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Neonatal pancreatic pericytes support 3-cell
proliferation

Alona Epshtein, Eleonor Rachi, Lina Sakhneny, Shani Mizrachi, Daria Baer, Limor Landsman’

ABSTRACT

Objective: The maintenance and expansion of -cell mass rely on their proliferation, which reaches its peak in the neonatal stage. B-cell
proliferation was found to rely on cells of the islet microenvironment. We hypothesized that pericytes, which are components of the islet
vasculature, support neonatal 3-cell proliferation.

Methods: To test our hypothesis, we combined in vivo and in vitro approaches. Briefly, we used a Diphtheria toxin-based transgenic mouse
system to specifically deplete neonatal pancreatic pericytes in vivo. We further cultured neonatal pericytes isolated from the neonatal pancreas
and combined the use of a B-cell line and primary cultured mouse p-cells.

Results: Our findings indicate that neonatal pancreatic pericytes are required and sufficient for B-cell proliferation. We observed impaired
proliferation of neonatal B-cells upon in vivo depletion of pancreatic pericytes. Furthermore, exposure to pericyte-conditioned medium stimulated
proliferation in cultured B-cells.

Conclusions: This study introduces pancreatic pericytes as regulators of neonatal B-cell proliferation. In addition to advancing current un-
derstanding of the physiological B-cell replication process, these findings could facilitate the development of protocols aimed at expending these

cells as a potential cure for diabetes.

© 2017 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. INTRODUCTION

Establishment of B-cell mass is largely dictated during the embryonic
and neonatal stages [1—3]. In the embryo, new B-cells are formed by
differentiation of pancreatic endocrine precursors, followed by prolif-
eration of differentiated B-cells [3—5]. After birth, the major route of -
cell generation is their replication [1,6,7]. However, B-cell proliferation
rates decline with age in both humans and rodents and are signifi-
cantly higher during the neonatal period than during adulthood [2,3,8—
10]. In humans, proliferation of B-cells begins shortly after birth,
continues at its highest rate for about a year, and then rapidly declines
in early childhood [2,9]. In rodents, the B-cell proliferation rate peaks
during the first week of life, and rapidly declines shortly thereafter
[3,8]. A further decline in B-cell proliferation rates is observed as
humans and rodents age, when the proliferation index of these cells
approaches zero during adulthood [2,3,9,11]. However, adult B-cells
maintain an ability for compensatory proliferation in response to
increased metabolic demand or injury [12—19].

[B-cells respond to cues provided by cells of their microenvironment, in
which endothelial, neuronal, and immune cells have been shown to
promote adult B-cell proliferation [20—24]. In addition to endothelial
cells, the dense capillary network of islets contains pericytes, which
form a single discontinuous layer around smaller vessels and are

intimately associated with endothelial cells [25]. Interactions between
endothelial cells and pericytes are required for assembling the vascular
basement membrane (BM) [26,27], which, in the islet, was shown to
support B-cell proliferation and function [20,28]. Together with
vascular smooth muscle cells (vSMCs), which surround large blood
vessels, pericytes constitute a class of mesenchymal cells termed
‘mural cells’ [27]. The embryonic pancreatic mesenchyme was shown
by us and others to support the proliferation of pancreatic progenitors
and differentiated B-cells [29—35]. After birth, pericytes constitute a
major part of the mesenchymal cell population in the pancreas [25,36].
However, the role of pancreatic pericytes in postnatal B-cell prolifer-
ation awaits investigation.

Here, we investigated the ability of neonatal pancreatic pericytes to
promote B-cell proliferation both in vitro and in vivo. Our findings
indicate that the conditioned medium of cultured neonatal pericytes
stimulates the proliferation of both a -cell tumor line, PTC-tet [37],
and primary cultured adult B-cells. Furthermore, pericyte-conditioned
medium induced B-cell expansion in an integrin B1-dependent
manner, implicating the involvement of BM components in this pro-
cess. Lastly, we used iDTR (inducible diphtheria toxin [DT] receptor)
[38] and Nkx3.2-Cre [33,39] mouse lines to target and deplete peri-
cytes in the neonatal pancreas and analyzed the resulting effect on -
cell proliferation. We show that partial pericyte depletion was sufficient
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to reduce the rate of neonatal B-cell proliferation in vivo. To conclude,
our results point to a pivotal role of pancreatic pericytes in neonatal 3-
cell proliferation.

