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The wider perspective: Barriers and recommendations for 
transfusion support for patients with sickle cell disease in low-  and 
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Summary
Globally, sickle cell disease (SCD) is the most common inherited haemoglobinopa-
thy. The highest burden of SCD is encountered in low-  and middle- income coun-
tries (LMICs), most of which lack the resources to contend with the disease. There 
is a marked divide between care for individuals with SCD in high- income countries 
(HICs) versus LMICs, whereby the few disease- modifying therapies and curative 
regimens are only accessible to those in HICs. As such, blood transfusion remains 
central to the emergent treatment and prevention of complications of SCD. However, 
there are a myriad of related challenges in LMICs, which have impeded efforts to 
treat patients with SCD effectively. In addition to blood safety and availability, ex-
amples that impact SCD specifically include capabilities to detect and/or manage red 
blood cell alloimmunization, capacity for automated red cell exchange, limited im-
munohematology, suboptimal quality oversight with a lack of safeguards to prevent 
transfusion of incompatible blood and limited or absent post- transfusion surveil-
lance to detect and/or manage transfusion- associated adverse events. Consequently, 
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I N TRODUC TION

Sickle cell disease (SCD) is a chronic, debilitating haema-
tological disorder that arises from a point mutation in the 
β- globin gene.1 This mutation produces an abnormal form 
of haemoglobin (i.e. haemoglobin S, HbS), which polymer-
izes under low oxygen conditions, resulting in ‘sickled’ red 
blood cells (RBCs). The pathophysiology of SCD is a com-
plex interplay of chronic haemolysis, thrombosis, vascular 
occlusion and systemic inflammation. SCD is a systemic 
disorder whereby all organs may be affected. Notable acute 
and chronic sequelae include vaso- occlusive crises, anaemia, 
acute chest syndrome (ACS), ischaemic and haemorrhagic 
stroke, renal injury, chronic pain, pulmonary hypertension 
and cardiac failure. Some of the therapies in use to manage 
SCD (e.g. blood transfusion) also pose risks (e.g. alloimmu-
nization, hyperhaemolysis, haemosiderosis/iron overload, 
infections) to patients.

The highest burden of SCD is still encountered in low-  
and middle- income countries (LMICs), most of which have 
limited resources to contend with the disease.2–4 In 2021 
alone, an estimated 7.7 million people were living with SCD 
worldwide, and 515 000 babies were born with SCD,2 most 
(~80%) of whom were in sub- Saharan Africa, particularly 
Nigeria and the Democratic Republic of Congo.1–3

There is a marked divide between care for individuals 
with SCD in high- income countries (HICs) versus LMICs. 
The care of individuals with SCD has improved substan-
tially in HICs, where over 90% of children with SCD now 
survive into adulthood.4 Interventions that have contrib-
uted favourably to improvements in outcomes include new-
born haemoglobinopathy screening, transcranial Doppler 
(TCD) ultrasound, penicillin prophylaxis, immunization 
programs, access to a safe and sufficient blood supply and 
hydroxyurea therapy.4 By contrast, LMICs lag far behind. 
Indeed, 50%–90% of children with SCD in LMICs die before 
their fifth birthday.2,5

TR E ATM E N T OP TIONS FOR SCD

Historically, treatment options globally for SCD were lim-
ited to red cell transfusion and hydroxyurea. While this is 
notably still the case in LMICs,3,6 recognition of the grow-
ing burden of SCD in HICs has spurred some—albeit mod-
est—investment in disease- modifying therapies. Three 

agents—voxelotor (a HbS polymerization inhibitor), L- 
glutamine (an amino acid) and crizanlizumab (a P- selectin 
inhibitor)—were developed and approved for use in the 
United States and other HICs given their effects on the miti-
gation of haemolysis and vaso- occlusive crises.7,8 However, 
crizanlizumab's market authorization has subsequently been 
revoked in multiple regions (e.g. in Europe and Brazil) due to 
lack of efficacy,9 and voxelotor has been voluntarily removed 
from the global market and all clinical trials discontinued by 
the manufacturer due to safety concerns.10

