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One 3D VOI-based deep
learning radiomics strategy,
clinical model and radiologists
for predicting lymph node
metastases in pancreatic ductal
adenocarcinoma based on
multiphasic contrast-enhanced
computer tomography
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Junyong Ye2‡ and Yanbing Liu1*‡

1College of Medical Informatics, Chongqing Medical University, Chongqing, China, 2Key Laboratory
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Purpose:We designed to construct one 3D VOI-based deep learning radiomics

strategy for identifying lymph node metastases (LNM) in pancreatic ductal

adenocarcinoma on the basis of multiphasic contrast-enhanced computer

tomography and to assist clinical decision-making.

Methods: This retrospective research enrolled 139 PDAC patients undergoing

pre-operative arterial phase and venous phase scanning examination between

2015 and 2021. A primary group (training group and validation group) and an

independent test group were divided. The DLR strategy included three

sections. (1) Residual network three dimensional-18 (Resnet 3D-18)

architecture was constructed for deep learning feature extraction. (2) Least

absolute shrinkage and selection operator model was used for feature

selection. (3) Fully connected network served as the classifier. The DLR

strategy was applied for constructing different 3D CNN models using 5-fold

cross-validation. Radiomics scores (Rad score) were calculated for

distinguishing the statistical difference between negative and positive lymph

nodes. A clinical model was constructed by combining significantly different

clinical variables using univariate and multivariable logistic regression. The

manifestation of two radiologists was detected for comparing with

computer-developed models. Receiver operating characteristic curves, the

area under the curve, accuracy, precision, recall, and F1 score were used for

evaluating model performance.
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Results: A total of 45, 49, and 59 deep learning features were selected via

LASSOmodel. Nomatter in which 3D CNNmodel, Rad score demonstrated the

deep learning features were significantly different between non-LNM and LNM

groups. The AP+VP DLR model yielded the best performance in predicting

status of lymph node in PDAC with an AUC of 0.995 (95% CI:0.989-1.000) in

training group; an AUC of 0.940 (95% CI:0.910-0.971) in validation group; and

an AUC of 0.949 (95% CI:0.914-0.984) in test group. The clinical model

enrolled the histological grade, CA19-9 level and CT-reported tumor size.

The AP+VP DLR model outperformed AP DLR model, VP DLR model, clinical

model, and two radiologists.

Conclusions: The AP+VP DLR model based on Resnet 3D-18 demonstrated

excellent ability for identifying LNM in PDAC, which could act as a non-invasive

and accurate guide for clinical therapeutic strategies. This 3D CNN model

combined with 3D tumor segmentation technology is labor-saving, promising,

and effective.
KEYWORDS

pancreatic ductal adenocarcinoma, lymph nodemetastases, deep learning, radiomics,
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Introduction

Pancreatic ductal adenocarcinoma (PDAC), as the 2nd

principal criminal of global cancer death rate by 2030, is

notorious due to early metastasis and latent occult, with the

5-year long-term survival remaining merely 7%–8% (1, 2). Early

surgical excision is the sole radical therapy protocol available for

PDAC patients. The occurrence of lymph node metastases

(LNM) in PDAC is well known to be a vital hazard of PDAC,

manifesting poor prognosis after surgical resection (3). National

comprehensive cancer network (NCCN) guidelines reported

PDAC patients with positive status of lymph nodes should

receive pre-operative neo-adjuvant treatment, and survival

time could obviously improve after surgical resection (4–6).

Thus, accurately and timely prediction of LNM prior to

treatment is significant for providing the best treatment

strategy for PDAC patients. Currently, contrast-enhanced

computer tomography (CECT) is regarded as the dominating

examination mechanics in the recognition of lymph nodes (7–9),

but its overall accuracy is far from satisfactory owing to it is

easily influenced by inflammatory hyperplasia or secondary

biliary obstruction (10, 11). Other imaging examinations, such

as magnetic resonance imaging or positron emission

tomography, were regarded as supplementary predictive tools,

whereas manifested inconspicuous advantage (12). Moreover,

endoscopic ultrasonography-guided fine needle aspiration,

which could obtain one piece of specimen, is highly invasive

and has the risk of interventional complications, such as
02
pancreatitis and pancreatic fistula (13, 14). Thus, one precise

and noninvasive diagnosis strategy is needed.

Recently, computational aid in diagnosis (CAD) developed a

state-of-the-art technology in medical images research area that

could convert macroscopic images to thousands of underlyingly

quantitative features, thereby improving diagnostic performance

and assist in clinical decision-making (15, 16). Currently, most

radiomics studies used traditional machine learning methods

like support vector machine (SVM) to solve clinical problems

and manifest moderate results (17–20). However, traditional

machine learning approaches exist two primary shortcomings as

yet. On the one hand, it is up to manual segmentation as gold

standard, and this work requires experienced radiologists to

spend much time and energy. On the other hand, it extracted

only handcrafted features that are relatively low-level and

concrete (21). However, deep learning, as an emerging

informatic technology, automatically extracts the higher-level

features from medical images without human intervention (22,

23), which precisely preserves the objectivity and nature of the

data, achieving quite outstanding performance in various

medical tasks. Convolutional neural networks (CNN), as one

most representative deep learning architecture, have been

extensively applied for image analysis and outperforms

traditional machine learning methods in the aspect of

reproducibility and repeatability (24, 25). Previous radiomics

studies (26, 27) using two-dimensional (2D) CNN models, most

focused on 2D ROI-based segmentation via inputting slices one

by one, only capturing spatial correlation while leaving the rich
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three-dimensional (3D) context information unexploited.

