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ABSTRACT

Infection by the SARS-CoV-2 leading to COVID-19 disease is still rising and techniques to either diagnose or
evaluate the disease are still thoroughly investigated. The use of CT as a complementary tool to other bio-
logical tests is still under scrutiny as the CT scans are prone to many false positives as other lung diseases
display similar characteristics on CT scans. However, fully investigating CT images is of tremendous inter-
est to better understand the disease progression and therefore thousands of scans need to be segmented
by radiologists to study infected areas. Over the last year, many deep learning models for segmenting CT-
lungs were developed. Unfortunately, the lack of large and shared annotated multicentric datasets led to
models that were either under-tested (small dataset) or not properly compared (own metrics, none shared
dataset), often leading to poor generalization performance. To address, these issues, we developed a model
that uses a multiscale and multilevel feature extraction strategy for COVID19 segmentation and exten-
sively validated it on several datasets to assess its generalization capability for other segmentation tasks
on similar organs. The proposed model uses a novel encoder and decoder with a proposed kernel-based
atrous spatial pyramid pooling module that is used at the bottom of the model to extract small features
with a multistage skip connection concatenation approach. The results proved that our proposed model
could be applied on a small-scale dataset and still produce generalizable performances on other segmen-
tation tasks. The proposed model produced an efficient Dice score of 90% on a 100 cases dataset, 95% on the
NSCLC dataset, 88.49% on the COVID19 dataset, and 97.33 on the StructSeg 2019 dataset as compared to
existing state-of-the-art models. The proposed solution could be used for COVID19 segmentation in clinic
applications. The source code is publicly available at https://github.com/RespectKnowledge/Mutiscale-
based-Covid-_segmentation-usingDeep-Learning-models.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

assessment and detection of appearances associated with COVID-
19 in the lungs [12,13]. The segmentation of the infection lesions

COVID-19 has spread all over the world in the last few months
and still the number of deaths increases day by day in many coun-
tries [1-3]. Computed tomography (CT) is an important technique
that plays an important role in the fight against COVID-19 [4-6]. CT
has shown good sensitivity in the premature diagnosis of COVID-
19 infection. From CT images, quantitative information such as
the percentage of high opacity, lung burden, and lung severity
score could be used to monitor the disease development and might
help clinicians to identify the progression of COVID-19 [7,8].

Common symptoms of COVID-19 patients are fever, cough, and
shortness of breath [9] and may also include pneumonia [10,11].
Computed Tomography (CT) imaging plays a vital role in the
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based on CT scans could provide valuable information for more
accurate diagnosis and follow-up assessment [14,11,15] of the dis-
ease progression [16]. These aspects are still under active debate
[62] and thorough clinical investigations. Nonetheless, as manual
segmentation of the lesions from 3D volumes is labor-intensive,
time-consuming, and suffers from inter and intra-observer vari-
abilities, automatic segmentation of the lesions is highly desirable
in clinical practice [14]. The automatic segmentation of COVID-19
pneumonia lesions from CT scans could be challenging due to var-
ious reasons. The main and first reason is the appearance of infec-
tion lesions onto different complex forms such as Ground-Glass
Opacity (GGO), reticulation, consolidation, and others [9]. The
pneumonia lesions’ sizes and positions are varying largely at differ-
ent stages among different patients. Moreover, the lesions have
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ambiguous boundaries and irregular shapes. The second reason is
the lack of annotated data.

Deep learning-based methods have been widely used in medi-
cal imaging and quite heavily in fighting against COVID-19 [14]
to propose data-driven solutions. For instance, Al could be used
to build an imaging workflow that can avoid transmission from
patients to health care benefactors [11]. Currently, Convolutional
Neural Networks (CNNs) deep learning models have achieved
state-of-the-art results for various medical image analysis tasks
[3,11] and are showing promising results when applied to
COVID-19 [7,12,13]. The automatic infection and diagnosis systems
in COVID-19 studies depend on the initial segmentation from deep
learning models [12,14,15,16]. Accurate and efficient solutions
depend on large datasets and private datasets that may not easily
be available publicly. One such effort of annotating thousands of
multicentric CT scans should result in better data-driven models
but has not been done yet due to lack of time from the clinicians
busy fighting the disease.

However, a few small-size datasets, presented in the relevant
subsection, exist and can be used as an initial step. As such, we pro-
pose a deep learning-based model for COVID-19 Lung Infection
Segmentation to address the aforementioned issues. The proposed
system can automatically segment small lesions that are scattered
at different locations and positions within the lungs. The combina-
tion of an appropriate loss function along with a multiscale feature
extractor provides an efficient solution. The following contribu-
tions have been addressed in this paper.

e The proposed deep learning model learns features at a multi-
scale level from encoder and decoder to minimize the seg-
mented gap for efficient segmentation

The proposed decoder and encoder modules used an efficient
block that consists of expansion 1x1 Conv, depth-wise, and pro-
jection 1x1 Conv to tackle the feature maps using different
depths and scales of feature maps. These modules enable to per-
fectly handle the challenging shape variations of COVID-19
infected areas.

The proposed model has been validated on different COVID19
and NON-COVID19 segmentation datasets and experiment
results prove that the proposed model produced excellent per-
formances on each dataset.

The different cross-validation techniques have been used to test
our proposed model and different performance metrics are used
to compare the results. Further statistical analyses have been
applied to validate segmentation results.

As COVID-19 datasets are rather small, we are focusing on three
areas such as few-shot learning, domain generalization, and
knowledge transfer. The proposed model would be helpful to
tackle limited COVID-19 CT scans and could generalize well on
heterogeneous COVID-19 and non-COVID-19 CT scans.