2. MATERIALS AND METHODS

2.1. Mice

Mice were maintained according to protocols approved by the Insti-
tutional Animal Care and Use Committee at Tel Aviv University. All mice
were maintained on a C57BL/6 background. Nkx3.2-Cre (Nkx3-
2imicrelWez) 391 mice were a generous gift from Warren Zimmer
(Texas A&M). R26-YFP (Gt(ROSA)26Sor™ €FPCos) 140] and iDTR
(Gt(ROSA)26S0r™ ! HBEGNAWAl 1351 mice were obtained from Jackson
Laboratories. Wild-type mice were purchased from Envigo, Ltd. When
indicated, mice were i.p. injected with a single dose of 0.25 ng/g body
weight Diphtheria Toxin (DT; List) diluted in PBS.

2.2. lslet isolation

Collagenase P (0.8 mg/ml; Roche) diluted in RPMI (Gibco) was injected
through the common bile duct into the pancreas of a euthanized adult
mouse. Dissected pancreatic tissue was incubated for 10—15 min at
37 °C, followed by a gradient separation with Histopaque 1119 (Sigma)
for 20 min at 4 °C. Islets were collected from the gradient interface,
followed by their manual collection.

2.3. Flow-cytometry

For cell sorting, dissected pancreatic tissues were digested with
0.4 mg/ml collagenase P (Roche) and 0.1 ng/ml DNase (Sigma) diluted
in HBSS for 30 min at 37 °C with agitation, followed by cell filtration
[41]. Cells were suspended in PBS containing 5% FCS and 5 mM EDTA
and sorted based on their yellow fluorescence by FACS Aria (BD). For
staining of cell surface markers, cells were isolated as described above
and stained with biotin-conjugated anti-PDGFRp (Platelet-derived
Growth Factor Receptor f) antibody (Catalog #13-1402, Affymetrix)
followed by incubation with Allophycocyanin-labeled Streptavidin
(Catalog #17-4317-82, Affymetrix). Cells were analyzed by a Gallios
cytometer (Beckman Coulter) using Kaluza software (Beckman
Coulter). For analysis of cell proliferation, single-cell suspension was
obtained by incubating islets with 0.05% Trypsin and 0.02% EDTA
solution (Biological Industries) at 37 °C for 5 min with agitation, or by
collecting BTC-tet cells with 0.05% Trypsin and 0.02% EDTA solution
(Biological Industries). Cells were fixed in 70% ethanol at —20 °C
overnight, suspended in PBS containing 1—2% FBS and 0.09% so-
dium azide, and then immunostained with Fluorescein-conjugated
anti-Ki67 (Catalog #11-5698-82, eBioscience or Catalog #556026,
BD) antibody. Islet cells were further stained with guinea pig anti-
insulin (Catalog #A0564, Dako) antibody, followed by DyLight 650-
conjugated secondary antibody (SA5-10097, Invitrogen). For analyzing
proliferation rates, cells were analyzed by a FACS Gallios cytometer
(Beckman Coulter) using Kaluza software (Beckman Coulter). For cell
counting, cells were analyzed by an Accuri C6 cytometer (BD) using its
volumetric counting feature.