Therefore, choosing 3D CNN model based on 3D volume of

interest (VOI) structure for regarding tumor as an interactively

whole entirety is consequential.

Currently, most radiomics studies aiming at differentiation

of LNM in PDAC were based on traditional machine learning

methods with tedious procedure and unsatisfactory

generalization ability (28–32), and the utilization of 3D VOI

combined with 3D CNN on the basis of multiphasic CECT for

identifying LNM in PDAC is rarely been reported. Therefore, we

designed to construct three different Residual network 3D-18

(Resnet 3D-18) CNNmodels including AP DLRmodel, VP DLR

model, and AP+VP DLR model for this classification task, not

only avoiding cost-timely manual segmentation, but also

protecting the integrity of tumor structure. We have

confidence that our findings could not only provide an

outstanding predictive strategy for PDAC patients with LNM

but also lead one 3D VOI-based 3D CNN technology to exploit

more advanced research.
Materials and methods

Patients

The ethics committee of the First Affiliated Hospital of

Chongqing Medical University approved this study (No:2022-63),

and the demand for informed consent was exempted. Primary

PDAC patients underwent surgery resection with standard regional

lymph node dissection from January 2015 to September 2021 were

collected. The enrolled criteria were as follows: (1) patients

underwent arterial phase (AP) and venous phase (VP) scanning

within 2 weeks prior to surgery; (2) pancreatic tumors were

observed on CECT images; (3) the diagnosis of PDAC and LNM

were confirmed pathologically; and (4) clinical data were

completed. The exclusion criteria were as follows: (1) tumor

diameter was at least 1.0 cm; (2) images with evident noise or

severe motion artifacts; (3) treatment or biopsy before imaging

scanning; and (4) other primary tumors existed. The patients were

partitioned into a primary group (training group and validation

group) and a test group at a proportion of 8:2 using random

sampling. The patient selection flowchart is described in Figure 1.
Image acquisition

One 128-slice multidetector-row CT scanner (SOMATOM

Definition Flash, Siemens Healthineers) was performed. The CT

scanning parameters were set as follows: 120 kV; 300 mA; 0.7

pitch; collimation, 128 × 0.6 mm; beam collimation, 160×0.5

mm; matrix, 512×512; and gantry rotation time, 0.5 s. Non-ionic

contrast agent (Ultravist 370, Bayer Schering Pharma) was

injected into the antecubital vein using a pump injector
Frontiers in Oncology 03
(Medrad Mark V plus, Bayer). The injection dose was 1.2 ml/

kg and the flow rate was 3.5 ml/s. Then, normal saline of 40 ml

was injected to flush the tube. Unenhanced phase was scanned

first. Approximately 15 s after the abdominal aorta reaching 100

HU, AP scanning was performed, and VP scanning was

performed 30 s after the finish of the AP scanning.
Data collection

Patient data were acquired from the electronic medical

records. A total of 20 clinical, pathological, images and

laboratory characteristics were evaluated referring to the World

Health Organization and the American Joint Committee on

Cancer (AJCC) TNM Staging System Manual, 8th Edition (24).

Image characteristics were assessed by two radiologists with 8 and

10 years’ clinical experience, respectively. A consensus was

reached when difference in opinion existed. The characteristics

were classified as follows: (1) clinical characteristics: gender, age,

abdominal pain, backache, pancreatitis, jaundice, operation

method; (2) pathological characteristics: histological grade,

duodenal invasion, surgical margin status, perineural invasion;

(3) image characteristics: CT-reported tumor size, tumor location,

clinical T stage, parenchymal atrophy, pancreatic duct dilatation,

and common bile duct dilatation; (4) laboratory characteristics:

carcino-embryonic antigen (CEA) level, carbohydrate antigen 19-

9 (CA19-9) level, and total bilirubin (TBIL) level. Specific

characteristics description can be referred in the Supplementary

Material. Meanwhile, valuable characteristics were selected from

above-mentioned characteristics using univariate and

multivariable logistic regression analysis for clinical model

building, except for that, we chose some feature, which is

deemed meaningful in clinical experience for predicting tumor

heterogeneity to further perfect this clinical model.
Image segmentation and preprocessing

In this study, traditional manual segmentation layer by layer is

needless. We designed one 3D stereochemical box as the VOI.

First, the tumor was localized by two experienced radiologist

without precisely segmentation. One radiologist localized the

lesion and another radiologist checked the accuracy of location.

Second, this 3D box, which contained the complete tumor and

slight peritumoral tissue along height-axis, width-axis, and depth-

axis in every slice, is determined according to the location mark.