2. Related work:

The existing classical U-Net or V-Net-based models could
achieve promise segmentation performance on a well-labeled hun-
dred cases dataset [14]. The various U-Net based models produced
a Dice score range between 83.1% and 91.6% on a hundred cases
training datasets. D.-P. Fan et al. [17] presented a deep learning
model based on V-Net to segment the infection regions. They
achieved dice coefficients between 85.1% and 91.0% with different
labeled CT scans. Huang et al. [18] proposed U-Net [19] models
based on 774 cases of lung infection for assessment and quantifica-
tion of the disease area. The training of deep learning models with
more datasets on segmentation could increase accuracy.
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A few works have been proposed for the automatic segmenta-
tion of COVID-19 pneumonia lesions from medical images [14].
Li et al. [13] proposed the U-Net [19] for the segmentation of the
lungs and lesions using COVID-19 pneumonia. Cao et al. [15] and
Huang et al. [18] also presented work based on U-Net for segmen-
tation of lungs and pulmonary opacities for assessment and quan-
tification of lung diseases. The UNet++ [20] has been proposed for
segmentation [21] and detection [22] of infection lesions based on
CT scans. In [16], authors proposed VB-Net which is a combined
form of V-Net [23] and the bottleneck structure [27] for the seg-
mentation of different structures such as lung segments, infection
regions using CT scans based on COVID-19 patients, lung lobes, and
a human-in-the-loop approach used for efficient annotation. The
authors proposed [20] U-Net++ [20] for the segmentation of lesions
from COVID-19 patients based on CT images. They claimed that the
proposed work could be used for the segmentation and assessment
of COVID-19 and produced a comparable performance as the com-
parison with expert radiologists for the treatment of COVID19
patients. Other networks such as U-Net [19] and Res-UNet [24]
have been used for developing Al-assisted COVID-19 diagnosis sys-
tems. Deep learning-based quantitative features could be used for
the segmentation of infection regions in lung CT slices and could
also be employed for lung infection quantification [25-27] of
COVID-19, large-scale screening [28], and severity assessment [29].

Multi-scale features are useful features in many computer
vision applications such as segmentation [30], saliency detection
[31], and object detection [32]. Normally we can divide Multi-
scale feature learning into two categories.

In the first category, the combination of different level features
using skip connections have been proposed such as skip-net [33],
FPN [34], U-Net [19], and FED-Net [35]. These networks used an
encoder to capture more context information gradually at down-
samples, followed by a decoder that used upsampling layers to
cater information in the segmentation. The convolutional blocks
or attention gates are used through skip connection to extract
low-level fine appearance features and fused them into coarse
high-level features. The skip connections fuse multi-scale context
and however, at the same time produce a big semantic gap between
features at two ends of the connections. UNet++ [20] redesigned the
skip-pathways to concatenate similar features at different levels to
minimize the semantic gap of skip-net. The Pyramid structures
were used to capture multi-scale features in computer vision tasks.
The deep supervision method was used in image segmentation [36]
and saliency detection [32] to obtain effective pyramid features.
SegCaps [37] used a fusion of multi-scale features to preserve spa-
tial information based on strides convolutional with max-pooling
layers and achieved better segmentation performance as compared
to UNet with significantly reduced parameter space.

In the second category, a pyramid parsing module with either
pyramid input analysis (PIA) or pyramid feature analysis (PFA) uses
to capture multiscale features within the same convolutional level.
PSP-Net [38] proposed spatial pyramid pooling to convolutional
feature maps for pyramid feature analysis, Deeplab [39] and CE-
Net [40] use parallel atrous convolution to extract multiscale fea-
tures for semantic segmentation. These multiscale features used
diverse effective receptive fields with a concatenation approach
for progression feature representation ability of context informa-
tion. PIA used features from input images of various sizes to create
an image pyramid at multiscale. Kamnitsas et al. [41] and Farabet
et al. [42] proposed the PIA method to extract effective features at
multiple scales from input images for segmentation. The skip-net
and pyramid parsing module can be helpful for image segmenta-
tion and could be used in combined form to enhance the segmen-
tation performance in multi-organ segmentation. Some recent
works like [43,44] integrate features from pyramid input images
to the U-Net structure.
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However, since those features are at different semantic abstrac-
tion levels, fusing those features from different scales may cause
the problem of the semantic gap. Thus, those networks fail to mit-
igate the multi-scale context information, by only partially utiliz-
ing the pyramid shape of U-Net.

3. Material and methods
3.1. Datasets

In this study, there are two publicly available datasets based on
COVID19 segmentation based on disease and lungs and we are
comparing our methods on two other non-COVID-based datasets
that have lung parts.

3.1.1. COVID 19 lesion dataset

The COVID-19 segmentation dataset [45] consists of the right
lung, left lung, and COVID19 lesions. The dataset consists of 20
CT scans of patients and their respective annotated masks. The
masks were created by junior annotators and were refined by
senior radiologists having 5 years of experience. Finally, radiolo-
gists having 10 years’ experience verified these annotations. On
average, as CT scans have a good spatial resolution (250 slices),
400 min for delineating one CT scan volume were required.

3.1.2. Dataset based on COVID19 segmentation

COVID-19 CT images have been collected by the Italian Society
of Medical and Interventional Radiology (SIRM). The dataset con-
sists of 110 axial CT scans that are brought from 60 patients. Data
were annotated by a trained radiologist with labels such as
1 = ground class opacification, 2 = consolidations, and 3 = pleural
effusions. For our experiment, similarly to [46], a hundred CT
images and masks have been used to perform the segmentation
task.

3.1.3. StructSeg 2019 lung organ segmentation

StructSeg consists of various data modalities. 50 CT patients
with lung cancer annotation can be used and these annotations
are collected from one medical center. This dataset was first pub-
lished in the MICCAI 2019 challenge. This dataset contains six
numbers of classes such as left lung, right lung, heart, trachea,
and spinal cord (https://structseg2019.grand-challenge.org). In this
proposal, we only use the left and right lungs for validating the fea-
sibility of the proposed model. The distribution of the dataset
among training and testing samples is given below in Table 1.