2.4. Cell culture

For culturing pericytes, at least 1.5 x 10° sorted cells were cultured in
DMEM medium (Gibco) containing 10% FCS (Hyclone), 1% L-Glutamine
(Biological Industries) and 1% Penicillin-Streptomycin solution (Bio-
logical Industries) (‘complete DMEM’). Cells were sub-cultured weekly
or when about 90% confluent, using 0.25% Trypsin solution with
0.05% EDTA (Biological Industries). Up to their third passage, cells
were plated on collagen-coated plates (Catalog #FAL354236, Corning).
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Media were collected from cells in their fourth passage, passed
through a 22 um filter to exclude cells, supplemented with proteases
inhibitor (Roche), and then stored at —80 °C. Islets and BTC-tet cells
were grown in complete DMEM. Growth arrest of BTC-tet cells was
induced by supplementing culture medium with 1 pg/ml tetracycline
(Sigma) for 10 days before a proliferation assay was performed
[37,42]. For heat inactivation, pericyte-conditioned medium and
complete DMEM were incubated at 62 °C for 20 min. For blocking of
B1 integrin signaling, pericyte-conditioned medium was supplemented
with either hamster anti-B1 integrin (CD29) antibody (Catalog
#555003, BD) or hamster IgM (Catalog #553958, BD) as a control.
Cultured pericytes were imaged using a Nikon Eclipse Ti-E epifluor-
escence inverted microscope.

2.5. Immunofluorescence and morphometric analyses

Dissected pancreatic tissues were fixed in 4% paraformaldehyde for
4 h. Tissue was transferred to 30% sucrose solution overnight at 4 °C,
followed by embedding in Optimal Cutting Temperature compound
(OCT, Tissue-Tek) and cryopreservation. 11-um-thick tissue sections
were stained with the following primary antibodies: guinea pig anti-
insulin (Catalog #A0564, Dako), rabbit anti- «SMA (o¢ smooth mus-
cle actin; Catalog #Ab5694, Abcam), Ki67 (Catalog #RM-9106, Thermo
Scientific), and NG2 (Neural Glial antigen 2; Catalog #AB5320, Milli-
pore), and rat anti-PECAM1 (Platelet endothelial cell adhesion molecule
1; Catalog #553370, BD) antibodies, followed by secondary fluorescent
antibodies (AlexaFluor, Invitrogen). For TUNEL (Terminal deoxy-
nucleotidyl transferase dUTP nick end labeling) assays, the Fluorescein
In Situ Cell Death Detection Kit (Roche) was used according to man-
ufacturer’s protocol. Stained sections were mounted using Vectashield
antifade mounting medium with DAPI (Vector). Images were acquired
using an SP8 confocal microscope (Leica) or a Keyence BZ-9000
microscope (Biorevo). For analysis of islet endothelial and pericyte
coverage, sections at least 50 um apart were stained as described.
Islets were defined as insulin™ areas. NG2™ or PECAM1™ areas within
the islets, as well as insulin™ areas, were measured using ImageJ
software (NIH). For cell proliferation analysis, sections at least 50 pm
apart were stained as described. Images were analyzed manually blind
to genotype; at least 300 insulin™ cells were analyzed for each pup.