While these newer agents have generally been under-
whelming in regard to improved outcomes, hydroxyurea 
therapy has emerged as a cornerstone in the management 
of SCD. Hydroxyurea is an antimetabolite that selectively 
inhibits ribonucleoside diphosphate reductase, offering clin-
ical benefits by reducing the frequency of vaso- occlusive 
crises, ACS and the need for blood transfusions.11–16 The 
therapeutic effects of hydroxyurea are primarily attributed 
to its ability to increase fetal haemoglobin (HbF) levels, 
which reduces haemoglobin polymerization and subsequent 
erythrocyte sickling under deoxygenated conditions.16,17 
In addition to HbF induction, hydroxyurea decreases leu-
cocyte, reticulocyte and platelet counts and reduces their 
surface expression of adhesion receptors, thereby attenuat-
ing inflammation and vascular adhesion, which are critical 
contributors to the pathophysiology of SCD.18,19 Long- term 
studies have demonstrated its efficacy and safety in both pae-
diatric and adult populations.11,20 However, the overall use of 
hydroxyurea varies widely (yet remains low) as compared to 
HICs.21 Some countries have expanded use through subsi-
dized healthcare programmes and partnerships with global 
health organizations.22 For instance, the Novartis Africa 
SCD programme was implemented to overcome barriers in 
SCD care and ensure access to therapies.22 Further efforts 
to increase its adoption in LMICs require coordinated in-
terventions, including local production, integration of SCD 
care into primary healthcare systems and public health cam-
paigns to increase awareness.

While there is a paucity of disease- modifying agents avail-
able, there are potentially curative treatments for patients 
with SCD, including haematopoietic stem cell transplanta-
tion (HSCT) and gene editing therapies.23,24 The American 
Society of Hematology (ASH) recommends human leuko-
cyte antigen- matched related HSCT for those patients with 
SCD who have abnormal TCD ultrasound findings or a 
history of stroke. Nonetheless, this remains a conditional 

clinical practices that are otherwise regarded as standard of care in HICs remain the 
exception in LMICs, highlighting disparities in care. A multifaceted approach that 
prioritizes transfusion support in LMICs is needed to improve care for patients with 
SCD.
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recommendation (i.e. it relies on individualized decision- 
making).25 Additional indications for HSCT include recur-
rent pain that is refractory to standard of care and recurrent 
episodes of ACS. The difficulty in identifying compatible 
blood for patients who have developed multiple antibodies is 
another consideration in the decision to proceed with trans-
plantation. For those patients who do not have a matched 
sibling donor, ASH suggests considering alternative methods 
of transplant (unrelated HSCT and haploidentical related 
donors).25

Two autologous cell- based gene therapies were approved 
by the US FDA in December 2023 as another potentially cu-
rative option for patients with SCD.23 One utilizes CRISPR/
Cas9 to target BCL11A, which—under normal circum-
stances—functions to repress transcription of the γ- globin 
gene; disruption of BCL11A results in an increased produc-
tion of HbF.26 The other approved therapy uses a viral vector 
to insert a modified β- globin gene variant into cells. Despite 
the promise of a cure, access to these therapies is limited 
even in HICs. Given the high cost (minimum of $2 mil-
lion USD per treatment),27,28 coupled with the infrastruc-
ture required to implement these therapies (e.g. the ability 
to perform autologous haematopoietic stem cell collection 
and ex  vivo modification), it is highly unlikely that these 
therapies will become available in LMICs in the near future. 
Moreover, myeloablative conditioning is required irrespec-
tive of the type of curative therapy, necessitating, in addition 
to fertility preservation and late effects follow- up care, blood 
transfusion support, the capacity for which may be limited 
in LMICs.

BLOOD TR A NSFUSION FOR 
PATIE N TS W ITH SCD

Blood transfusion remains both a major treatment—as 
well as a commonly employed preventive strategy—for 
complications of SCD. Almost nine in 10 adults with SCD 
in LMICs receive an RBC transfusion in their lifetime.29 
In LMICs, the primary driver for blood utilization in pa-
tients with SCD occurs in the emergency setting, as many 
patients are severely anaemic upon arrival at the hospital. 
Complications such as malaria- associated anaemia, acute 
splenic sequestration, ACS, sepsis, acute stroke and mul-
tiorgan failure are major indications for emergent blood 
transfusion. The scarcity of blood contributes to an in-
crease in the mortality rate in these patients during their 
hospitalization.30

Chronic transfusion therapy is also employed and may be 
administered as simple transfusion (infusing blood without 
removing or exchanging the patient's own blood), partial 
manual exchange transfusion (phlebotomy is undertaken 
immediately prior to simple transfusion) or automated ex-
change transfusion (concomitant removal of a patient's 
blood and infusion of donor blood via apheresis technology).