3.1.4. NSCLC left and right lung segmentation

This dataset consists of 402 CT volumes and can be collected
from the Cancer Imaging Archive on NSCLC Radiomics [47] plat-
form. In the NSCLC dataset, annotations are given for the right lung
and left lung for the 402 volumes as well as 78 cases are annotated
for Pleural Effusion (PE).

3.1.5. Datasets preprocessing for training, testing, and validation

We have evaluated our proposed method on the different data-
sets and each dataset contains a different number of 2d images
from the 3D volume. The input size of 2D slices is varied and the

Table 1
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detail of the input size of 2D images for each dataset is shown in
Table 1. The total 2D images used for training, testing, and valida-
tion are shown in Table 1 for each dataset.

Three datasets are provided in 3D volumes in NIfTI (Neuroimag-
ing Informatics Technology Initiative) compressed format. We have
used NiBabel python-based library to convert the 3D volume into
2D images for each subject for 20 cases (covid), StructSeg2019,
and NSCLC datasets. The 100 2D slices dataset was in 2D images
jpeg format. The standard normalization method has been used
as preprocessing steps for all datasets. The standard normalization
technique that normalizes images using zero mean and unit stan-
dard deviation has been used to preprocess the input images. Each
dataset has a different spatial resolution, the standard normaliza-
tion method is working fine for our proposed method. Few slices
contain empty lung pixels, we have trained our proposed model
for all slices in each 3D volume for each patient in the training
and validation dataset.

The image intensity values of all of the images were truncated
to within the range of —384 to 384 HU to omit irrelevant informa-
tion for the 20 cases (covid) cases dataset and for the Struct-
Seg2019 dataset we have used the —512 to 512 HU range. For
the other two datasets, we did not apply any window width and
depth level. The input images into 256 x 256 for all datasets for
training the proposed model and used linear interpolation method
to get the equal input size for testing and validation of the pro-
posed model.

3.2. Proposed methodology

3.2.1. Multiscale and multilevel feature extraction structure

In our proposed technique, the utilization of multiscale features
at each pyramid level has been processed from the encoder to the
decoder side tackles fully the problem of the semantic gap. To link
the semantic gap caused by directly merging features from differ-
ent scales, an equal convolutional depth block was introduced at
each encoder side of the proposed solution. We assume that
extracting and keeping multi-scale features through the model to
gather hierarchical contextual information can expressively
improve the segmentation performance.

The proposed method used fully fuses multi-scale context infor-
mation and semantic similar features with one single network. The
network performs spatial pyramid pooling on input and hierarchi-
cal abstract multi-scale features at each level imposed by a deep
supervision mechanism. Unlike the classical U-net based methods,
where the scale only reduces with the convolutional depth. The
proposed approach has multi-scale features at each depth and
therefore both global and local context information can be inte-
grated to augment the extracted features. After going through
one or more convolutional layers, the features are fused to have
hierarchical structural information. The proposed multiscale
approach extracted features and fused these features at each level
went through the same number of convolutional layers. Same con-
volutional means, we have used equal convolutional depth block. It
has been achieved using ResNet block as shown in maroon color in
proposed Fig. 1. We have dealt with the problem of the semantic
gap using an equal convolutional depth block. With the equal con-
volutional depth connections, all the fused features at each step are

Datasets distribution for training, validation, and testing based on COVID19 and Non-COVID19.

Validation (2d slices)

Testing cases  Testing (2d slices) Cross-Validation

Datasets Training cases Training (2d slices) Validation cases
20 cases (covid) 12 2452 4

StructSeg2019 30 3807 10

NSCLC 321 38,189 80

100 cases (covid) - 50 -

560 4 508 5-fold
465 10 503 5-fold
5139 81 5200 5-fold
50 - 50 5-fold
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Fig. 1. The proposed model is based on multiscale and multilevel feature extraction for COVID-19 and Non-COVID19 segmentation.

at the same semantic abstraction level to better exploit the pyra-
mid shape of U-Net.

Moreover, the deep supervision method is applied to the out-
puts generated by the decoding path at a different scale. The spatial
pyramid pooling has been performed to the ground truth segmen-
tation to generate labels in all output scales during training for the
proposed model. By applying weighted cross-entropy, the training
loss is computed by using the corresponding output and ground
truth segmentation at the same scale. Supervision layer can help
relieve the problem of gradient vanishing in deep neural networks
and learn deep-level features with hierarchical contexts. It also
enforces the outputs in all scales to maintain structural
information.

The loss function computed at each scale is shown in the fol-
lowing equation (1).

L 1 N,

c
Z ZP f,llngrEI

1=1 l i=1 ¢=0

Lossscale = -

(1)

=] —

where pr{, is predicted probability of voxel i in class ¢ from scale L
The Pﬁ, ground truth labels in scale I and N; a total number of voxels
in scale I. The P, are the parameters in scale I for class c. The C rep-
resents the total number of classes and L represents the number of

scale levels. (in our case 5). The output feature maps are repre-
sented as feat;).

< exp(feat;))
P =5 Jexp(feat])

The feature maps at each encoder block is represented as.

featl,v = {

The feature maps at each decoder block can be represented as.

