (~25 K, Fig. 2(a)) takes place along [100], the film is still semiconducting along [010] 
(Fig. 2(b)). Moreover, it is clearly seen that there is a change of slope at around 50 K, which is probably related to 
the transition of ferromagnetic (FM) and antiferromagnetic (AFM) of LBCO thin film13.

In order to understand the experimental findings, first-principle calculations, based on the density-functional 
theory (DFT), were carried out by using the VASP code22. The detail calculation information are shown in the 
method part. From X-ray data and the properties of LBCO thin film, our oxygen content in this LBCO film is 
somewhere 0 <  δ  <  0.5. To develop a qualitatively understanding, here we consider δ  =  0, namely LaBaCo2O5.5, 
which is computationally manageable with small enough unit cell and more consistent with the experiment data. 
The LaBaCo2O5.5 model contains 38 atoms built from a 2 ×  2 ×  1 LaBaCo2O6 supercell by removing two oxygen 
atoms from the La layer according to the report by Rautama et al.10 and the observation of nanoscale ordered 
oxygen vacancies in LBCO thin film19.

Figure 3(a) shows the optimized low-energy structure for LaBaCo2O5.5, and it can be seen that the oxygen 
vacancies prefer to form directional chains along a direction ([100]), resulting in an expansion of lattice param-
eters a and b, and a >  b, which agrees with the x-ray measurement. Table 1 (second row) shows the calculated 
lattice parameters, which are in good agreement with the experimental result (given in the first row). Here, a 
larger-than-experiment a is consistent with the fact that in the experiment δ  >  0 and the metal-insulator transi-
tion occur at low temperature not room temperature.
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Stable LaBaCo2O5.5 is AFM, which is 26 meV/atom lower in energy than the FM phase. This energy is com-
parable with the thermal energy at room temperature (kT =  26 meV). The AFM phase is semiconducting with 
a band gap of 0.25 eV, whereas the FM phase is metallic. Hence, at a reasonable temperature, the AFM phase 
should be the majority phase, whereas the FM phase could be a minority phase. Note that the actual LBCO thin 
film is δ  >  0, and tensile strained in in-plane direction. It is known that often a small change (bond angle and 
bond length) in the peroverskite oxides can significantly change its physical properties as a result of the strong 
electron-lattice coupling, and the bond angle is easier to be changed than the bond length by the outside environ-
ment23. This raises the question whether the unexpected behavior of the LBCO thin film (δ  >  0) is a manifestation 
of the anisotropic in-plane tensile strain effect. To mimic the tensile strain effects at low temperature, we calculate 
the band gap change with respect to the bond angles from that of the optimized geometry, since the bond angle 
of LBCO is derived from the ideal structure 180° 9. From Fig. 3(a), it is clearly seen that the LaBaCo2O5.5 con-
sists of two in-equivalent cobalt sites–the octahedral and pyramidal sites, out of which there exist three different 
Co-O-Co bond angles: namely, Copyr-O-Copyr (along [100] direction) Cooct-O-Cooct (along [100] direction) and 
Copyr-O-Cooct (along [010] direction). Figure 3(b) shows the band gap change with these three type bond angle. It 
is found that only stretched Cooct-O-Copyr ([010] direction) lowers the band gap considerably from 0.25 eV to zero 
gap when the angle is around 180°, indicating that it can aid to lower the resistivity of LBCO thin film and increase 
the conductivity. Thus, the combination of the tensile strain along [010] direction and oxygen vacancies can lower 
the band gap of LBCO thin film. Figure 3(c) shows the band structure when the bond angle Cooct-O-Copyr equals 
to 180°. From Fig. 3(c), it can be seen that the Fermi level passes through the valence band at the S and R points of 
the Brillouin zone and the conduction band at the Z point. Since electrical transport only involves states near the 
Fermi level (EF), we show the real-space carrier distribution in Fig. 3(d) over an energy range of ± 15 meV from 
the EF, from which we see that the distribution is highly asymmetrical: states along the Copyr-O-Copyr chains in 
the a ([100]) direction are connected, whereas those in the other directions (b and c) are not. Electrons injected 
from electrode can be viewed as a wave packet, whose transport requires the coupling to available states near EF in 
the direction of the transport. Hence, Fig. 3(d) suggests that, under such a condition, electron transport primarily 
takes place in the large-tensile-strain a ([100]) direction. A qualitative picture thus emerges that may help us 
understand the experiment: (i) The LBCO thin film suffers anistropic in-plane tensile strain, and the larger tensile 
strain induced by the oxygen vacancies is along a ([100]) direction. (ii) With temperature decrease, the films will 
suffer an even stronger tensile strain from the substrate, and its band gap will decrease by increasing the angle of 
Cooct-O-Copyr in the b ([010]) direction. And (iii) when the band gap is closed, a magnetic field may be required to 
generate the metallic transport in a ([100]) direction, since defects and domain boundaries, which actually exists 
in the film and acts as energy barrier, are not taken into account in the calculation. The magnetic field will pro-
mote electron spin to align along the direction of the field and reduce carrier scattering, resulting in the decrease 
of resistivity and the occurrence of insulator-metal transition along [100] direction.