Chronic transfusion therapy has been shown to bene-
fit patients with SCD, particularly those individuals with a 

history of stroke. Prophylactic transfusion therapy may also 
confer benefits to pregnant patients with SCD.31–33 In the 
Stroke Prevention Trial in Sickle Cell Anaemia (STOP trial), 
children with SCD and elevated TCD velocities who received 
prophylactic transfusion therapy had a 92% lower risk of 
stroke than those children who received standard of care.34 
In the STOP II trial, the incidence of high- risk TCD findings 
or overt stroke was significantly greater in those children 
whose TCDs had normalized after 30 months of transfu-
sion therapy and subsequently stopped transfusions com-
pared to those who continued chronic transfusion therapy.35 
Additional studies have assessed whether children with a 
history of stroke or abnormal TCDs can be transitioned from 
chronic transfusion therapy to hydroxyurea after a particu-
lar amount of time; the findings have demonstrated that hy-
droxyurea may not be inferior to chronic blood transfusion 
in certain patients.36,37 Thus, this may be cost- effective, re-
ducing the transfusion burden.38 Nevertheless, transfusion 
remains the standard of care for acute neurological events 
and ACS.

The ASH recommends automated red cell exchange 
(RCE) for stroke and severe ACS in SCD.39 Automated RCE 
reduces the HbS level more rapidly, and in a more predict-
able manner, as compared to simple transfusion. Automated 
RCE is also euvolemic: with modern instrumentation, the 
patient's RBCs are removed, and donor RBCs are returned 
in a continuous manner, thus minimizing the risk of fluid 
overload (patients with SCD are at risk of renal impairment 
and cardiorespiratory failure).40,41 Furthermore, iron accu-
mulation and hyperviscosity can be controlled through the 
adjustment of target parameters. Nonetheless, automated 
RCE remains the exception in LMICs. Barriers to its wider 
adoption include the need for specialized equipment, skilled 
personnel (i.e. with specialized training in apheresis), ad-
equate vascular access (potentially necessitating central 
venous access) and a requirement for a greater number of 
RBCs as compared to other RBC transfusion modalities (e.g. 
4–10 units of RBCs for RCE as compared to 1–3 units for an 
adult undergoing simple transfusion).42 As such, the British 
Society of Haematology recommends that all hospitals that 
treat patients with SCD should have the capability to per-
form manual exchange, asserting that this may be life- saving 
in emergent situations.43 However, automated RCE remains 
the preferred approach.43 Manual exchange is enormously 
labour intensive, inefficient and—arguably—not amenable 
to high throughput treatment of large numbers of patients 
with SCD. Furthermore, acceptance of suboptimal practices 
impedes progress towards the standard of care.44

CH A L L E NGE S TO BLOOD 
TR A NSFUSION SU PPORT FOR 
PATIE N TS W ITH SCD I N L M IC S

Despite recognition of the importance of blood transfusion 
therapy in SCD, there are a myriad of challenges that im-
pact blood transfusion safety and availability in LMICs.45–48 
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These have impeded efforts to treat patients with SCD ef-
fectively. The first challenge is the availability of blood for 
patients with SCD when it is needed. Most LMICs, including 
those where SCD is prevalent (i.e. parts of Africa and India) 
do not have sufficient blood to meet the needs of the popula-
tion.46,47,49,50 Furthermore, in many regions, the amount of 
blood that is needed to support individual populations has 
yet to be quantified, hindering efforts to optimize the blood 
supply.51

Even when blood is available, all of the risks of blood trans-
fusion are accentuated in a low- resource setting, irrespective 
of the mode (i.e. simple vs. automated) of administration. For 
one, the transfusion- associated infectious risk in many LMICs 
is considered to be high. This stems from a host of associated 
challenges spanning high background prevalence for the major 
transfusion transmissible infections (TTIs), suboptimal blood 
donor selection (specifically, collection of blood from first time, 
family replacement and paid donors), testing (variable use of 
quality- controlled assays, lack of standardized algorithms 
with inconsistent use of repeat and confirmatory testing) and 
largely absent post- transfusion surveillance.44,52–54 Individuals 
with SCD are often chronically transfused, either prophylacti-
cally or for treatment of SCD- associated complications, con-
ferring cumulative risk of TTIs.