(2)

conv(feat;, ;),v <l

3
Conv(feat,, ;) + MaxPool(feat, , , ,), v =1 G)

Uy = upsample(conv(feat,,_,))
Ui = concat (Uy, conv(feat;,)), v+1=2L
U, = upsample(U11)
Uy, = concat (Uy, Us, conv(feat;,)), v+ 1= 2L
U; = upsample(Uy,)
Uss = concat (Uy, Uz, Us, conv(feat; ), v +1=2L
U, = upsample(Uss)
Uas = concat(Uy, Uz, Us, Uy, conv(feat; ), v+ 1= 2L
conv(feat;,_;),v+1>2L

feat,, =

(4)
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The [ is the level or scale at each encoder block. feat, , input fea-
tures vy, convolutional at scale I, and L is the scale number of
inputs. The features are concatenated at each scale in our proposed
model. Similarly, features are presented at the decoder side with a
concatenation layer. The U, is represented by the lower unsampled
layer at the bottom of the decoder side and Uy, is represented con-
catenation of features at the top level at decoder side is shown in
Fig. 1.

Features information is obtained at different scales from deep
supervision blocks that further fuse these features together at each
scale to get an accurate segmentation map. We designed a module
that gets adaptively the contextual information in different scales
to obtain relative importance features information at each scale
and also automatically fuses the score from each map. We have
used the attention module on each pyramid input feature map to
get the pyramid output features using a shared convolutional
block. We also used Global average pooling (gavpool) and global
max-pooling (gmaxpool) to squeeze into a single channel feature
and to extract the global certainty score of the predictions at each
scale.

The output at each scale can be obtained from the proposed
model using attentConv block and then using these weights in Glo-
bal average pooling (gavpool) and global max-pooling (gmaxpool).
The values from different scales are then concatenated to feed into
a softmax layer to get the corresponding weight for each scale. The
weights W, reflects the importance of feature at scale L.

ay, by, c,d,, e, = ProposedModel()
W, = attentConv(q),)
W, = attentConv(by,)
W3 = attentConv(cy, )

W, = attentConv(d,,)

()

The global score S; at each scale, [ can be computed by summing
up the gavpool and gmaxpool.

W5 = attentConuv(e,,)

L
Si=">_(gavpool(W,) + gmaxpool(W))),l = 1,2,3,4,5
1=1

(6)

The weights W, reflect the importance of feature at scale I. The
scale weights are computed from equation (7).
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The softmax layer is applied to get the final segmentation map
(SM).
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We proposed a spatial pyramid pooling module with some pro-
posed blocks to extract multiscale features at a different level of
the encoder side and fused these features within a convolutional
layer-based module to reduce the semantic gap and also used
these features at multiple levels at the decoder side.

At the encoder side, we concatenate the features with decoder
feature maps at every decoder layer and carry this information
from the previous block to the next block as well. We have calcu-
lated the loss at each decoder block and adaptively accumulated all
losses from all decoder blocks to compute the total loss during the
training of our proposed model.

(7)

(8)

3.2.2. Basic units of proposed encoders

In the encoder block, three layers have been used with different
activation functions. In the first layer. The expansion layer con-
sisted of 1x1Conv, BN, and ReLU. The second layer contains a
depth-wise layer with filter size 3 x 3, BN, ReLU activation, and
the third layer is called the projection block consisting of 1x1Conv
and BN layers. In the expansion layer, input data projects with a
higher number of dimensions (channels) into a tensor with a lower
number of dimensions. The 1 x 1 convolution is used to expand the
number of channels in the data before it goes into the depth-wise
convolution. Hence, this expansion layer always has more output
channels than input channels. Exactly how much the data gets
expanded is depends on the expansion factor. This is one of the
hyperparameters that we used based on experimenting with dif-
ferent encoder blocks. The five (5) expansion factors produced bet-
ter performance in our experiment. So, the input and the output of
the proposed encoder block are low-dimensional feature maps,
while the filtering step depth-wise that happens inside the block
is done on a high-dimensional feature map. The residual connec-
tion works just like in ResNet and exists to help with the flow of
gradients through the network. Each layer has batch normalization
and the RelU activation function. However, the output of the pro-
jection layer does not have an activation function applied to it.
Since this layer produces low-dimensional data and non-linearity
function may destroy the information. The expansion layer acts
as a decompressor that first restores the data to its full form, then
the depth-wise layer performs filtering on it that is important at
this stage of the encoder, and finally, the projection layer com-
presses the data to make it small again. The expansions and projec-
tions are done using convolutional layers with learnable
parameters, so the encoder can learn how to best decompress
the data at each stage on the encoder side. The encoder block takes
as an input a low-dimensional compressed representation which is
first expanded to high dimension and filtered with a lightweight
depth-wise convolution. Features are subsequently projected back
to a low-dimensional representation with a linear 1x1 convolu-
tion. The layer structure is shown in Fig. 2 (b). The swish activation
function is used after batch normalization in the expansion layer.
Similarly, the activation is used after the depth-wise layer. The
depth-wise separable convolutional layer is the building block of
many deep neural learning models [48-50] and this layer is in
our proposed model as compared to the standard convolutional
layer. The depth-wise separable convolutional layer consists of
two layers. In the first layer, it performs lightweight filtering by
applying a single convolutional filter per input channel. The second
layerisa 1 x 1 convolution, called a pointwise convolution, which
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is responsible for building new features through computing linear
combinations of the input channels. Depth-wise convolution pro-
duced an efficient solution as compared to standard convolutional
layers. We have used a depth-wise convolutional layer and SE
block on the decoder side to enhance the performance of the pro-
posed model. The basic structure of the EDP (expansion, depth-
wise, and projection) module proposed for encoder and decoder
is shown in Fig. 2 (a).

