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Abstract

Peoples’ subjective attitude towards costs such as, e.g., risk, delay or effort are key determi-

nants of inter-individual differences in goal-directed behaviour. Thus, the ability to learn

about others’ prudent, impatient or lazy attitudes is likely to be critical for social interactions.

Conversely, how adaptive such attitudes are in a given environment is highly uncertain.

Thus, the brain may be tuned to garner information about how such costs ought to be arbi-

trated. In particular, observing others’ attitude may change one’s uncertain belief about how

to best behave in related difficult decision contexts. In turn, learning from others’ attitudes is

determined by one’s ability to learn about others’ attitudes. We first derive, from basic opti-

mality principles, the computational properties of such a learning mechanism. In particular,

we predict two apparent cognitive biases that would arise when individuals are learning

about others’ attitudes: (i) people should overestimate the degree to which they resemble

others (false-consensus bias), and (ii) they should align their own attitudes with others’

(social influence bias). We show how these two biases non-trivially interact with each other.

We then validate these predictions experimentally by profiling people’s attitudes both before

and after guessing a series of cost-benefit arbitrages performed by calibrated artificial

agents (which are impersonating human individuals).

Author summary

What do people learn from observing others’ attitudes, such as "prudence", "impatience"

or "laziness"? Rather than viewing these attitudes as examples of highly subjective person-

ality traits, we assume that they derive from uncertain (and mostly implicit) beliefs about

how to best weigh risks, delays and efforts in ensuing cost-benefit trade-offs. In this view,

it is adaptive to update one’s belief after having observed others’ attitude, which provides

valuable information regarding how to best behave in related difficult decision contexts.

This is the starting point of our computational model of attitude alignment, which we

derive from first optimality principles as well as from recent neuroscientific findings. Crit-

ical here is the impact of one’s ability to learn about others’ covert mental states or atti-

tudes, which is known as "mentalizing" or "Theory of Mind". In particular, this model

makes two (otherwise unrelated) predictions that conform to known but puzzling
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cognitive biases of social cognition in humans, namely: "false consensus" and "social influ-

ence". It also shows how attitude alignment may eventually follow from the interaction

between these two biases. Using state-of-the-art behavioural and computational methods,

we provide experimental evidence that confirm these predictions. Finally, we discuss the

relevance and implications of this work, both from a neuroscientific and economic

perspective.

Introduction

Subjective traits or attitudes such as "prudence", "impatience" or "laziness" are key determi-

nants of goal-directed behaviour. This is because they determine how people arbitrate between

canonical but conflicting decision dimensions, e.g., the prospect of reward and costs such as

risk, delay or effort [1–3]. For example, high risk devaluation is the hallmark of "prudence",

"impatience" is associated with strong delay discounting and "lazy" people find potential

rewards not worth the effort. Importantly, although some variant of these phenotypes may

eventually prove to have higher adaptive fitness [4,5], our socio-ecological niche only provides

sparse and ambivalent feedback regarding how prudent, impatient or lazy one should be [6,7].

This typically results in high uncertainty regarding how to best behave in related difficult deci-

sion contexts, which may be why we are influenced by others’ attitude [8,9]. But is the brain

tuned to garner such information from others, even when this is not directly instrumental?

Does this non-trivially depend upon our ability to learn about others’ covert attitudes? Recip-

rocally: do our own attitude impacts on how we learn about others’? Also: given that such cog-

nitive mechanism may have been optimized through natural selection, can we derive its

computational bases from first optimality principles? These are the questions we address in

this work, using a combination of experimental and computational methods.

Recall that humans seem to engage in imitative behaviour automatically, even in the

absence of incentives or social norms [10]. For example, it has been shown that people tend to

imitate others’ motor actions [11] and mirror their emotions [12] when this is not instrumen-

tal to the task, or even when this compromises the efficiency of goal-directed behaviour [13].