2.6. Statistical analysis
Paired data were evaluated using Student’s two-tailed t-test.

3. RESULTS

3.1. Culturing neonatal pancreatic pericytes

In order to test the ability of neonatal pancreatic pericytes to promote
B-cell replication in vitro, we set out to isolate and culture them. To this
end, we sorted YFP-labeled cells from the pancreas of Nkx3.2-
Cre;R26-YFP pups at postnatal day 5 (p5). During development, Nkx3.2
(Bapx1) is expressed in gut, stomach, and pancreatic mesenchyme, as
well as in skeletal somites [43,44]. In the embryonic and adult
pancreas, the Nkx3.2-Cre mouse line specifically targets mesen-
chymal cells, which, in the adult, consist of pericytes and vSMCs
[27,33,36,41]. To determine if the Nkx3.2-Cre mouse line targets
pancreatic pericytes at the neonatal age, as in adults, we analyzed
fluorescently labeled (‘Nkx3.2/YFP™) cells of p5 Nkx3.2-Cre;R26-YFP
pancreatic tissue for PDGFR, which is expressed on the surface of
pericytes but not on that of vSMCs [27]. As shown in Figure 1A, our
flow-cytometry analysis revealed that ~90% of Nkx3.2/YFP™ cells in
the p5 pancreas express PDGFR[, displaying their pericytic identity.
PDGFRB-negative Nkx3.2/YFP™ cells represent vSMCs, which are
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Figure 1: Culturing neonatal pancreatic pericytes. A) Flow-cytometry analysis of digested pancreatic tissue. Left, Dotplot showing the presence of a yellow fluorescent cell
population (gated green cells; ‘Nkx3.2/YFP™ cells’) in the pancreas of Nkx3.2-Cre;R26-YFP at postnatal day 5 (p5). Right, Green histogram (‘4-Primary antibody’) showing the
staining of Nkx3.2/YFP™ cells (as gated in left panel) for the pericytic marker PDGFRP. Gray histogram showing the analysis of Nkx3.2/YFP ™ cells without the addition of the primary
antibody (‘Staining control’). The number represents the percentage of PDGFRp-stained cells from the total Nkx3.2/YFP™ cell population (as indicated by a horizontal ling). Note that
the vast majority of Nkx3.2/YFP™ cells express this pericytes’ marker. B) Schematic illustration of cultured neonatal pancreatic pericytes. Pancreatic tissues of Nkx3.2-Cre;R26-YFP
p5 pups were dissected and digested to obtain a single cell suspension. Pericytes were FACS sorted based on their yellow fluorescence (as shown in A’, Nkx3.2/YFP™ cells), and
cultured in complete DMEM medium. During the cells’ fourth passage, their conditioned media were collected. C) Cultured neonatal pancreatic pericytes. A yellow fluorescent
image (showed in green for easier visualization) overlaid on top of a brightfield image of cultured Nkx3.2/YFP™ cells (as described in B') during their fourth passage. Representative

field is shown. Note extension of cytoplasmic process by cultured cells.

targeted by the Nkx3.2-Cre mouse line but do not express this receptor
[27,36]. To conclude, our results indicate that the Nkx3.2-Cre mouse
line efficiently targets pericytes in the neonatal pancreas.

Next, pericytes from neonatal pancreatic tissue were isolated and
cultured to collect their conditioned media. To culture pericytes,
dissected pancreatic tissues of p5 Nkx3.2-Cre;R26-YFP pups were
digested to obtain single cells, followed by sorting of Nkx3.2/YFP™
cells by fluorescence-activated cell sorting (FACS) and culturing of
sorted cells (lllustrated in Figure 1B). Yellow fluorescence of cultures
cells verified they were indeed sorted Nkx3.2/YFP™ pericytes
(Figure 1C). Furthermore, all cultured cells extended cytoplasmic
processes typical to pericytes. After four passages, the cell-
conditioned medium was collected and filtered to exclude cells
(illustrated in Figure 1B).

3.2. Pericyte-conditioned medium stimulates B-cell proliferation

in vitro

To analyze the effect of neonatal pericyte-conditioned medium on -
cell proliferation in vitro, we analyzed the response of both the B-cell
line BTC-tet and primary mouse adult B-cells to this medium.
Immortalization of PTC-tet cells was achieved through conditional
expression of SV40 (Simian Vacuolating Virus 40) large T-antigen
under the control of rat /ns2 promoter [37,42]. The expression of the T-
antigen under the tetracycline operon regulatory system (tet) allows for
its shut-off upon exposure to tetracycline. Thus, in the presence of this
antibiotic, the proliferation of BTC-tet cells becomes dependent on
extrinsic factors [42,45]. To test the ability of neonatal pericyte-
conditioned medium to promote proliferation of BTC-tet cells, we
incubated tetracycline-treated cells with this medium. To assess the
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level of cell proliferation, cells were stained for the proliferative marker
Ki67 and analyzed by flow-cytometry. As shown in Figure 2A, exposure
to pericyte-conditioned medium promoted the proliferation of about a
third of the analyzed BTC-tet cells.