3.2.3. Basic units of proposed decoders

On the decoder side, EDP (expansion, depth-wise, and projec-
tion layer block) have been proposed. 1x1Conv convolutional layer
used to handle feature maps from expansion and projection layer
block. The main objective of this decoder module is to used varying
depth feature maps from lower to higher dimensions. We have
used depth-wise convolutional layer and SE block before projec-
tion layer that increased little performance in our proposed model.
In the encoder block, the expansion layer is based on a 1x1Conv,
depth-wise layer with filter size 3 x3, squeeze, and excitation block
(SE block), and projection layer based on 1x1Conv has to be used.
The expansion layer increases the number of feature maps from
the input of the decoder block and then passed the high number
of feature maps in depth wise convolutional layer and then the
projection layer resumes the feature maps back to the input num-
ber of feature maps. The number of feature maps is expanded and
then the depth-wise 2d layer is applied and then the feature maps
are reduced back to the original in the projection layer. The com-
plete layer structure for the decoder is shown in Fig. 2 (c).

In simple U-Net model-based encoder and decoder blocks may
have limited effective feature learning capacity for complicated
images task like multiclass segmentation. This limitation could
be overcome by optimizing the network that has broadened
parameter space to learn more representative features. The pro-
posed encoder and decoder showed better and more effective fea-
ture learning capacity. The proposed encoder and decoder blocks
produced a better performance as compared to normal standard
convolutional layer-based encoder and decoder. The dynamics fea-
ture an expansion and reduction approach that has been used in a
single encoder and decoder block with some activation layers such
as swish activation that produced a better performance with a
smaller number of parameters space. The expansion layer encodes
the model’s intermediate inputs and outputs while the inner layer
encapsulates the model’s ability to transform from lower-level
concepts such as pixels to higher-level descriptors such as image
categories. Finally, as with traditional residual connections, short-
cuts enable faster training and better accuracy.

3.2.4. Proposed KASPP module

Inspired by Deeplab [42] and CE-Net [43], the proposed atrous
spatial pyramid pooling module was introduced at the bottom of
the proposed model. This proposed ASPP module captured features
that are fused with features extracted from the spatial pyramid
pooling module at the bottom of the proposed model is shown in
Fig. 1. The 3x3 kernel is shared with atrous convolutional layers
with different dilation rates. In this work, we have extended KSAC
based ASPP module. The proposed KSAC based ASPP (later noted
KASPP) module captures features from low levels as well as fea-
tures from different down-sampled layers to obtain texture and
position information from encoder side feature maps. Kernels with
small atrous rates in convolutional layer branches would be able to
learn detailed information and effectively handle small semantic
classes well. A kernel with big atrous rates can extract features
with large receptive fields and may miss detailed information,
the generalization about kernel in atrous convolutional layer
branches is limited and the number of parameters increases lin-
early using the parallel branches with separate kernels. In Fig. 3,
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Fig. 2. Proposed encoder and decoder module used in the proposed segmentation model.

as one can see, a 3x3 kernel is shared by multiple parallel branches mid pooling layer, the number of parameters increases using
at different atrous rates and captured features with different recep- parallel convolutional layer branches with different atrous rates.
tive fields. Without sharing kernel, in a simple atrous spatial pyra- The kernel sharing approach improved the performances in terms

68



A. Qayyum, A. Lalande and F. Meriaudeau

A
1x1 kernel Pooling
- I Shared 3x3 kernel | ‘
A
v 7 N Y
. Rate=6 i Rate=12 Rate=18
Conv Conv Conv
Up sampling
(

Concatenate

Fig. 3. The proposed kernel atrous spatial pyramid pooling layer (KASSP).

of less computational time (using a smaller number of parameters)
and also increases the segmentation performance. The shared ker-
nel approach enhanced the generalization capability by enhancing
the learning for detailed features for small objects locally and
globally increasing semantic information of rich features for large
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objects. The feature maps produced by the shared KASPP layer
are comprehensive, expressive, and discriminative as compared
to features produced by simple ASPP. This strategy increases the
efficiency of features map reuse and fuses feature information at
the downsampling level. In our proposed model, the features are
extracted from three levels that enable the model to get benefit
from the multi-scale transformation of high-level semantic infor-
mation and low-level information of position and texture. In our
approach, fourth downsampling layers information are passed to
the proposed KASPP module to guarantee improved cross-level
feature connection and complementarity between cross-level
information. The proposed KASPP can be used at any level of the
encoder side. We have tried this module at each encoder block,
however, it produced better performance when we placed it at
the bottom layer of the proposed model. The KASPP module han-
dles challenging shape variations of COVID-19 infection areas.

3.3. Evaluation metrics

Dice similarity coefficients (DSC) and Normalized surface Dice
(NSD) [51] were used to measure the performance between the
proposed and existing deep learning models. DSC is used to esti-
mate the similarity between predicted and ground truth segmenta-
tion maps. NSD is used to evaluate the closeness of the boundary
between segmentation and ground truth surfaces. Higher DSC
and NSD mean better segmentation performance and 100% mean
perfect segmentation. Moreover, Hausdorff distance and normal-