Specifically, the original images could be recognized as a 3D array,

and the largest peripheral box including the tumor is also a 3D

array, and the index corresponding to each pixel of the tumor 3D

box in the original images could be determined via computer

language. The corresponding original images were cropped out

according to the index for retaining tumor 3D box, and the

specific demand of box size only need to retain whole tumor as
frontiersin.org
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much as possible because deep learning algorithm is more robust

and strong than traditional machine learning method, the

requirement of precise segmentation in deep learning is not as

strict as traditional radiomics. This method is consistent with An’s

study about the localization and segmentation technology (26).

Third, after subtracting the periphery regions out of tumor 3D

box, original 3D images and 3D segmentation masks (ground

truth) were resampled to a specified resolution of 5*224*224, and

images were processed to (0,1) using min-max normalization. A

complete workflow is displayed in Figure 2.
Deep learning model selection

Resnet as a celebrated CNN is proposed by Microsoft

research. In 2015, Resnet won the image classification and object

recognition competition in ImageNet Large Scale Visual

Recognition Challenge (ILSVRC). The Resnet 18 represent 18

layers deep networks constructed by internal residual blocks,

which were implemented by shortcut connection, thereby

performing identity mapping and solving degradation problem
Frontiers in Oncology 04
caused by over-deeper layers. But Resnet 18, as one 2D CNN

model, could only extract feature in single slice of 2D CT images

without extracting the entirety in real 3D structure. Thus, Resnet

3D-18 was optimizing and upgrading on the basis of Resnet 18.

Resnet 3D-18 could extract context features comprehensively and

globally using automatic parameter learning, thereby avoiding

losing stereoscopic information. Currently, Resnet 3D-18 is highly

appreciated by its excellent learning performance and optimization

ability, and increasingly applied in image segmentation, recognition,

classification. Moreover, it has been reported that Resnet-3D model

achieve better accuracy compared to 2D ones, and the deeper

networks (34 layers) show little gain over 18 layer ones (33, 34), so

the Resnet 3D-18 architecture was appropriate and selected for

subsequent analysis.
Deep learning feature extraction
and selection

Pretrained Resnet 3D-18 model on the ImageNet database

with the method of self-supervised learning was implemented
FIGURE 1

Flow chart of patient’s selection.
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for feature extraction (35, 36). In previous studies of deep

learning neural networks (25, 27), end-to-end learning

methods were regularly used without feature selection

procedure; however, these features are not identically

significant to the issues. In this experiment, multiple attempts

in feature selection method were conducted, including decision

tree (DT) and least absolute shrinkage and selection operator

(LASSO) model. Ultimately, the LASSO model was selected,

which is consistent with prior deep learning radiomics studies

(37). All extracted features are fed into the LASSO model. The

loss function of LASSO is calculated as below:

Loss =
1
2No

N

n=1
∥ y − Xw ∥22 +l

∗j wj jj1

Where N is the number of all samples, y represents the true label,

and X represents feature, w represents weight of feature, and

hyperparameter l denotes penalty coefficient. Those features with

non-zero weight were retained. The l was searched in 0.005-

0.02 using the traversal method. The larger the l is, the stronger the

effect of the regular term is, and more weights would be compressed to

zero. Themodel error was calculated by putting the possible values into

the model. The consequence of l yielding the minimum error was

selected as the optimal hyperparameter.
DLR model construction

In this experiment, we have attempted six classifiers

including logistic regression (LR), k-nearest neighbor (KNN),

SVM, DT, random forest (RF), and fully connected neural

network (FCN). Finally, the combination of LASSO+FCN

achieving the best robustness and stability was selected,
Frontiers in Oncology 05
followed by the combination of DT + RF, which were easily

influenced by randomness of the data set, thereby being

excluded. Then, the features retained by LASSO were fed into

FCN, which is a linear model to calculate the final probability

score. The architecture of FCN was constructed by one hidden

layer and one output layer with training epochs of 30. Limited

Broyden-Fletcher-Goldfarb-Shanno (Lbfgs) optimizer was

adopted to minimize the loss function—binary cross-entropy

—which is calculated as follows:

L =
1
Noi

Li =
1
Noi

− ½yi · log(pi) + (1 − yi) · log(1 − pi)� 

Where yi represents true label of sample i, the positive

sample is 1, and the negative sample is 0. pi represents the

probability of the sample predicted as a positive class. In hidden

layer, neurons were set to 1,000, and the activation function used

was rectified linear unit (Relu), which could make the output of

some neurons be zero, thereby contributing to the sparsity of the

network, decreasing the interdependence of parameters, and

relieving the occurrence of over-fitting issues. In output layer,

neurons were set to two, and the activation function was softmax

function via mapping the values of the output layer to the 0-1

interval as a probability distribution where z represent values of

the output layer. The larger the softmax value is, the better the

model predicts. The formula of softmax is:

Softmax(zi) =
exp(zi)
Sjexp(zj)