Conclusions
In summary, a directional metal-insulator transition behavior of the LBCO thin film on (110) NGO substrate was 
observed, indicating that the anisotropic in-plane strains lead to new physical properties. With the aid of mag-
netic field, the metal-insulator transition takes place only along [100], but the film maintains its semiconducting 
behavior along [010]. First-principles calculations give a good explanation and suggest that under the condition 
of that tensile strain of [010] direction close the band gap, a conduction channel along [100] will open for electron 
transport, generating the metal-insulator transition at low temperature along [100]. These results not only deepen 
the understanding of stain-dependent physical properties in LBCO films, but also demonstrate the feasibility of 
achieving the coexistence of metal and semiconducting behaviors in one material by simply applying anisotropic 
strains.

Methods
A batch of LBCO thin films were fabricated on (110) NGO substrate by pulsed laser deposition using a KrF excimer  
laser with a wavelength of 248 nm. A laser energy of 2.0 J/cm2 was selected, and a deposition temperature increase 

Figure 2. Resistivity of the films along (a) [100] and (b) [010] as a function of temperature under different 
magnetic field.
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from 800 °C to 850 °C as well as the growth oxygen pressure increase from previous reported 20 mTorr to 350 
mTorr14. After the deposition, the LBCO films were annealed in situ at 850 °C for 15 mins in a pure oxygen atmos-
phere at 200 Torr and then slowly cooled down to room temperature with a rate of 5 °C/min.

Figure 3. (a) Optimized geometry of LaBaCo2O5.5 in the AF-phase (G-type). (b) Band gap change with respect 
to the change of the Co-O-Co angles. These angle changes are from those of the optimized geometry to the 
tensile-stained geometry with Co-O-Co angles =  180°. (c) Band structure of the strained LaBaCo2O5.5, with 
energy near the Fermi level (EF ±  0.015 eV) marked and (d) the corresponding charge distribution in the real 
space with an isosurface (yellow color) of 2 ×  10−4 e/Å−3. Blue regions are cuts through the isosurfaces.

Lattice Parameters a = [100] b = [010] c = [001]

Experiment + 2.8% + 1.4% − 1.0%

Calculation + 4.9% + 1.4% − 1.1%

Table 1.  The percentage change of the lattice parameters of LaBaCo2O5.5+δ thin films, compared to bulk. 
Positive (negative) sign represents an increase (decrease).
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First-principles calculations based on the density-functional theory (DFT) were carried out using the VASP 
code22. Projector augmented wave basis24 and Perdew-Burke Ernzerhof functional25 were employed. The cutoff 
energy for plane-wave basis and Monkhorst-Pack k-point mesh grid were set to 600 eV and 3 ×  3 ×  3, respectively. 
More accurate calculations by using 5 ×  5 ×  5 k-point mesh grid showed the same band structure and the total 
energy difference was smaller than 0.05 eV. The LaBaCo2O5.5 model contains 38 atoms, which is built from a 
2 ×  2 ×  1 LaBaCo2O6 supercell by removing two oxygen atoms from the La layer. The structure agrees with exper-
iment10. During the spin-polarized calculation, all of the atoms were relaxed until the Hellman-Feynman force is 
less than 0.014 eV/Å. For cobalt, we used the GGA+ U method for Co 3d orbital, with the Coulomb interaction 
U =  5 eV and exchange interaction J =  0.9 eV. Changing the U by Δ U =  ± 1 eV has negligible effect on the results, 
as having been demonstrated by others before26,27.
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