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latently infected cells: a possibility for HIV-1 paediatric patients?
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Introduction
Combination antiretroviral therapy (cART) has raised the life
expectancy, reduced the incidence of opportunistic infections and
improved the quality of life of HIV-1-infected individuals. AIDS-
related mortality in children has decreased significantly with the
wide availability of cART. During recent years, multiple studies
have suggested the benefit of early administration of cART in
every HIV-1-infected infant [1—4]. Therefore, international
guidelines are now recommending initiation of cART in all HIV-1-
infected infants aged less than one year 
regardless of clinical and immunological conditions
(http://whqlibdoc.who.int/publications/2010/9789241599801.
eng.pdf; and http://aidsinfo.nih.gov/contentfiles/lvguidelines/
pediatricguidelines.pdf). HIV-1 infection is still a chronic infection
with a great number of associated complications and cART needs
to be administrated life-long [5]. Therefore, searching for an
HIV-1 cure remains a priority. Two different forms of cure have
been defined: (i) a ‘sterilising cure’, in which all replication-
competent virus and infected cells are eliminated (such as in the
‘Berlin Patient’ [6]), and (ii) a ‘functional cure’, represented by
‘elite controllers’ who permanently control HIV-1 replication
without cART [7] (such as in the ‘Mississippi baby case’). Both
the Berlin patient and the Mississippi baby are exceptional; and
both cases are completely different. HIV-1 infection has been
eradicated in the Berlin patient, while the Mississippi baby
maintained a low level of inactive latent virus, only detectable

using sensitive droplet digital PCR [8]. Eradication in the Berlin
patient was achieved after a complex medical process, while the
Mississippi baby was the first case of a potential HIV-1 cure
achieved using a only pharmacological cART. The reason for the
success of this approach, which is known to be ineffective in
adults, could rely on the particularities of the immune system that
HIV-1 encounters in a fetus or a newborn. The main obstacle in
achieving functional cure is the persistence of a viral reservoir, a
pool of the HIV-1 genome integrated into long-living T cells, and
probably in other haematopoietic cells such as macrophages [9].

Although cART achieves undetectable plasma viral RNA and the
normalisation of CD4 T cell levels in almost every patient, several
studies have shown that HIV-1 remains incurable owing to the
persistence of latently infected cells [10—12]. The majority of
these cells are resting memory and naïve CD4 T cells, and cells
belonging to the monocyte/macrophage lineage that contain
integrated provirus within their genome. These cells are the main
force behind HIV-1 persistence under cART, which only impacts
on actively replicating viruses and is therefore unable to eradicate
the infection. For this reason, the most recent approaches to HIV
cure are focused on the definition of new drug families that do
not target the replication of HIV but rather the transcription of
proviruses in CD4 T cells. In combination with cART, these drugs
would make HIV-1 visible and harmless to the immune system.
This may be achieved by implementing both pharmacological and
immunological strategies to reactivate HIV-1 from latently
infected cells. Nevertheless, reactivation may not be sufficient to
eradicate the virus. Reinforcing HIV-1-specific immune responses
and blocking potential new events of viral replication will
probably help in reaching the final goal of eradication, or the
alternative objective of a ‘functional cure’ for HIV-1 infection.
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Persistence of the viral reservoir
In HIV-1-infected adults, the pool of latently infected resting
CD4+ T cells has been the most intensely analysed HIV-1
reservoir, and is widely recognised as one of the major barriers to
achieving eradication or ‘functional cure’ of HIV-1
infection [13—16]. First, the absence of consensus on stability of
the viral reservoir caused a storm of controversy concerning the
possibility that residual HIV-1 replication in subsets of CD4+
T cells in the lymphoid tissue may contribute to replenishment
of the HIV-1 reservoir [17—21]. Secondly, HIV-1 infects CD4
T cells and requires some level of immune activation to replicate.
HIV-1 infects mostly memory cells, in particular cells from
gut-associated lymphoid tissue (GALT), which concentrates most
of the activated CCR5-expressing memory CD4+ T cells. Various
groups have drawn attention to GALT as a major HIV-1 reservoir
in individuals receiving cART, since CD4+ T cell recovery is poorer
in GALT, and viral replication remains higher with respect to
peripheral blood. This persistent viral replication in GALT probably
contributes to maintenance of the reservoir despite peripheral
viral suppression [17,22—24]. GALT depletion is a major
pathogenic event in HIV-1 infection and is associated with the
establishment of a long-lived viral reservoir and disease
progression in HIV-1-infected adults [25]. In contrast, in the
immunological setting of a fetus, memory cells are virtually absent
from the CD4 T cell compartment [26] and GALT is anatomically
immature, since it requires commensal bacteria for full
development [27]. In the absence of an optimal setting for
replication, HIV-1 may be unable to establish a long-lived latent
reservoir and therefore, under this particular situation, very early
treatment could have an additional beneficial effect that cannot
be observed in chronically HIV-1-infected adults.