Such social influence also applies to overt motives, giving rise to phenomena such as "goal con-

tagion" [14,15] and “mimetic desires” [16,17], whereby objects’ attractiveness increases when

they are wanted by other peoples. Recent neuroscientific investigations of this "influence bias"

have disclosed an intriguing form of biological determinism. First, social influence disrupts

the neural computation of subjective values that takes place in the so-called "brain valuation

system" or BVS [8,18]. Second, the magnitude of the influence bias is predicted by the coupling

strength between the BVS and the brain’s “mirror neuron system” [19]. Recall that the latter

has been repeatedly shown to play a major role in action understanding for a wide range of

animal species, from birds [20] to monkeys [11] to humans [21,22]. In humans, it is known to

be involved whenever people engage in "mentalizing" or "Theory of Mind" (ToM), i.e. interpre-

tations of others’ overt behaviour in terms of (covert) mental states or attitudes [23,24]. These

findings are important because they suggest that mentalizing about others’ attitudes may auto-

matically (although maybe implicitly) trigger the alignment of the observer’s attitude towards

the observee’s.

The conventional view here is that such attitude alignment should be considered a cognitive

bias, which may inherit its adaptive fitness from the fact that it facilitates social conformity

[25,26]. However, evolutionary models have long shown that selective pressure may eventually

favour imitative phenotypes, even when conformity brings no survival and/or mating
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advantage [27–29]. This is because imitation is a form of fast learning (from others), which

essentially circumvents the necessity to rediscover utile information [30,31]. In line with these

ideas, we start with the premise that subjective attitudes such as "prudence", "impatience" or

"laziness" may be best understood as uncertain (and mostly implicit) beliefs about how to “best”

weigh risks, delays and efforts, respectively. From an information-theoretic perspective, this

implies that these beliefs can be updated, given new information about how costs and benefits

ought to be arbitrated. Under this view, a mentalizing agent who would not align her attitude

with others’ would be suboptimal, because she would essentially neglect relevant information.

Critical here is the fact that such subjective attitudes are not directly accessible: they typically

have to be inferred from overt behaviour. This implies that attitude alignment may be non-trivi-

ally shaped by the computational properties of mentalizing. For example, people tend to overes-

timate the degree to which they resemble others, which is known as the "false consensus" bias

[32,33]. In this work, we derive a Bayesian model of attitude alignment that predicts, from first

(evolutionary) principles, the existence of false-consensus and influence biases as well as their

non-trivial interaction. We then validate these predictions experimentally by profiling people’s

attitudes both before and after guessing a series of cost-benefit arbitrages performed by cali-

brated artificial agents (which are impersonating human individuals).

This paper is organized as follows. The first section of our manuscript exposes our compu-

tational and empirical methods. First, we recall how subjective traits or attitudes such as "pru-

dence", "impatience" or "laziness" relate to overt cost-benefit arbitrages. Second, we extend

existing Bayesian models of mentalizing [34–37] to the problem of learning such subjective

attitudes. Third, we summarize the derivation of our computational model of attitude align-

ment, from which we disclose predictions that can be tested empirically. The second section of

our manuscript summarizes our experimental results, using an experimental design inspired

from behavioural economics choice paradigms that aim at revealing people’s attitude towards

delay, effort and risk. In particular, we ran three series of statistical data analysis of increasing

computational sophistication. The last section of the manuscript consists of a discussion of the

limitations of our study, in the context of the existing literature.

Methods

Ethics statement

This study has been approved by the local ethics’ committee (CPP-Ile-de-France 1) as part of a

larger research program, and was conducted according to the principles expressed in the Dec-

laration of Helsinki. Written informed consent was obtained from the participants.

1. Computational modelling

Our quantitative modelling strategy is twofold, i.e. we have to consider (i) models of partici-

pants’ cost-benefit arbitrages in theDecision phases (these will also be used to simulate artificial

agents’ behaviour in the Prediction phase), and (ii) models of how people learn about and from

others’ choices. The former stem from classical decision theory and are borrowed from beha-

vioural economics. They assume that decisions follow from a comparison between the value or

utility of each alternative option. The latter are an instance of the meta-Bayesian approach

[38,39], which essentially is an information theoretic perspective on inferring how agents make

decisions under uncertainty. They describe mentalizing by embedding the former cost-benefit

arbitrage models into a trial-by-trial Bayesian belief update scheme.