Second, immunohematology is lacking in LMICs.49,55 
This is reflected by the limited capacity for RBC antigen 
phenotyping, antibody detection and antibody identifica-
tion. In part, this stems from the need for specialty train-
ing (e.g. specialist in blood banking, medical laboratory 
scientist and related education), the costs and availability of 
evaluation (reagents, RBC panels), and storage capabilities 
for reagents, panels and blood products. While not unique 
to immunohaematology, there are systemic challenges in 
low- resource settings pertaining to the maintenance of 
supply chains, from procurement through distribution. 
Prophylactic matching strategies for blood transfusion, 
whereby the antigen profiles of allogeneic RBC units are 
“matched” to those of the recipient's profile, are rarely avail-
able in LMICs, despite evidence suggesting a reduction in 
alloimmunization.55,56 Even if there were the infrastructure 
and human capacity to perform the testing and laboratory 
services, there are not sufficient blood, financial resources or 
operational capability to integrate partial or complete phe-
notypic matching into routine practice.

Alloimmunization to RBC antigens is a formidable 
challenge, even in HICs, as it reduces the pool of compat-
ible donors to support a given patient. In HICs, access to 
RBC reagents (e.g. antisera, test cells, enzymes, etc.) and 
rare donor registries, in conjunction with high- throughput 
phenotyping and genotyping of donors, enables the identi-
fication of suitable donor units. Furthermore, there is ease 
of blood distribution across large geographic areas, such 
that sample and blood product shipping, even across state/
provincial/country borders, is undertaken routinely. These 
capabilities are not available in most LMICs. To some 
extent, greater homogeneity in the blood group antigen 

frequencies between the blood donor and recipient pop-
ulations in many African countries may offset the risks 
and consequences of RBC alloimmunization.56 However, 
mutations in the genes that encode for RBC antigens are 
relatively frequent in patients with SCD, contributing to 
challenges in finding compatible donors, even when RBC 
transfusions are phenotypically matched (i.e. using sero-
logical typing). A mitigation strategy, whereby both donors 
and recipients are genotyped, is infrequently performed in 
HICs and is not undertaken in LMICs due to technological, 
operational, and financial barriers.57 Moreover, there are 
additional risks for alloimmunization due to transfusion 
practices in LMICs, such as the absence of leucoreduction 
and transfusions that occur predominantly for acute cir-
cumstances or in patients with underlying inflammatory 
states.58 While leucoreduction decreases human leuco-
cyte antigen alloimmunization (and potentially decreases 
RBC alloimmunization) by removing donor white blood 
cells,59,60 it is a high- cost intervention and has not been 
widely implemented in LMICs. Even in HICs (such as those 
in Europe and North America) where advanced methods 
are in place to reduce RBC alloimmunization, high rates of 
alloimmunization continue to occur due to the pervasive 
antigen mismatch between the blood donor pool (which is 
largely composed of individuals of European descent) and 
individuals with SCD, who tend to be of African descent.61 
However, it is possible that studies, which suggest a com-
paratively lower incidence of alloimmunization in LMICs, 
do not take into account the patient's antibody and/or 
transfusion history, which are typically unknown in a low- 
resource setting. Moreover, antibody screening and identi-
fication are the exceptions in LMICs.55 Therefore, given the 
evanescence of RBC antibodies, the incidence of alloimmu-
nization is likely underestimated in LMICs.

There are further challenges that have not been con-
sidered in the context of immunohaematology. A third 
of patients with SCD who are transfused with blood from 
African donors may develop alloantibodies to antigens 
that are not included on a standard RBC test panel.62 Even 
if routine immunohematology testing capabilities (e.g. an-
tibody screening using a standard two-  or three- cell panel, 
antibody identification using a standard 11-  or 14- cell panel, 
etc.) were to be implemented, the lack of access to reagent 
RBCs that express low- prevalence or lack high- prevalence 
antigens that are important in the African population, and 
specialized testing to resolve antibody identification (e.g. 
the use of enzymes/lectins, adsorption/elution techniques, 
molecular analysis) would still fail to identify a substantial 
proportion of individuals with alloantibodies. A high inci-
dence of alloimmunization in patients with SCD, coupled 
with limited laboratory capacity to identify these antibodies, 
confers a risk of delayed haemolytic transfusion reactions 
and hyperhaemolysis.63 The latter is characterized by ‘by-
stander haemolysis’ of the patient's own RBCs and can result 
in profound anaemia, cardiovascular collapse and death.64 
As haemovigilance systems are limited or absent in LMICs, 
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it is difficult to determine the impact of these antibodies on 
patients and the frequency of post- transfusion haemolysis, 
as the patients' symptoms are likely to be attributed to SCD 
itself.