Table 2
Average Dice similarity coefficients (DSC) of proposed and existing deep learning models.
Datasets Methods DSC Left Lung DSC Right Lung DSC Covid19 Infection DSC Average
NSCLC dataset DeepLabV3 0.927 0.944 - 0.935
UNet 0917 0.938 - 0.928
Proposed model 0.945 0.959 - 0.952
COVID19 dataset DeepLabV3 0.944 0.936 0.6965 0.859
UNet 0.892 0.905 0.6707 0.823
Proposed model 0.953 0.981 0.71994 0.884
StructSeg2019 dataset DeepLabV3 0.900 0.947 - 0.924
UNet 0.898 0.947 - 0.923
Proposed model 0.981 0.965 - 0.973
Table 3
HD of proposed and existing models for different datasets.
Datasets Methods HD Left Lung HD Right Lung HD Covid19 Infection Average
NSCLC dataset DeepLabV3 13.78 15.33 - 14.56
UNet 14.56 19.17 - 16.87
Proposed model 12.91 14.72 - 13.81
COVID19 dataset DeepLabV3 25.82 25.94 32.23 28.00
UNet 28.05 27.02 33.15 29.41
Proposed model 15.40 17.30 25.32 19.34
StructSeg2019 dataset DeepLabV3 21.48 18.90 - 21.68
UNet 23.53 19.60 - 23.61
Proposed model 17.23 18.11 - 18.87
Table 4
Normalized average volume difference (NAVD) for proposed and existing deep learning models using different COVID19 and NON-COVID19 datasets.
Datasets Methods NAVD Left Lung NAVD Right Lung NAVD Covid19 Infection NAVD Average
NSCLC dataset DeepLabV3 0.124 0.097 - 0.111
UNet 0.127 0.092 - 0.110
Proposed model 0.110 0.093 - 0.101
COVID19 dataset DeepLabV3 0.294 0.095 0.594 0.361
UNet 0.387 0.165 0.484 0.339
Proposed model 0.273 0.098 0.424 0.278
StructSeg2019 dataset DeepLabV3 0.050 0.037 - 0.043
UNet 0.065 0.030 - 0.047
Proposed model 0.046 0.032 - 0.039
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Fig. 4. The dice coefficients for proposed and existing deep learning models using test cases for all datasets, (a) NSCLC dataset, (b) COVID19 dataset, (c) StructSeg2019 dataset.
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Input Image DeepLabv3 Proposed

Fig. 7. The visualization of the segmentation map is based on the proposed and existing deep learning model for COVID19 100 case dataset.

Proposed DeepLabv3

Fig. 8. The ground truth and predicted segmentation mask using the COVID19 dataset. The first row shows slice 1 and the second row shows slice2 and so on. Green color and
red color represent the left and right lungs and the blue color denotes infection disease pixels on the lungs in the COVID19 dataset.
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ized volume differences are also used to measure the quality of the
predicted segmentation map.

Absolute volume difference (AVD) between predicted volumes
measured from manual (Vy) and predicted (V4) segmentations
and their normalized value (NAVD) were reported as volume-
based metrics.

Va — Vu|

NAVD = Vo

9)

3.4. Implementation of model

The proposed model was implemented using the Python-based
PyTorch framework. The proposed model was trained using Adam
optimizer for optimization at a learning rate of 0.0001. Batch size
16 was used for training the proposed 2D model, and the number
of epochs was set to 200 for all datasets. The training was per-
formed using the NVIDIA 100 GT T machine equipped with two
GPUs, each having a 12 GB GPU memory. The training required 2 h.

4. Simulation results

80 percent of the dataset was used for training and 20 percent
for testing and validation for all datasets. The results obtained from
the proposed models are compared with standard UNet and Dee-
plabV3 models using COVID19 datasets and validated on two data-
sets that belong to NON-COVID19 datasets. The Dice similarity
coefficients (DSC) have been computed for the proposed and exist-

GT

Proposed
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ing deep learning models such as UNet and DeeplabV3. The pro-
posed model produces better dice coefficients for all datasets as
compared to the existing deep learning model as shown in Table 2.
The Hausdorff distance (HD) has been computed for all datasets
using our proposed and existing deep learning models as shown
in Table 3. Similarly, the Normalized average volume difference
has been computed based on the proposed and the existing model
as shown in Table 4.

DSC box plots are shown in Fig. 4. Higher DSCs show that our
proposed model produces a better performance as compared to
existing deep learning models.

HD has been computed for test cases using the proposed and
existing deep learning models, results are shown in Fig. 5. The
lower the HD distance, the better the predicted segmentation
map. Our proposed model produced lower HD as compared to
the existing deep learning models for all datasets.

The normalized average volume difference has been computed
based on the proposed and existing deep learning models and
reported in Fig. 6. Our proposed model produced optimal perfor-
mance in terms of NAVD for all datasets.

4.1. Segmentation visualization results

Below are some visualizations of some samples to see the pre-
dicted segmentation maps using the proposed and existing state-
of-the-art deep learning models for the different datasets.

In all cases, as demonstrated by the quantitative results pre-
sented before, the proposed model produced fewer false-positive
pixels in the segmentation maps. Fig. 7 presents the results

DeepLabv3 Unet

Fig. 9. The ground truth and predicted segmentation mask using the structseg2019 dataset. The first row shows slice 1 and the second row shows slice2 and so on.
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obtained on the COVID19 100 case dataset. The visualization capa-
bility of the proposed model can be shown in the zoom part of the
last row in Fig. 7. The proposed model produced very less wrong
pixel values for covid infection as compared to DeepLabV3 and
Unet model. The green color showed the infection pixel value
and in this particular slice, there is no covid infection pixel that
exists that is shown in the ground-truth segmentation mask. The

Proposed

L A
)
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DeepLabV3 and UNet predicted wrong covid infection pixels
instead of predicted lung pixel values.

Fig. 8 shows some results from the COVID19 20 dataset. The
first, second, and fourth rows represent a different number of slices
that belong to a single case.

The first row in Fig. 8 represented the visualization of ground-
truth, proposed model, DeepLabV3, and 2D Unet in zoom area.

Unet

DeepLabv3

Fig. 10. The ground truth and predicted segmentation mask using the NSCLC dataset. The first row shows slice 1 and the second row shows slice2 and so on.

Table 5

The comparison of the proposed model with state-of-the-art models on different publicly available datasets (COVID19 and NON-COVID19).