Next, we analyzed the ability of the pericyte-conditioned media to pro-
mote proliferation of primary cultured adult B-cells. To this end, islets

I

MOLECULAR
METABOLISM

pericyte-conditioned medium. To assess the level of B-cell proliferation,
islet cells were dispersed and stained with antibodies against insulin and
Ki67, and analyzed by flow-cytometry. As shown in Figure 2B, whereas
less than 1% of B-cells cultured in control medium express Ki67, an
average of 40% of cells incubated in the presence of pericyte-
conditioned medium proliferated. Next, we analyzed for a potential ef-
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Figure 2: Increased B-cell proliferation upon exposure to pericyte-conditioned medium. A) Tetracycline-treated BTC-tet cells were cultured in either control (complete
DMEM; ‘Control medium’) or neonatal pericyte-conditioned (‘Conditioned medium’; described in Figure 1B) medium, both supplemented with tetracycline. After incubation for 96 h,
cells were fixed and stained for the proliferative marker Ki67. Leff, representative dotplots showing flow-cytometry analysis of Ki67 expression by BTC-tet cells. Gated are Ki67+
cells; the numbers represent the percentage of gated cells out of the analyzed cell population. Right, Bar diagrams (mean =+ SD) represent the percentage of Ki67" cells. N = 3.
***P < 0.005 (Student’s t-test), as compared to the control medium. A representative of three independent experiments is shown. B) Isolated islets from 3-month-old wild-type
mice were cultured in either control (complete DMEM; ‘Control medium’) or neonatal pericyte-conditioned (‘Conditioned medium’; described in Figure 1B) medium for 24 h. Islets
were dispersed to single cells, fixed, and stained for insulin and the proliferative marker Ki67. Left, representative dotplots showing flow-cytometry analysis of Ki67 expression by
insulin™ cells. Gated are Ki67* cells; the numbers represent the percentage of gated cells out of the total insulin™ cell population. Right, Bar diagrams (mean + SD) represent the
percentage of Ki67 ™ out of the total number of insulin™ cells. N = 4. ***P < 0.005 (Student’s t-test), as compared to the control media. A representative of four independent
experiments is shown. C) Isolated islets were cultured as described in B for 72 h. Islets were dispersed to single cells, fixed and stained for insulin. Bar diagrams (mean =+ SD)
represent the relative number of insulin™ cells, normalized to islets incubated with control medium. N = 3—4. *P < 0.05 (Student’s -test). D) Control (complete DMEM) and
neonatal pericyte-conditioned (‘conditioned medium’; as described in Figure 1B) medium were heated to 62 °C for 20 min. Isolated islets from 3-month-old wild-type mice were
cultured in heated media for 24 h. Islets were dispersed to single cells, fixed and stained for insulin and the proliferative marker Ki67. Bar diagrams (mean + SD) represent the
percentage of Ki67" out of the total number of insulin™ cells (gated as shown in B). N = 3—4. NS = non-significant (Student’s t-test). E) Tetracycline-treated BTC-tet cells were
incubated with control (complete DMEM,; tetracycline-supplemented) medium or neonatal pericyte-conditioned medium (‘Conditioned medium’, tetracycline-supplemented) for
96 h. The conditioned medium was supplemented with either anti-B1 integrin blocking antibody (‘Anti-B1 integrin’) or control IgM. Bar diagrams (mean + SD) represent the relative
cell number, normalized to cells incubated with control medium. N = 3. *P < 0.05, **P < 0.005, NS = non-significant (Student’s #test).

MOLECULAR METABOLISM 6 (2017) 1330—1338 © 2017 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 1333
www.molecularmetabolism.com


http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.molecularmetabolism.com