The CNN training process included two aspects (backward

propagation and forward propagation). First, five times 5-fold

cross-validation was set for training model. The primary group

was stochastically shuffled and divided into 5-fold averagely.
FIGURE 2

Workflow of Resnet 3D-18 model based on CECT for lymph node metastases (LNM) of patients with pancreatic ductal adenocarcinoma (PDAC).
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In every time among five times, 1-fold was regarded as validation

group successively, and the other 4 folds were regarded as

training group in this order. Then, the images were fed into

the network, and predictive result through forward propagation

displayed in the network’s output layer. Simultaneously, the

model parameters were updated and decided via backward

propagation until achieving the minimum difference between

the true label and predictive result. In addition, we used early

stopping, which is a technique use to stop training before

overfitting occurs. The use of early stopping can obtain the

best generalization performance and prevent overfitting by

intercepting the model with the best results in the whole

process of model training. In total, three 3D CNN models

including AP DLR model, VP DLR model, and AP+VP DLR

model were separately built. The predictive ability of three CNN

models was exhibited among every time in 5-fold cross-

validation. The general prediction result was fused among

these 5-fold groups by averaging the scores. The independent

test group was employed to evaluate the model performance. It

should be noted that no patients in the test group directly or

indirectly participate in the model training process, thereby

avoiding data leakage.
Performance evaluation of DLR model

In our study, the following five quantitative indicators were

calculated: the area under the curve (AUC), accuracy, precision,

recall, and F1 score. Due to the imbalances between the LNM

group and non-LNM group, we used the AUC as our principle

evaluation indicator, followed by accuracy. Furthermore, the

Radiomics score (Rad score) were calculated through a linear

combination of features’ weighted coefficients. To make a

comparison of diagnostic performance between the 3D CNN

models with physician-level accuracy, CECT images of all 139

patients were respectively reviewed by two abdominal

radiologists (senior radiologist and junior radiologist)

following double-blind principle. The site of lymph node

resection is consistent with that of images measurement. The

accuracy, sensitivity, specificity, positive predictive value (PPV)

and negative predictive value (NPV) were evaluated in

performance of radiologists.
Statistical analysis and experiment
implementation

Continuous variables were analyzed using Student’s t test or

the Mann–Whitney U test; Categorical variables were analyzed

by chi-square test or Fisher’s exact test. Wilcoxon rank sum test

was used to compare Rad scores in negative and positive groups.

Delong test was applied to evaluate the discrimination ability

among AUCs, and P<0.05 was regarded as statistically
Frontiers in Oncology 06
significant. Multivariable logistic regression analyses use the

likelihood ratio test with Akaike’s information criterion as the

stopping rule. All statistical tests were executed with SPSS

software (version 25.0), R software (version 4.0.5), and Python

software (version 3.8.0). In this study, the pre-processed and

feature extraction approaches were conducted using SimpleITK,

numpy, and scikit-learn package; the PyTorch 1.0 configuration

was arranged to build the neural network. The training process

was conducted on Ubuntu OS with an Intel Xeon E5 2687W V3,

NVIDIA GeForce 1080ti GPU, and 16 × 8GB of RAM.
Results

Patient

A total of 139 patients (99 men, 40 women) were recruited

for our study, and were partitioned into a primary group (n =

111) and a test group (n = 28). The LNM rates in every group

were 35.1% (39/111) and 32.1% (9/28), respectively, and P>0.05

ensuring grouping consistency. In the primary group,

histological grade, duodenum invasion, and CT-reported

tumor size were notably different between non-LNM and

LNM cohorts (Table 1). There were no significant differences

in the test group. Some studies suggested that CA19-9 level is an

independent predictive factor for LNM, and the higher CA19-9

levels indicating a worse patient’s condition (38). Thus, CA19-9

is enrolled for subsequent analysis. Univariate and multivariable

logistic regression analysis demonstrated that histological grade,

CT-reported tumor size, and CA19-9 were independent

predictors of LNM in PDAC (Table 2). PDAC patients with

LNM were more likely to have higher histological grade

(OR,0.175; 95% CI, 0.061 to 0.499), larger CT-reported tumor

size (OR, 1.182; 95% CI, 1.069 to 1.307), abnormal CA 199 level

(OR, 4.139; 95% CI, 1.300 to 13.175).
Deep learning features selection
and construction

In this study, we attempted experiments comparing DLR

model with feature selection procedure or without feature

selection procedure. Without feature selection, the learning

curves were overfitting in the training group, and were not

converged in validation group and test group in all three models.

However, learning curves improved significantly and reached

perfect fitting with feature selection. The training curves of three

models could be found in Supplementary Figure S1. This finding

suggested that feature selection may be an important method in

deep learning researches, especially in small data sets. Adding

feature selection procedure might achieve better performance.

The Resnet 3D-18 model separately extracted 512 deep

learning features from AP and VP. Then, the most
frontiersin.org
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TABLE 1 Baseline characteristics in the primary and test groups.