By extension, the lack of quality oversight and measures to 
ensure safe transfusion (e.g. prevention of haemolytic trans-
fusion reactions due to ABO incompatibility) poses a sub-
stantial risk. Major acute haemolytic transfusion reactions 
due to ABO incompatibility are considered sentinel events 
in HICs. Indeed, all processes are designed specifically to 
mitigate this risk. Examples include a requirement for dual 
specimen collection for determination of the patient's ABO 
type, intolerance of clerical discrepancies pertaining to pa-
tient and specimen identification, barcode scanning using 
an electronic medical record, redundant checks on specimen 
testing and patient identification, through to electronic safe-
guards against mistransfusion.65 By contrast, many LMICs 
do not have systems in place to prevent adverse outcomes, 
and a lack of post- transfusion surveillance and the ability 
to capture and track data precludes identification of, and 
appropriate treatment for, transfusion- associated adverse 
events.66,67

STR ATEGIE S TO I M PROV E BLOOD 
TR A NSFUSION FOR PATIE N TS W ITH 
SCD I N L M IC S

Transfusion management of patients with SCD in LMICs 
is subsumed by broader considerations surrounding global 
blood transfusion safety and sufficiency.46,47 Despite ongo-
ing challenges, there are examples where progress in blood 
transfusion is occurring. These include projects and health 
programs aimed at improving the safety of blood products 
through quality assurance and regulatory initiatives,68 hae-
movigilance/post- transfusion surveillance programmes69 
and the development of formal education in haematol-
ogy and transfusion medicine, particularly focusing on 
immunohaematology.70,71

To improve the care of patients with SCD, increasing the 
capacity of blood banking and laboratory medicine must be 
prioritized. Specific areas of need span the quality system 
of laboratory practice and the procurement of reagents and 
equipment (e.g. analysers) for pre- transfusion testing, to 
health management information systems that enable doc-
umentation and tracking of patients with alloantibodies or 
a history of transfusion reactions. There are few examples 
of success in this domain. Leveraging partnerships with 
societies such as ASH, the International Society of Blood 
Transfusion, the Association for the Advancement of Blood 
and Biotherapies, the Asian Association of Transfusion 
Medicine and the Africa Society for Blood Transfusion 
could be instrumental in developing and reforming immu-
nohaematology capabilities and transfusion support for pa-
tients with SCD.72 This could include individual grants for 
dedicated technical training, as well as virtual education for 
staff.

Additional policy initiatives to strengthen health sys-
tems (e.g. through collaboration with the World Health 
Organization and the Africa Centres for Disease Control 
and Prevention) would also advance transfusion services 
in LMICs. For example, the establishment of SCD Centres 
of Excellence that have the capability to perform reference 
testing (e.g. serological and molecular immunohematol-
ogy) may assist in facilitating country- wide programmes. 
Alternatively, integrating SCD care into settings that provide 
services for patients with other conditions could increase ac-
cess to regular blood transfusion therapy. For example, in 
Angola, an SCD programme was established at a maternal 
and child health hospital, thus facilitating access to SCD 
treatment for this patient population.73

Furthermore, investment in donor recruitment, partic-
ularly retention of a stable, diverse voluntary donor pool, 
could improve the availability of units that have a similar 
antigen composition to that of the intended recipient pop-
ulation. Establishing local donor outreach programmes 
that incorporate a welcoming atmosphere could be ef-
fective in developing a repeat, volunteer donor pool. This 
was exemplified by a programme at the Kumasi Teaching 
Hospital Blood Centre in Ghana where the hospital part-
nered with a local radio station to encourage individuals 
to donate three times annually using music, entertain-
ment and token gifts as incentives.74,75 A total of 3801 in-
dividuals participated, of whom over 90% were eligible to 
donate.74 Likewise, education is critical to donor recruit-
ment; there is often a lack of knowledge regarding the im-
portance of blood donation, community understanding of 
when it is not safe to donate blood (e.g. if the individual is 
in poor health or at risk of transmitting TTIs), and how to 
contend with stigma regarding attitudes and beliefs about 
blood donation and transfusion.75 Educational materials 
such as pamphlets, posters and videos may be employed 
effectively in this regard.76 Finally, robust infectious 
screening, both of donors as well as recipients, is imper-
ative. In one such programme, the National Heart, Lung, 
and Blood Institute has approved funding for a research 
initiative termed ‘BLOODSAFE’, which aims to support 
projects that improve access, safety and sufficiency of the 
blood supply in low- resource settings.71

CONCLUSION

Cure remains the overarching goal for SCD, irrespective of 
geographic location or socioeconomic status. Blood transfu-
sion is a major treatment for SCD; it is also integral to cura-
tive therapies given the need for transfusion support during 
periods of myelosuppression. Disparity in transfusion access 
and safety between HICs and LMICs merits attention if SCD 
is to be tackled effectively.
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