1.1. Modelling cost-benefit arbitrages. Our use of decision models is threefold: (i) to pro-

file participants’ attitudes from their choices in the Decision phases, (ii) to simulate artificial

agents’ choices in the Prediction phase, and (iii) to serve as prior assumptions for mentalizing
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models in the Prediction phase (see below). In what follows, behavioural observations consist

in binary choices between two alternatives that differ along two dimensions, namely expected

reward and cost (delay, effort or risk). According to decision theory, we assume that the proba-

bility of choosing a given option increases with its subjective value or utility. More precisely,

the probability P1 of choosing option 1 (over option 2) is given by the following probabilistic,

softmax rule [40]:

P1 ¼
expðb V1Þ

expðb V1Þ þ expðb V2Þ
ð1Þ

where Vi is the subjective value of option i, and β is a behavioural inverse-temperature that

controls the magnitude of potential deviations from rationality (at the limit β!1, Eq 1

reduces to the utility-maximization deterministic policy).

Let Opi be the ith alternative option, which is defined in terms a given reward/cost duplet

(e.g., for inter-temporal choices: Op1 = "1€ now" and Op2 = "10€ in a week"). The ensuing

cost-benefit arbitrage is controlled by people’s susceptibility to costs α, which parameterizes a

utility function uα (Opi) = Vi. More precisely, the mathematical form of utility functions is

cost-dependent:

• Delay: the utility of a payoff R obtained after a delay T is given by the hyperbolic utility func-

tion [41]:

uaðR;TÞ ¼
R

1þ aT
ð2Þ

where α controls people’s susceptibility to delay. Here delay induces a divisive cost, which

implies that one would always prefer a delayed reward to nothing now.

• Risk: the utility of obtaining a payoff R with probability P is given by the following exponen-

tial utility function:

uaðR; PÞ ¼ Pð1 � expð� RaÞÞ ð3Þ

where α controls the concavity of the utility function, and hence people’s susceptibility to

risk (Pratt, 1964). In this case, a sure reward may eventually be preferable to a higher but

risky outcome.

• Effort: the utility of a payoff R obtained when exerting an effort E is given by the following

effort-discounting utility function:

uaðR;EÞ ¼ R � a
E

1 � E
ð4Þ

where α controls people’s susceptibility to effort. Note that effort E is defined in terms of the

percentage of the individual’s maximal force (physiological limit). This utility function has

the desirable property that the cost of a supplementary unit of Effort increases as the Effort

gets closer to the participant’s physiological limit [42].

Inserting Eqs 2–4 into Eq 1 (i.e. defining Vi≜ uα (Opi)) effectively models cost-benefit arbi-

trages in terms of a comparison between alternative options’ utilities. These cost-benefit arbi-

trage models have two free parameters, namely: the cost-susceptibility α and the behavioural

inverse-temperature β. In particular, the subjective aspect of these arbitrages is captured by the

cost-susceptibility parameter α, which determines how impatient, prudent or lazy people’s

overt behaviour is. For example, a high delay-susceptibility induces strong temporal discount-

ing, eventually yielding impatient behaviour (i.e. a preference towards short-delay options).

The computational bases of attitude alignment
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Similarly, high risk (resp. effort) susceptibility yields prudent (resp. lazy) behaviour. In what

follows, we will thus refer to α as a covert subjective attitude or trait. In the next section, we

will see how mentalizing on such attitudes can be modelled in terms of a Bayesian belief update

scheme.

1.2. The Bayesian preference learner. Let us now introduce a Bayesian model of how

people update their belief about others’ impatient, lazy or prudent attitude, under the so-called

"rationality principle" [36,43–45]. In our case, this reduces to estimating the relevant cost-sus-

ceptibility parameter α (as well as the behavioural temperature β) from observed choices.

First, mentalizing Bayesian agents assume that the Other’s choices obey the softmax deci-

sion rule of Eq 1. This yields the following binomial likelihood p(a!t|θ(o)) for the Other’s deci-

sion a!t (up to trial t):

pða!tjy
ðoÞ
Þ ¼

Yt

t0¼1

pðat0 jy
ðoÞ
Þ

pðatjy
ðoÞ
Þ ¼ P1

at ð1 � P1Þ
1� at

ð5Þ

where at 2 {0,1} is the Other’s binary choice at trial t, P1 ≜ p(at = 1|θ(o)) is the probability that

the Other chooses the first alternative option (cf. Eq 1) and θ(o) = {log α(o),log β(o)} is the set of

unknown parameters that summarizes the Other’s covert attitude or trait. Note that Eq 5

holds, irrespective of the type of cost (i.e. delay, effort or risk). The mathematical form of the

corresponding utility functions are given in Eqs 2, 3 and 4.