Characteristics Primary group (n=111) P value Test group (n=28) P value

Non-LNM (n=72) LNM (n=39) Non-LNM (n=19) LNM (n=9)

Clinical characteristics

Age (y), mean ± SD 60.68 ± 9.96 62.11 ± 8.47 0.456 63.84 ± 8.46 59.56 ± 11.94 0.283

Gender, n (%) 0.585 0.609

Female 22 (30.6) 10 (25.6) 6 (31.6) 2 (22.2)

Male 50 (69.4) 29 (74.4) 13 (68.4) 7 (77.8)

Abdominal pain 0.255 0.439

Yes 40 (55.6) 26 (66.7) 12 (63.2) 7 (77.8)

No 32 (44.4) 13 (33.3) 7 (36.8) 2 (22.2)

Backache 0.307 0.483

Yes 17 (23.6) 6 (15.4) 4 (21.1) 3 (33.3)

No 55 (76.4) 33 (84.6) 15 (78.9) 6 (66.7)

Pancreatitis 0.314 0.159

Yes 8 (11.1) 7 (17.9) 7 (36.8) 1 (11.1)

No 64 (88.9) 32 (82.1) 12 (63.2) 8 (88.9)

Jaundice 0.263 0.926

Yes 9 (12.5) 8 (20.5) 6 (31.6) 3 (33.3)

No 63 (87.5) 31 (79.5) 13 (68.4) 6 (66.7)

Operation, n (%) 0.388 0.521

Pancreaticoduodenectomy 56 (77.8) 33 (84.6) 15 (78.9) 8 (88.9)

Distal pancreatectomy 16 (22.2) 6 (15.4) 4 (21.1) 1 (11.1)

Pathological characteristics

Histological grade, n (%) 0.001* 0.505

Low-grade 55 (76.4) 18 (46.2) 11 (57.9) 4 (44.4)

High-grade 17 (23.6) 21 (53.8) 8 (42.1) 5 (55.6)

Duodenum Invasion, n (%) 0.001* 0.907

Negative 51 (70.8) 15 (38.5) 8 (42.1) 4 (44.4)

Positive 21 (29.2) 24 (61.5) 11 (57.9) 5 (55.6)

Surgical margin status, n (%) 0.196 0.175

Negative 69 (95.8) 39 (100) 18 (94.7) 7 (77.8)

Positive 3 (4.2) 0 (0) 1 (5.3) 2 (22.2)

Perineural invasion, n (%) 0.397 0.409

Negative 7 (9.7) 2 (5.1) 2 (10.5) 2 (22.2)

Positive 65 (90.3) 37 (94.9) 17 (89.5) 7 (77.8)

Imaging characteristics

CT-reported tumor size (mm), mean ± SD 23.99 ± 9.62 29.03 ± 13.69 0.026* 29.68 ± 12.13 34.33 ± 6.70 0.295

Location, n (%) 0.639 0.726

Head and neck 58 (80.6) 33 (84.6) 16 (84.2) 8 (88.9)

Body and tail 14 (19.4) 6 (15.4) 3 (15.8) 1 (11.1)

T stage, n (%) 0.099 0.735

cT1 24 (33.3) 7 (17.9) 1 (5.3) 0 (0)

cT2 41 (56.9) 25 (64.1) 15 (78.9) 7 (77.8)

cT3-4 7 (9.7) 7 (17.) 3 (15.8) 2 (22.2)

Parenchymal atrophy, n (%) 0.428 0.885

Yes 40 (56.3) 25 (64.1) 10 (52.6) 5 (55.6)

No 31 (43.7) 14 (35.9) 9 (47.4) 4 (44.4)

PD dilatation, n (%) 0.484 0.409

Yes 57 (79.2) 33 (84.6) 17 (89.5) 7 (77.8)

(Continued)
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representative and significative characteristics were retained by

LASSO model with l setting as 0.01 (Figure 3). A total of 45, 49,

and 59 features were selected from AP model, VP model, and

fusion of AP+VP model, respectively. Indeed, more features

were retained due to a large base of total deep learning features,

which is greatly increased by the hidden layer structure of deep

neural networks. These features with non-zero weights were

ultimately assigned to construct DLR model. The feature

heatmap and Rad score were plotted in Figure 4, and specific

Rad score computational formula, including corresponding

coefficients, was in Supplementary Material. No matter in any

of the three 3D CNNmodels, significant difference was observed

in the Rad score between patients in LNM and non-LNM groups

(all P < 0.01).
Performance evaluation of DLR models,
clinical model, and radiologists

The performance of different 3D CNNmodels are showed in

Table 3 and Figure 5. Overall speaking, the AP + VP DLR model

reached the optimal ability for identifying LNM in PDAC with

an AUC of 0.995 (95% CI: 0.989-1.00) and an accuracy of 0.969

in the training group; an AUC of 0.940 (95% CI:0.910-0.971) and

an accuracy of 0.883 in the validation group; an AUC of 0.949

(95% CI:0.914-0.984) and an accuracy of 0.836 in the test group,

followed by AP DLR model with an AUC of 0.962 (95% CI:

0.951-0.972) and an accuracy of 0.926 in the training group; an

AUC of 0.884 (95% CI: 0.800-0.968) and an accuracy of 0.821 in

the validation group; an AUC of 0.872 (95% CI: 0.823-0.921) and

an accuracy of 0.736 in the test group; and the VP DLR model
Frontiers in Oncology 08
reached an AUC of 0.967 (95% CI:0.955-0.979) and an accuracy

of 0.903 in the training group; an AUC of 0.884 (95% CI:0.829-

0.938) and an accuracy of 0.784 in the validation group; an AUC

of 0.844 (95% CI:0.820-0.867) and an accuracy of 0.764 in the

test group. The AP model and VP model achieved similar

performance, while both were not as good as AP+VP model.