islets cultured for 72 h in pericyte-conditioned medium was double the
number in islets cultured in control medium. Thus, our results indicate
that factors secreted by cultured pancreatic pericytes stimulate prolif-
eration of both a B-cell line and primary cultured adult B-cells.
Extracellular matrix (ECM) components, including these found in islets
vascular BM, were shown to promote [-cell proliferation
[20,28,46,47]. We thus analyzed the contribution of these factors to [3-
cell proliferation stimulated by pericyte-conditioned medium. First, we
analyzed if proliferation of primary B-cells depends on heat-sensitive
components (such as proteins) of the medium. Heating the condi-
tioned medium (to 62 °C) prior to islet culture resulted in a low B-cell
proliferation rate, which was comparable to their culturing with control
media (Figure 2D). This result indicates that pericytes produce heat-
sensitive factors, such as BM components and other proteins, to
promote B-cell expansion. BM components are recognized by integrins
and initiate downstream signaling, and integrins containing the (1
chain were shown to mediate -cell proliferation [20,28]. To analyze
the contribution of 1 integrin signaling to pericyte-mediated [-cell
proliferation, we inhibited it in BTC-tet cells. To this end, we supple-
mented the pericyte-conditioned medium with a specific anti-p1
integrin blocking antibody. As shown in Figure 2E, blocking B1 integrin
signaling inhibited the expansion of BTC-tet cells cultured in pericyte-
conditioned medium. Of note, BTC-tet cell number after their culturing
in pericyte-conditioned medium supplemented with anti-B1 integrin
blocking antibody was comparable to the number of cells cultured in
control medium (Figure 2E). Thus, our analysis indicated that neonatal
pancreatic pericytes stimulate B-cell proliferation in a B1 integrin-
dependent manner.

To conclude, our analysis indicated that neonatal pancreatic pericytes
secrete factors that promote [-cell proliferation.

3.3. Diphtheria toxin-mediated depletion of neonatal pancreatic
pericytes

To analyze the in vivo role of neonatal pancreatic pericytes, we set out
to deplete this cell population using the Diphtheria Toxin Receptor
(DTR) system. To deplete pericytes, we generated Nkx3.2-Cre;iDTR
mice, which express DTR in a Cre-dependent manner [36]. Cell-
specific expression of the iDTR transgene, combined with DT admin-
istration, serves as a tool for targeted cell ablation [48,49]. We have
previously used this system to deplete mesenchymal cells from the
embryonic pancreas [33], as well as pericytes from the adult pancreas
[36] in Nkx3.2-Cre;iDTR mice. To deplete pericytes in neonatal
pancreas, Nkx3.2-Cre;iDTR pups as well as control littermates (iDTR-
transgenic pups, which do not express -Cre) at p3 were i.p. injected
with DT (Figure 3A). In addition to its pancreatic expression, the
Nkx3.2-Cre line also displays non-pancreatic expression in the joints
and gastro-intestinal mesenchyme [39,50]. Treating neonatal mice
with the DT dose used for treating adult mice (4 ng/gr body weight
[36]) attenuated the growth and survival of Nkx3.2-Cre;iDTR transgenic
pups. Therefore, we titered the dose of injected DT to ensure that the
growth of the pups would be unaffected by the treatment. Our results
indicated that injecting p3 Nkx3.2-Cre;iDTR pups with 0.25 ng/gr body
weight DT allowed them to grow normally, as manifested by a body
weight comparable to their control littermates at ages p5 and p21
(Figure 3B), and their long-term survival. This indicates that weight
gain and growth were unaffected in DT-treated Nkx3.2-Cre;iDTR pups.
To assess pericyte depletion, we measured islet pericyte and endo-
thelial coverage for pups at p5. Our morphometric analysis revealed
that DT treatment of Nkx3.2-Cre;iDTR pups led to ~25% reduction in
islet pericyte coverage, identified by the expression of the pericytic
marker NG2 (Figure 3C,D) [27]. In contrast, islet coverage by
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endothelial cells, identified by the expression of PECAM1, remained
unchanged (Figure 3C,E). Notably, we did not observe gross changes in
the coverage of large pancreatic vessels by vSMCs (identified by the
expression of high «SMA levels; Figure 3F) in DT-treated Nkx3.2-
Cre;iDTR pups as compared to control. Thus, treatment of Nkx3.2-
Cre;iDTR pups with a low DT dose allows partial, but specific, depletion
of their islet pericytes without affecting their growth.