HIV-infected children who initiate cART soon after birth do not
display HIV-1-specific antibodies or cellular responses, thus
indicating early control of viral replication [28,29]. Nevertheless,
HIV-1 infection quickly establishes a viral reservoir, mainly in
resting memory CD4+ T cells. Although the memory T cell
population in peripheral blood is small in newborns [30], although
ready to develop later in childhood [31], recent findings have
shown the presence of HIV-1-susceptible memory CD4+ T cells in
the gut of newborns with predominantly T helper- (Th) 1 and
Th17 phenotype, highlighting that extensive adaptive immunity
is present before birth and the gut mucosa is the preferential site
for memory CD4+ T cells [32]. The limitations to establishing a
viral reservoir facilitated by early cART in children could play a
critical role in achieving natural control of viral replication upon
discontinuation of cART, which could be defined as
‘functional cure’ [31,33—36]. On the other hand, viral reservoirs
could provide a persistent source of recrudescent viraemia despite
temporary remission of HIV-1 infection after withdrawal of
cART [37], as observed in the Mississippi baby [8].

Intensification of effective cART
Intensification of effective cART has been proposed as a strategy
to control residual replication and to diminish the HIV-1
reservoirs [38]. Despite some studies having failed to show any
effect of ART intensification on the residual HIV-1 viraemia in
patients with a history of chronic infection receiving cART [39],
a study of 48 weeks’ intensification with maraviroc has been
associated with a trend towards a decrease in the size of the
latent HIV-1 reservoir in memory T cells in chronically
HIV-1-infected patients on cART [40].

CCR5 receptor antagonists in the pipeline are of particular interest
because of their mechanisms of action, which could provide a

beneficial anti-inflammatory effect beyond their antiviral activity.
This immunomodulation represents an added benefit because it
could improve the treatment of HIV-associated chronic
immunoactivation [25]. This condition increases the risk for
serious non-AIDS-related illnesses, such as heart disease,
metabolic complications, kidney problems and others.
Interestingly, potentially important anti-inflammatory effects
have been highlighted for cenicriviroc, which inhibits the CCR2
receptor regulating rapid monocyte mobilisation [41,42]. A body
of evidence from Phase II/III clinical trials of investigational CCR5
antagonists (maraviroc and vicriviroc) in treatment-experienced
HIV-1 adults indicates a 30 cells/μL [95% confidence interval (CI)
19—42] greater increase in CD4+ T cell count in individuals using
CCR5 antagonists (maraviroc or vicriviroc) than in groups not
using CCR5 antagonists, despite baseline plasma HIV-1 RNA and
virological suppression. Robust immunological effects were also
observed in antiretroviral-naïve subjects included in the MERIT
clinical trial, when the group randomised to receive maraviroc
showed greater increases in CD4+ T cell count than did those
receiving efavirenz [43]. The efficacy of cART intensification with
the addition of maraviroc has also been studied in individuals with
incomplete CD4+ T cell recovery, due to the potential role of
maraviroc on immunological recovery [43]. This intensification is
clinically relevant mainly for subjects with low CD4+ T cell count,
to avoid overall HIV-1-related mortality and morbidity [44-46].
While some researchers reported that 24 weeks of maraviroc
intensification was not associated with a CD4+ T cell gain of at
least 20 cells/μL [47], others researchers observed immunological
benefits [48]. Although the mechanism of this effect is still
unknown, the blockage of the CCR5 receptor with maraviroc was
associated with an increase in circulating levels of CCR5 ligands
[48—50]. Because these ligands may also signal through
alternative chemokine receptors, such as CCR1, CCR3 and CCR4
[51-53], the maraviroc-mediated activation of immune cells
through alternative chemokine receptors requires further
investigation [48]. Interestingly, the results of two clinical trials
showed the dynamics of the HIV-1 latent reservoir after
discontinuation of the intensification of cART. The effects of
cART intensification with maraviroc or raltegravir persisted at least
24 weeks after discontinuation of the drug [54,55]. However, it
is very important to note the emergence of CXCR4-using HIV-1
variants in a minority of HIV-1-infected patients following
treatment with the CCR5 antagonist maraviroc, which probably
developed from a pre-treatment CXCR4-using viral reservoir [56].
Because, in vertically HIV-1-infected children, the emergence of
CXCR4-using variants occurs very early [57], the use of CCR5
antagonists in these children as intensification therapy may not
be the best alternative.