Second, before having observed any Other’s decision, the agent is endowed with some prior

belief p(θ(o)) about the Other’s trait θ(o). Here, we assume that this prior belief pðyðoÞÞ ¼
NðmðoÞ0 ;S

ðoÞ
0
Þ is Gaussian with mean m

ðoÞ
0 (which captures the direction of the agent’s bias) and

variance SðoÞ
0

(which measures how uncertain is the agent’s prior belief).

Observing the Other’s choices gives the agent information about θ(o), which can be updated

trial after trial using the following Bayes-optimal probabilistic scheme:

pðyðoÞja!tÞ / pða!tjy
ðoÞ
ÞpðyðoÞÞ

/ pðatjy
ðoÞ
ÞpðyðoÞja!t� 1Þ

ð6Þ

where p(θ(o)|a!t) is the agent’s posterior belief about the Other’s trait after trial t and the sec-

ond line highlights the sequential (online) form of Bayesian belief update. Practically speaking,

we implement this learning model using a variational-Laplace scheme [46,47], which yields

semi-analytical expressions for the update rules of the two first moments (m
ðoÞ
t and SðoÞt ) of the

posterior belief pðyðoÞja!tÞ � NðmðoÞt ;SðoÞt Þ. This completes our description of the Bayesian

Preference Learner (BPL). We refer the interested reader to S1 Text for relevant mathematical

details.

Note that the BPL model is entirely specified by the two first moments (m
ðoÞ
0 and SðoÞ

0
) of the

agent’s prior belief. In particular, the prior variance SðoÞ
0

controls the resilience of the agent’s

prior bias to observational information regarding the Other’s trait. In other words, the smaller

the prior variance SðoÞ
0

, the stronger the prior bias in his posterior belief. Should the prior mean

m
ðoÞ
0 match the agent’s own attitude θ(s) (i.e. when m

ðoÞ
0 � y

ðsÞ
), she would then exhibit a "perfect"

false-consensus bias. We will introduce a normative model of this below. But let us first com-

ment on one non-trivial computational property of the BPL model.

Note that an observed choice that does not match the BPL’s prediction can be explained

away either by updating her posterior estimate of the Other’s cost-susceptibility, or by increas-

ing the posterior estimate of the temperature. In turn, the impact of the next prediction error

The computational bases of attitude alignment

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005422 March 30, 2017 5 / 28



will be smaller, i.e. it will induce a smaller update m
ðoÞ
t � m

ðoÞ
t� 1. In other words, the rate of poste-

rior update m
ðoÞ
t � m

ðoÞ
0 decreases as the true Other’s cost-susceptibility α(o) further departs from

the prior mean m
ðoÞ
0 . The response of the BPL model to the true Other’s cost-susceptibility α(o)

is summarized on Fig 1 below.

One can see that, for small α(o), BPL’s estimate of α(o) tracks the true α(o) in a linear fashion;

however, as the true α(o) increases, BPL’s estimate of α(o) tends to saturate (cf. Fig 1A). In turn,

the global relationship between the two is sigmoidal, where the upper and lower bounds

increase in magnitude with BPL’s prior variance SðoÞ
0

. This is explained by the fact that BPL’s

estimate of β(o) decreases as α(o) increases in magnitude (cf. Fig 1B). In brief, strongly surpris-

ing observations are regarded as errors: they are deemed less informative than observations

that better conform to BPL’s prior guess. One can show that, at the uninformative prior limit

(i.e. when SðoÞ
0
!1), the BPL’s posterior mean m

ðoÞ
t tends to the unbiased maximum-likeli-

hood estimator. Thus, one may be tempted to think that any finite prior variance may eventu-

ally yield biased estimates, which would eventually degrade prediction performance. The latter

reasoning is misguided however, due to the bias-variance trade-off of statistical learning [48].