3.4. Depletion of neonatal pancreatic pericytes impairs -cell
proliferation in vivo

To determine whether neonatal pancreatic pericytes are required for 3-
cell proliferation, we depleted pancreatic pericytes by treating Nkx3.2-
Cre;iDTR pups with DT. Determining primary, rather than secondary
effects requires studying short-term events. Therefore, Nkx3.2-
Cre;iDTR pups and control (iDTR-transgenic pups, which do not ex-
press Cre) littermates were treated with 0.25 ng/gr body weight DT at
p3 and analyzed 2 days after DT administration, at p5. To analyze the
effect of pericyte depletion on B-cell proliferation, we measured the
percentage of Ki67* cells out of the total number of insulin-expressing
cells in pancreatic tissues of DT-treated Nkx3.2-Cre;iDTR and control
pups by immunofluorescence (Figure 4A). Our morphometric analysis
indicated a significant reduction of the portion of proliferating B-cells in
DT-treated Nkx3.2-Cre;iDTR mice to about two thirds of that observed
in littermate controls (Figure 4A).

The observed reduced B-cell proliferation may result from the impaired
survival of these cells. We therefore performed TUNEL assays on
pancreatic tissue sections from DT-treated Nkx3.2-Cre;iDTR and
control p5 pups to analyze for potential B-cell apoptosis. Our analysis
did not indicate B-cell death upon pericyte depletion (Figure 4B).

To conclude, our results indicate that reduced pericyte density impairs
B-cell proliferation in vivo, indicating that pancreatic pericytes are
required for neonatal 3-cell expansion.

4. DISCUSSION

In this study, we provided evidence that pancreatic pericytes play a
critical role in promoting the proliferation of neonatal B-cells. Our
findings indicate that factors secreted by pericytes isolated from
neonatal pancreatic tissue stimulated [-cell proliferation in vitro.
Furthermore, we show that this proliferation requires B1 integrin
signaling, implicating the involvement of BM components. Finally, we
showed an impaired neonatal -cell proliferation upon depletion of
pancreatic pericytes in vivo. Thus, our findings highlight the require-
ment of the pericyte/B-cell axis in establishing B-cell mass.

Islets are encased within the peri-islet BM and associated interstitial
matrix, which contains multiple ECM components [26]. Interestingly, B-
cells do not produce their own BM, but rather, rely on ECM components
deposited into their niche by other cells, including endothelial cells [20].
The vascular BM, located within and around islets, was shown to
support B-cell function and proliferation [20,28]. Heterotypic in-
teractions of pericytes and endothelial cells are required for vascular BM
assembly in many tissues [27] and likely play a similar role in the
pancreas. We recently showed that the embryonic and neonatal
pancreatic mesenchyme produces laminins along with other BM com-
ponents [51]. Here, we show that inhibiting B-cells’ ability to respond to
these cues, by blocking 1 integrin signaling, attenuates their pericyte-
dependent proliferation. Our analysis therefore links B-cell proliferation
to the production of BM components by pancreatic pericytes.