Moreover, we could observed that all models reached decent

outcome with most AUCs ranging from 0.92-1.00 in every fold

among 5-fold cross-validation. The ROC curves including every

fold curve and average curve in training group and test group in

all models kept stable and slight wobble. The performance

comparison of the different 3D CNN models in training,

validation, and test group were displayed in Figure 6. No

matter in training, validation, and test groups, all

statistical indicators in AP+VP model were the highest than

that of other models, except in test group, precision is lower in

AP+VP model than AP model. Delong test demonstrated no

significant difference was observed in test group with AUCs

ranging from 0.844 to 0.949 (all P>0.05), denoting the

robustness and consistency of AP, VP, and AP+VP models.

The performance of radiologists and clinical model were

showed in Table 4 and Figure 7. In primary group, the accuracy

of senior radiologist was 0.838, which was slightly lower than

that of AP DLR model and VP DLR model with an accuracy of

0.874 and 0.844, respectively. In test group, the accuracy of

senior radiologist was 0.821, which is also higher than that of AP

DLR model and VP DLR model with an accuracy of 0.736 and

0.764, respectively. However, the predictive ability of senior

radiologist was lower than that of AP+VP DLR model in both

primary group and test group. The predictive ability of junior

radiologist was lower than that of AP DLR model, VP DLR
TABLE 1 Continued

Characteristics Primary group (n=111) P value Test group (n=28) P value

Non-LNM (n=72) LNM (n=39) Non-LNM (n=19) LNM (n=9)

No 15 (20.8) 6 (15.4) 2 (10.5) 2 (22.2)

CBD dilatation, n (%) 0.158 0.815

Yes 46 (63.9) 30 (76.9) 14 (73.7) 7 (77.8)

No 26 (36.1) 9 (23.1) 5 (26.3) 2 (22.2)

Laboratory characteristics

CA-199 level, n (%) 0.121 0.409

Normal 16 (22.2) 14 (35.9) 2 (10.5) 2 (22.2)

Abnormal 56 (77.8) 25 (64.1) 17 (89.5) 7 (77.8)

CEA level, n (%) 0.149 0.521

Normal 63 (87.5) 30 (76.9) 15 (78.9) 8 (88.9)

Abnormal 9 (12.5) 9 (23.1) 4 (21.1) 1 (11.1)

TBIL level, n (%) 0.312 0.439

Normal 33 (45.8) 14 (35.9) 7 (36.8) 2 (22.2)

Abnormal 39 (54.2) 25 (64.1) 12 (63.2) 7 (77.8)
front
* represents the p values that are smaller than 0.05. Categorical data are number of patients; data in parentheses are percentage.
PD, pancreatic duct; CBD, common bile duct; CA 19–9, carbohydrate antigen 19–9; CEA, carcino-embryonic antigen; TBIL, total bilirubin.
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model, and AP+VP DLR model in primary group and test

group. A clinical model was constructed by concatenating

histological grade, CT-reported tumor size, and CA19-9 level.

The clinical model achieved an AUC of 0.747 (95% CI:0.657-

0.837) in primary group and an AUC of 0.737 (95% CI:0.549-

0.925) in test group (Figure 6), which is lower than all 3D CNN

models and radiologists.
Discussion

In this study, we designed and validated 3D CNN models

based on 3D VOI segmentation technology for constructing

different DLR strategy. Ultimately, the AP+VP DLR model

achieved excellent repeatability and robustness with an AUC

of 0.995 in training group, 0.940 in validation group and 0.949 in

an independent test group, which is better than other 3D CNN

models, clinical model, and radiologists. Therefore, this model

could serve as an outstanding assistant tool in clinical decision-

making and alleviating costly manual work in traditional

machine learning researches.
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Previous report had pointed out that 3D volumetric data

are required in future studies for comparing and improving the

performance of the 2D ROI-based texture metrics (39). As yet,

it is a clinical challenge to differentiate LNM in PDAC non-

invasively. Traditional radiomics method constructed models

on the basis of the images by intelligent calculation to acquire

relevant phenotypic characteristics, and has been widely used

for researches on pancreatic diseases. Previous radiomics

studies predicting LNM in PDAC mostly used traditional

machine learning methods or texture analysis (28–32), which

needed time-consuming manual segmentation of tumor

boundary and extracted relatively low-level features, and

actually were regarded as one statistical analysis without

application of advanced algorithm. Like Bian’s radiomics

study for predicting LNM in PDAC (29), the predictive

outcome achieved an AUC of 0.75 in training group and an

AUC of 0.81 in validation group. This article just used hand-

crafted features for analysis without machine learning model.