Methods Dataset DSC Left Lung DSC Right Lung Infection (COVID-19-CT-Seg)

2D UNet Jun Ma [30] 20 Cases 95.1+79 95.6 +7.4 60.9 £ 24.5

- Task3-StructSeg 963 +£76 96.7+7.0 -

- Task3-NSCLC 92.5+17.3 93.3+15.9 -

3D UNet Jun Ma [30] 20 Cases 85.8 +10.5 87.9+93 67.3 £22.3

- Task3-StructSeg 973 +2.1 97.7+21 -

- Task3-NSCLC 93.5+54 94.0£53 -

Proposed 2D model 20 Cases 95.3 £ 0.1 98.1 + 0.6 719 £ 01.5

- Task3-StructSeg 98.5 + 2.1 96.5 £33 -

- Task3-NSCLC 94.5+2.1 95.2+24 -

Table 6
The DSC for proposed and existing method using 5 cross-validation method. Best results are in bold.

Dataset Methods DSC Fold1 DSC Fold2 DSC Fold3 DSC Fold4 DSC Fold5

NSCLC DeepLabV3 0.921 0.919 0.935 0.930 0.931
Unet 0.919 0.909 0.928 0.921 0.922
Proposed model 0.951 0.941 0.952 0.949 0.950

COVID19 DeepLabV3 0.841 0.859 0.839 0.850 0.853
Unet 0.812 0.823 0.820 0.821 0.820
Proposed model 0.880 0.884 0.879 0.881 0.884

StructSeg2019 DeepLabV3 0.915 0.923 0.921 0.924 0.922
Unet 0.922 0.920 0919 0.923 0918
Proposed model 0.966 0.970 0.970 0.973 0.971
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Table 7

Performance comparison of the proposed method with different configurations. The best results are in bold.

Neurocomputing 499 (2022) 63-80

Model 100 CT images Covid 20 cases Covid Structseg 2019 NSCLC dataset
Base 0.862 + 1.81 0.823 +3.71 0.943 + 0.92 0.920 + 1.49
Base + SE 0.878 + 0.89 0.839 +2.43 0.964 + 0.83 0.917 + 0.64
Base + Multiscale 0.899 + 0.85 0.876 + 2.34 0.965 + 0.71 0.936 + 0.64
Base + KASSP 0.886 + 1.39 0.862 + 2.51 0.961 + 0.78 0.942 + 0.64
Proposed (Base + SE Multiscale + KASSP) 0.901 £ 0.91 0.884 * 2.26 0.975 £ 0.64 0.950 * 0.64

Table 8

Trained proposed model on 20 cases and validated on various other datasets.

Model validation

Dice Similarity coefficients

100 slices dataset
Structseg2019 dataset
NSCLC dataset

0.861 + 1.18
0.946 + 1.39
0.905 + 0.89

The visualization segmentation map in the zoom area clearly
showed that our proposed model predicts more pixels in covid
infection (green color) as compared to DeepLabV3 and 2d Unet

Bland-Altman plot
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(a) COVIDI19 dataset

model. The 2D Unet model failed to predict pixel values for covid
infection is shown in the zoom area in Fig. 8 (last row, last column).
Fig. 9 shows the left and right lungs of a single case with differ-
ent slices using the structseg2019 dataset. The green color repre-
sented the left and the red color represented the right lung. The
visualization shows better segmentation for the proposed model.
In Fig. 9 the zoom area represents in the first row shows that our
proposed model predicts more pixels in the right lung as compared
to other models such as DeepLabv3 and 2D Unet model.
Similarly, Fig. 10 shows the left and right lungs of a single case
with different slices using the NSCLC dataset. The green color rep-
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Fig. 11. Band-Altman plots based on the proposed model for all datasets, (a) COVID19, (b) StructSeg2019 dataset, (c) NSCLC dataset.
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resents the left and the red color represents the right lung. The
visualization shows better segmentation for the proposed model.

The proposed model with existing 3D and 2D UNet that are
based on COVID19 and NoN-COVID19 datasets is shown in Table 5.
The results indicate that our proposed model produced better dice
coefficients in the left, right lung, and infection area and slightly
lower than 3D UNet in structseg2019 for the right lung. The 5-
fold cross-validation method was used to validate our proposed
model for all datasets. We have chosen the best DSC for proposed
and existing deep learning as shown in Table 6.

4.2. Ablation study

To demonstrate the impact of each block on the performance of
the proposed model, an ablation study was done. We firstly trained
a baseline model with proposed encoder and decoder blocks with-
out using SE block in the decoder, multiscale configuration, and
KASSP block.

Next, we have added SE to the baseline model (baseline + SE).
Besides, the KASSP block was added separately to the baseline
model (baseline + KASSP). Further, we used a multiscale approach
in our proposed baseline model, and also several configurations
were investigated, such as baseline + Multiscale and baseline + K
ASSP + Multiscale. Finally, we studied the performance of the pro-
posed model with all modules (baseline + SE + KASSP + Multiscale).

Table 7 presents the results of different configurations of the
proposed models. The baseline model achieved DSC scores of
86.2% for 100 CT images Covid, 82.3% for 20 cases Covid, 94.3%
for Structseg 2019 and 92.0% for NSCLC dataset. Baseline + Multi
scale achieved a better DSC score when compared by adding KASSP
with baseline. When we added KASSP with Multiscale, the perfor-
mance was further achieved in the DSC score for all proposed
datasets.

4.3. Performance evaluation on different validation datasets

Our proposed model performs better on the small data sample
that can be shown in Table 8. With only 20 cases, our proposed
solution achieved better performance as compared to existing
state-of-the-art performance. We have performed an additional
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experiment in this revised manuscript and we used our proposed
model trained on 20 cases Covid dataset and validate on small
100 (slices) Covid dataset to validate the generalization ability of
the proposed solution. We keep the same input processing setups
for validation of our proposed model on different datasets like the
100 slices dataset. The proposed model achieved better perfor-
mance and produced 4.1% less performance as compared to when
we used the proposed model for training and testing on 100 slices
dataset. Similarly, we have used our proposed model to validate
other proposed datasets and we have compared the performance
that degraded little as compared to training and testing on individ-
ual datasets. The proposed model degraded DSC score 2.9% for the
Struckseg2019 dataset and 4.5% for the NSCLC dataset.