In addition to ECM components, B-cell proliferation was shown to be
induced by an array of secreted growth factors [52]. Others and we
reported that the embryonic pancreatic mesenchyme expresses a
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Figure 3: Partial depletion of pancreatic pericytes in DT-treated Nkx3.2-Cre;iDTR pups. Nkx3.2-Cre;iDTR transgenic pups and littermate controls (carrying the iDTR
transgene, but not the Nkx3.2-Cre transgene; ‘Control [iDTR]’) were i.p. injected with 0.25 ng/gr body weight DT at p3 and analyzed at p5 (‘DT p3— p5’) or p21 (‘DT p3 —p21’). A)
Schematic illustration of mouse treatment. B) Bar diagram (mean + SD) showing the relative body weight of DT-treated Nkx3.2-Cre;iDTR (empty bars) and control (black bars, set
to ‘1’) littermates at p5 and p21. n = 5. C) Pancreatic tissues of DT-treated p5 Nkx3.2-Cre;iDTR (right) and control (left) mice were stained for NG2 (red) to label pericytes, PECAM1
(green) to label endothelial cells, and insulin to label B-cells. White lines demarcate the outer border of the insulin™ area. Note that all capillaries in control islets contained both
endothelial cells and pericytes, whereas some capillaries in Nkx3.2-Cre;iDTR islets contained only endothelial cells. Representative fields are shown. The same imaging parameters
were used to analyze Nkx3.2-Cre;iDTR and control tissues. D, E) Bar diagrams (mean + SD) showing decreased intra-islet pericyte density (D), but not endothelial density (E), in
DT-treated p5 Nkx3.2-Cre;iDTR mice (empty bars) compared with a control (black bars, set to ‘1°). Pancreatic tissues were stained as described in C’, and the relative ratio of NG2™
or PECAM1™, and the Insulin™ area for each islet was calculated. At least 30 islets per mouse, from sections at least 50 pm apart, were analyzed. N = 3. **, P < 0.005 (Student’s
ttest), as compared to control littermates. F) Pancreatic tissues of DT-treated p5 Nkx3.2-Cre;iDTR (right) and control (left) mice were stained for aSMA (red) to label vSMCs, and
PECAM1 (green) to label endothelial cells. Representative fields are shown. The same imaging parameters were used to analyze Nkx3.2-Cre;iDTR and control tissues.

number of growth factors implicated in B-cell proliferation, including
IGF1 (Insulin Growth Factor 1), TGFP2 (Transforming Growth Factor 3
2), TGFPB3, HGF (Hepatocyte Growth Factor), and PDGF [10,30,34,52—
54]. Since these analyses were performed during embryogenesis, it
would be of interest to determine whether pancreatic pericytes express
growth factors after birth to promote neonatal B-cell expansion.

The low B-cell proliferation rate during adulthood [9] could suggest
that pericytes do not support B-cell proliferation after the neonatal
period. Our analysis indicates that in culture, neonatal pericytes can

stimulate adult B-cell proliferation. Thus, -cells maintain their ability
to respond to proliferative cues produced by pericytes even as they
age. It is therefore possible that age-dependent changes in pancreatic
pericytes affect their ability to promote -cell proliferation beyond the
neonatal period. Alternatively, physiological levels of pericytic com-
ponents might be insufficient to drive adult 3-cell proliferation in vivo.
B-cell mass is reduced in both Type 1 and Type 2 diabetes mellitus
[9,55]. Thus, B-cell regeneration and replacement represent attractive
approaches for treating this disease. Since both approaches rely on
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Figure 4: Reduced neonatal B-cell proliferation rates upon pericyte depletion. Nkx3.2-Cre;iDTR transgenic pups and littermate controls (carrying the iDTR transgene, but not
the Nkx3.2-Cre transgene; ‘Control [iDTR]’) were i.p. injected with 0.25 ng/gr body weight DT at p3 and analyzed at p5 (‘DT p3 — p5’). A) Pancreatic tissues were stained for insulin
to label B-cells (red) and Ki67 (green) to mark proliferative cells. Left, representative fields showing immunofiuorescence analysis of Ki67 and insulin. Right, Bar diagrams
(mean = SD) represent the percentage of Ki67™ cells out of the total number of insulin™ cells in DT-treated p5 Nkx3.2-Cre;iDTR mice (empty bars) compared with control (black
bars, set to “1°), stained as shown in left panels. At least 300 insulin™ cells were analyzed for each mouse. The same imaging parameters were used to analyze Nkx3.2-Cre;iDTR
and control tissues. N = 3. ***P < 0.005 (Student’s #test). B) Pancreatic tissues of DT-treated p5 Nkx3.2-Cre;iDTR (middle panel) and control (left panel) were subjected to TUNEL
assay (green) to identify dying cells, and were stained for insulin (red) to identify B-cells. The right panel shows similarly stained non-transgenic pancreatic tissue pre-treated with
DNase to induce DNA breaks, which served as a positive control for the TUNEL assays (‘staining control’). Representative fields are shown. The same imaging parameters were
used to analyze Nkx3.2-Cre;iDTR and control tissues.
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