The similar traditional radiomics approach was executed in

Gao’s study (28), which used Rad score for differentiating

difference between LNM and non-LNM groups, with an
TABLE 2 Univariate and multivariable logistic regression analyses in selecting features.

Variable Univariate analysis Multivariate analysis

b Wald Odds ratio (95%CI) P-value b Wald Odds ratio (95%CI) P-value

Clinical characteristics

Age -0.013 0.453 0.987 (0.951-1.025) 0.501

Gender -0.288 0.509 0.750 (0.340-1.653) 0.476

Abdominal pain -0.501 1.768 0.606 (0.290-1.268) 0.184

Backache 0.262 0.347 1.300 (0.543-3.11) 0.556

Pancreatitis -0.013 0.001 0.987 (0.386-2.525) 0.978

Jaundice -0.410 0.849 0.664 (0.278-1.587) 0.357

Operation 0.501 1.084 1.650 (0.643-4.235) 0.298

Pathological characteristics

Histological grade -1.138 9.310 0.321 (0.154-0.666) 0.002* -1.745 10.621 0.175 (0.061-0.499) 0.001*

Duodenum Invasion -1.035 7.911 0.355 (0.173-0.731) 0.005*

Surgical margin status 0.056 0.004 1.057 (0.187-5.992) 0.950

Perineural invasion -0.188 0.090 0.828 (0.241-2.843) 0.765

Imaging characteristics

CT-reported tumor size 0.048 8.172 1.050 (1.015-1.085) 0.004* 0.167 0.051 1.182 (1.069-1.307) 0.001*

Location 0.466 1.036 1.594 (0.649-3.913) 0.309

Clinical T stage -1.168 3.460 0.311 (0.091-1.065) 0.063

Parenchymal atrophy -0.288 0.618 0.750 (0.366-1.536) 0.432

PD dilatation -0.139 0.086 0.871 (0.346-2.194) 0.769

CBD dilatation -0.553 1.831 0.575 (0.258-1.281) 0.176

Laboratory characteristics

CA-199 level -0.707 3.066 2.028 (0.919-4.474) 0.080 1.420 5.782 4.139 (1.300-13.175) 0.016*

CEA level -0.457 0.966 0.633 (0.255-1.575) 0.326

TBIL level -0.450 1.465 0.638 (0.308-1.322) 0.226
front
* represents the p values that are smaller than 0.05. CI confidence interval.
PD, pancreatic duct; CBD, common bile duct; CA 19–9, carbohydrate antigen 19–9; CEA, carcino-embryonic antigen; TBIL, total bilirubin.
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AUC of 0.90 in training group and 0.89 in validation group.

Liang (31) also reported a nomogram integrating Rad score

and CT for visualization in identifying LNM in PDAC, with an

AUC of 0.80 in primary cohort and 0.78 in validation cohort.
Frontiers in Oncology 10
In general, these studies used equal procedures in feature

extraction and model building, not only costing physician

resources but also generating modest results without progress

and improvement continuously. Thus, we have reasons to
B

C D
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A

FIGURE 3

Feature selection with the least absolute shrinkage and selection operator (LASSO) model. (A, B) represented AP model, and (C, D) represented
VP model, and (E, F) represented AP+VP model. (A, C, E) The LASSO model’s tuning parameter (l) selection used five-fold cross-validation via
minimum criterion. The vertical lines indicate the optimal value of the LASSO tuning parameter (l). (D, E, F) LASSO coefficient profile plot with
different log (l) was displayed.
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FIGURE 4

Feature heatmap and Rad score in different models.(A–C) represented AP model, and (D–F) represented VP model, and (G–I) represented AP
+VP model. The heatmap is grouped according to primary group and test group. Each row corresponds to one deep learning feature, and each
column corresponds to one patient. The ridgeline plot of the Rad scores in the LNM cohort (blue part) and the non-LNM cohort (orange part)
showed significant difference between the two cohorts (all P>0.05).
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FIGURE 5

Roc curves of 3D CNN models.(A–C) represented AP model in training (A), validation (B), and test (C) groups, and (D–F) represented VP model
in training (D), validation (E), and test (F) groups, and (G–I) represented AP+VP model in training (G), validation (H), and test (I) groups. Every
figure demonstrated model performance under 5-fold cross-validation.
TABLE 3 The performance of different CNN models.

Models Cohorts AUC (95%CI) Accuracy Precision Recall F1 score

AP DLR Train 0.962 (0.951-0.972) 0.926 0.924 0.840 0.879

Validation 0.884 (0.800-0.968) 0.821 0.756 0.675 0.701

Test 0.872 (0.823-0.921) 0.736 0.938 0.417 0.565

VP DLR Train 0.967 (0.955-0.979) 0.903 0.845 0.861 0.852

Validation 0.884 (0.829-0.938) 0.784 0.726 0.607 0.625

Test 0.844 (0.820-0.867) 0.764 0.797 0.600 0.678

AP + VP DLR Train 0.995 (0.989-1.00) 0.969 0.952 0.952 0.952

Validation 0.940 (0.910-0.971) 0.883 0.896 0.750 0.810

Test 0.949 (0.914-0.984) 0.836 0.909 0.683 0.776
Frontiers in Oncology
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AP, arterial phase; VP, venous phase; CI, confidence interval.
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FIGURE 6

Comparison of performance among CNN models in different groups. (A) represented training group. (B) represented validation group. (C)
represented test group. The box-and-whisker plots demonstrated the differences in AP, VP, AP+VP models among AUC, accuracy, precision,
recall, and F1 score.
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TABLE 4 The performance of radiologists and clinical model.