Latency-reversing agents
The establishment of long-lived latent HIV-1 reservoirs involves
multiple processes and is mainly due to transcriptional gene
silencing in resting memory CD4+ T lymphocytes and other
non-dividing cell types, including monocytes. New compounds
targeting transcriptional repression have been recently proposed
as pharmacological agents for purging latent HIV-1 from cellular
reservoirs in individuals on cART. These pharmacological
compounds should be coupled with very potent cART, which will
prevent reactivated virus from infecting new host cells, while viral
cytopathic effects and immune clearance will eliminate
HIV-1-infected cells. Treatments for eradicating HIV-1 are
focused on the activation of viral production from latently
infected cells to purge and clear HIV-1 reservoirs. This strategy
involves the use of a wide range of small molecules called
latency-reversing agents (LRAs) [58]. These drugs include:
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(i) histone deacetylase inhibitors (HDACis) [59]; (ii) disulfiram,
postulated to involve nuclear factor kB cells (NF-κB) [60,61]; (iii)
the bromodomain-containing protein 4 (BRD4) inhibitor JQ1,
which elicits effects through positive transcription of the
elongation factor (P-TEFb) [62]; and (iv) protein kinase C (PKC)
activators such as ingenols [63], prostratin [64],
1,2-diacylglycerol analogues [65] and bryostatin-1 [66-68].
The interest in these drugs has increased greatly and there are
several clinical trials in progress investigating the safety and the
effect of LRAs as disruptors of HIV latency. HDACis are the most
advanced in clinical testing as HIV-1 anti-latency agents, due
mainly to the synthesis in recent years of novel and more specific
pan-HDACis such as givinostat, belinostat and panobinostat
[69,70] and newly synthesised class I selective HDACis that
include oxamflatin [71], NCH-51 [72] and romidepsin [73].
Recently published results from a clinical trial of the safety and
the effect of panobinostat on HIV-1 expression in patients on
suppressive cART postulated this compound as a promising
reactivator of HIV-1 latency [70].

Both panobinostat and romidepsin show an efficient reactivation
profile in J89GFP cells (Figure 1a), which is a lymphocyte
HIV-1-latently infected cell line regarded as an experimentally
tractable and relevant model to study post-integration HIV-1
latency and reactivation [74]. Moreover, the effects on primary
CD4 T cell activation, measured as the surface expression iMFI
(integrated median fluorescence intensity) of CD38 and CD69
activation markers, has been assessed (Figure 1b). Although
minimal effects in comparison with the conventional
phytohaemagglutinin (PHA) or PMA/ionomycin treatments were
observed after panobinostat or romidepsin exposure, a
combinatorial strategy could lead to a reduction in the
concentrations of LRAs used in vivo, resulting in a reduction of
adverse effects, limiting the local injuries, the toxicity, and the
inflammation.

To date, several clinical trials involving HIV-1-infected adults are
ongoing with the aim of evaluating the safety, tolerability and
the potency of these potential antiviral latency agents [75—77].
However, no data regarding potential anti-latency drugs in
HIV-1 paediatric patients are available. Therefore, owing to the
established differences between paediatric and the adult HIV
infection, we cannot be certain about the impact of these drugs
in HIV paediatric patients and whether they will help to establish
a functional cure in HIV-1-infected paediatric patients. The
effect of panobinostat has been studied in children ranging from
age 8 to 21 years with refractory haematological malignancies
(https://clinicaltrials.gov/ct2/show/NCT01321346), and also in
children older than 16 years with relapsing Hodgkin lymphoma
(https://clinicaltrials.gov/ct2/show/NCT01169636). On the
other hand, romidepsin has been used in patients younger than
21 years with recurrent solid tumours or leukaemias
(https://clinicaltrials.gov/ct2/show/NCT00053963). These data
suggest that it might be reasonable to design a clinical trial using
these drugs in combination with cART in HIV-1 infected children
and adolescents.

In summary, although there are still many obstacles before
achieving a sterilising cure for HIV-1-infected paediatric patients,
a functional cure could be close. Different approaches may be
used to achieve it, although haematopoietic stem cell
transplantation may not be used as a standard approach due to
the elevated risks it carries. In recent infections, early cART may
reduce the size of long-lived CD4+ T cell viral reservoirs that can
be established, but the answers to several questions, such as the
best cART and the optimum length of cART administration,
remain elusive. Finally, in chronically HIV-infected paediatric

patients, anti-latency drugs could have an important role but
more information about the safety of these drugs in this
population is required.
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