4.4. Statistical evaluation

We also used Bland-Altman plots to analyze the agreement
between the segmentation volumes determined by proposed mod-
els for COVID19 and other datasets and manual segmentation. We
used a Bland-Altman plot, which graphs the mean difference of
measured predicted volume versus manual volume and constructs
limits of agreement. A Bland-Altman analysis has been carried out
between ground truth and automatic segmentation maps as shown
in Fig. 11.

4.5. Discussion and state-of-the-art comparison

The current Al methods are widely used in segmentation prob-
lems using a small dataset. Dataset needs to be increased to make
the model more generalizable and to minimize the overfitting
effect. Most of the existing studies used U-Net for COVID19 seg-
mentation. It is worth noting that interpretability has been a core
issue for Al applications in health care. Explainable Artificial Intel-
ligence (XAI) methods [52,53] in most of the Al-based studies have
been proposed than the traditional class activation mapping (CAM)
method to extract the relevant regions very close to the predicted
results. This could be used to diagnose the CVOID-19 in clinical
applications. Deep learning has been used in CVOID19 segmenta-
tion and classification but, these models could not perform well
due to incomplete, inexact, and inaccurate labels and training of

Table 9
The state-of-the-art deep learning model for COVID-19 segmentation using different public and private datasets.
Author and Year Methods dataset Public and private dataset Overall Dice score P-values
FeiShan et al. [16] VB-Net 268 cases Private 0.916 -
Yu-Huan Wu et al. [17] JSC model 750 cases Private 0.783 -
Yu Qiu et al. [54] MiniSeg DL model 100 axial CT image Public 0.770 -
Qingsen Yan, et al. [55] 3D COVID-SegNet 861 cases Private 0.980 lung -
0.720 infact
Narges Saeedizadeh et al. [56] TV-UNet 900 images Public 0.863 -
Amine Amyar et al. [57] Multi-task deep learning 100 CT scans Public 0.880 -
Zhou et al. [58] U-Net + DL 100 CT scans and 9 CT volume  Public 0.610 -
Zhou et al. [59] U-Net + FTL 100 CT scans and 9 CT volume  Public 0.831 -
Adnan Saood et al. [60] UNet + SegUNet 100 CT scans Public 0.741 -
Guotai Wang et al. [61] COPLE-Net 558 cases Private 0.807 -
Deng-Ping Fan et al. [31] Inf-Net 100 CT scans (public) Public 0.739 -
Chen et al. [33] U-net, M-A, M-R 100 CT scans (public) Public 0.820 -
0.850
0.840
Omar Elharrouss et at, [62] SegNet with encoder and decoder 100 axial CT images Public 0.786 -
Pei, Hong-Yang et al. [63] MPS-Net 100 CT scans (public) public 0.832 -
Kumar Singh et al. [64] Lunginfseg 20 cases public 0.803 -
Miiller, Dominik et al. [65] Patch based UNet 20 cases Public 0.858 -
Proposed Model The multi-scale and multilevel 100 axial CT images Public 0.901 1.322
deep learning model 20 cases 0.884 2.356
Structseg2019 0.975 3.191
NSCLC dataset 0.950 4.516
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these models is challenging for segmentation and diagnostic net-
work. Moreover, more data gathering and annotation are expen-
sive and time-consuming that could be encouraged to move and
investigate deep transfer learning methods and self-supervised
deep learning [25,26]. With noisy labels, deep learning models per-
formed well for segmentation and classification tasks [53] and
could be potentially used for COVID-19 diagnosis.

A few works have been provided on infection segmentation
based on CT slices [24-31]. The variation in texture, size, and posi-
tion of infections in CT slices is challenging for the detection of
COVID-19 infection. Furthermore, the inter-class variance is also
small with fewer contrast regions at the boundaries that make
the task for detection and segmentation difficult. Due to the busy
schedule of the radiologist, another difficulty is arising for big data
acquisitions with a smaller number of times. Due to the visual
characteristics and special structure, the boundaries of COVID-19
infection regions are hard to differentiate from the chest wall, mak-
ing it difficult for accurate COVID-19 infection segmentation tasks.
Recently, various authors [63-65] proposed 2D and 3D deep learn-
ing models for Covid segmentation. The comparison of the results
obtained with the proposed model against state-of-the-art models
on different datasets is reported in Table 9. The p-value greater
than 0.005 shows the similarity between ground truth and seg-
mentation mask. We have computed p-values for all datasets used
in this paper shown in Table 9.

5. Conclusion

Automated segmentation and detection of lung infections from
computed tomography (CT) had a great interest and could be used
to help in understanding COVID-19 infection. The various difficul-
ties such as high variation in infection characteristics and low-
intensity contrast between infections and normal tissues have been
arising for CT-based lung infection detection. The proposed model
based on novel components in encoder and decoder with multiscale
and multilevel feature extraction approach produced better seg-
mentation results in lung infection disease detection particularly
and globally produced better segmentation on validation of non-
covid19 datasets. Extensive experiments based on COVID19 and
NON-COVID19 datasets demonstrated that the proposed model
outperforms the cutting-edge segmentation models and advances
state-of-the-art performances. Our system has great potential to
be applied in assessing the diagnosis of COVID-19, e.g., quantifying
the infected regions, monitoring the longitudinal disease changes,
and mass screening processing. Note that the proposed model can
detect objects with low-intensity contrast between infections and
normal tissues. This phenomenon is often occurring in nature to
disguise objects. In the future, our proposed model could be used
for other segmentation tasks with additional features and can be
used as an extension of the 3D model for volumetric segmentation.
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