Radiologist/Clinical Group AUC(95%CI) Accuracy Sensitivity Specificity PPV NPV

Senior Primary – 0.838 0.795 0.861 0.756 0.886

Test – 0.821 0.667 0.895 0.75 0.85

Junior Primary – 0.757 0.641 0.819 0.658 0.808

Test – 0.643 0.556 0.684 0.455 0.765

Clinical Primary 0.747 (0.657-0.837) 0.685 0.847 0.385 0.718 0.577

Test 0.737 (0.549-0.925) 0.714 0.842 0.444 0.762 0.571
Frontiers in Oncology
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PPV, positive predictive value; NPV, negative predictive value; CI, confidence interval.
B C

A

FIGURE 7

Comparison of performance among radiologists and clinical model (A) represented manifestation of senior radiologist and junior radiologist. No
matter in primary group or test group, the senior radiologist performed better than junior radiologist. The clinical model achieved ordinary
performance in primary group (B) and test group (C), which is the worst among CNN models, radiologists and clinical model.
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believe that this 3D CNN architecture could obtain better

outcome due to the network’s strong adaptability and

generalization ability.

In common neural network models, there existed more or

less issues like messages loss when transmitting messages. We

chose the state-of-the-art network (Resnet) to solve this problem

by straightforwardly bypassing the input information to the

output, guarding the integrity of the information. The entire

network merely needs to study the difference between the input

and output, reducing the learning targets and difficulties. In

addition, this 3D volumetric network architecture, which could

obtain context from adjacent slices for grasping richer boundary

information about the pancreas (40). As expected, the

performance of 3D CNN network is better than 2D network.

Beyond that, most radiomics studies only used one scanning

phase for the purpose of convenience and selecting one phase,

which displayed clearer lesion boundary (26, 41, 42). Like An’s

study (26), which also used one 2D ROI-based 2D CNN

algorithm with only one venous phase for predicting LNM in

PDAC, whereas the best model integrating multiple radiomics

model with clinical model achieved an AUC of 0.90 in validation

group and 0.92 in test group. In our study, the AP+VP DLR

model outperformed other one-contrast prediction models (AP

DLR model, VP DLR model). In general, the Resnet 3D-18 AP

+VP model in our study has achieved the best predictive

performance than all previous published radiomics studies in

differentiation of LNM in PDAC (28–32).

Our study demonstrated that low-grade (well+moderately

differentiated) group was commonly observed in non-LNM

group and larger tumor size was easily observed in LNM

group, which is consistent with the results of Li and Liang (30,

31), indicating that LNM patients had higher invasiveness and

poorer prognosis. In general, the clinical model combined the

screened variables achieved ordinary performance. In view of the

histological grade is obtained from post-operatively pathological

examination, the model’s predictive performance will be further

decreased after removing histological grade. In our study,

radiologists reached decent performance via visual images

evaluation, not only the minor axis of lymph node was

measured, but also inherent structure and enhancement

pattern was observed, thereby a final decision was made. And

the predictive difference between senior radiologist and junior

radiologist demonstrating visual evaluation is subjective and

easily affected by radiologists’ clinical experience, resulting in

the instability and inaccuracy of radiological report and bringing

about the corresponding influence of clinical treatment strategy.

In addition, the Resnet 3D-18, indeed, demonstrated greater

accuracy and precision than the radiologists with 10–30 years of

clinical experience, which denoting that artificial intelligence,

indeed, could help clinical physicians.

This study denoted that the Restnet 3D-18 model enabled

the segmentation procedure, saving time and energy. To our
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knowledge, this is the first study applying the 3D CNN model

and 3D VOI-based strategy for predicting LNM in PDAC. It

provided solid and stable evidence that the 3D CNN strategy

offered an novel perspective and outperformed many traditional

radiomics studies in model performance and generalization

ability. This approach hold a promise of being a practical

assistant tool in clinical practice.

This study still had some limitations. First, our sample

size is relatively small and is derived from one single center.

Enrolling a larger sample size and conducting multicenter

study to further confirm the predictive ability are essential.

Second, a potential selection bias existed due to the patients

never suffering radical excision were excluded, which

resulting in the imbalance of LNM group and non-LNM

group. Third, we did not evaluate the delayed phase.

Further prospective studies will investigate the value of

delayed phase or select more advanced imaging technology

such as dual-energy CT.
Conclusion

In general, our study designed and validated 3D CNN

model (Resnet 3D-18) with 3D VOI-based strategy based

on multiphasic CECT images to differentiate LNM in

PDAC patients. The AP+VP DLR model demonstrated

the optimal predictive performance that is capable of

further assisting in precision medicine and improving

diagnostic performance.
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