This trade-off can be eyeballed on Fig 1A, by noting that the variance (across Monte-Carlo

simulations) of BPL’s posterior estimates increases with SðoÞ
0

. In fact, at the uninformative

prior limit (and given limited data), BPL’s posterior estimates would be so unreliable that the

average generalization error would be maximal. Note that this holds true irrespective of the

prior mean. This is a first hint of why the false-consensus bias can be deemed optimal from an

information theoretic perspective. As we will see below, this computational property of Bayes-

ian mentalizing eventually induces non-trivial limitations to attitude alignment.

1.3. A Bayesian account of attitude alignment. We now revisit the computational bases

of attitude alignment, taking inspiration from models of "informational cascades" (Shiller,

1995), which describe how imitative behaviour arise from implicit information sharing among

agents. Recall that people’s subjective attitudes can be seen as uncertain beliefs about "best" poli-

cies, where "best" is only defined implicitly (without explicit reference to an objective perfor-

mance measure). In what follows, we show how prior assumptions regarding how information

about the "best" policy is scattered across individuals eventually yields both false-consensus and

influence biases, and how it ties them together.

To begin with, recall that "how good" attitudes towards effort, delay or risk is likely to be

environment-dependent. For example, the optimal delay discounting depends upon the envi-

ronmental hazard rate, which may be unknown [49]. Thus, let us assume that, in a given envi-

ronment, there is an objective "best" policy η (i.e. a "best" way of discounting delay, effort or

risk), which is hidden from agents but indirectly accessible through noisy (e.g., reinforcement)

signals y(i) = η + ε(i), where εðiÞ � Nð0; sðiÞε Þ are i.i.d. gaussian random errors with variance sðiÞε .

For the sake of simplicity, we consider that the reinforcement error variance is identical across

individuals, i.e.: sðiÞε ≜sε. This provides agents with a likelihood function p(y(i)|η,σε) regarding

the "best" policy η. From a Bayesian perspective, individuals are endowed with an innate sub-

jective prior pðZjZðiÞG ; sGÞ ¼ NðZðiÞG ; sGÞ about the best policy η, which we parameterize in terms

of its mean Z
ðiÞ
G and variance σG. Without loss of generality, we assume that the innate prior

means Z
ðiÞ
G are scattered across individuals according to a Gaussian distribution with mean ΓG

and variance OG, i.e.: Z
ðiÞ
G � NðGG;OGÞ. We will see that, taken together, these assumptions

imply that mentalizing (Bayesian) agents are bound to false-consensus and influence biases.

But first, what can we say about the agent’s own attitude α(i)? Over the agent’s lifetime, her

prior pðZjZðiÞG ; sGÞ is integrated with the likelihood p(y(i)|η,σε) to yield a posterior belief

pðZjyðiÞ; sε; Z
ðiÞ
G ; sGÞ≜NðaðiÞ; sÞ regarding the "best" policy, whose mean is (by definition) the

The computational bases of attitude alignment
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agent’s attitude α(i):

aðiÞ ¼ s
yðiÞ

sε
þ

Z
ðiÞ
G

sG

 !

s ¼
1

sε
þ

1

sG

� �� 1
ð7Þ

8
>>>><

>>>>:

where σ is the agent’s uncertainty regarding the "best" policy. Eq 7 holds for any agent, but

eventually yields different traits α(i), owing to different feedback errors ε(i) and different prior

means Z
ðiÞ
G . In what follows, α(s) (resp., α(o)) will denote the agent’s (resp., the Other’s) trait.

At this point, the agent’s prior belief p(α(o)|α(s),σε,σG,ΓG,OG) regarding the Other’s trait α(o)

(cf. BPL model above) can now be derived in terms of a prediction about others’ subjective

estimate of the "best" policy:

pðaðoÞjaðsÞ; sε; sG;GG;OGÞ ¼ ∬pðaðoÞjZ; sε; sG; Z
ðoÞ
G ÞpðZjaðsÞ; sÞpðZ

ðoÞ
G jGG;OGÞdm dZ

ðoÞ
G

≜NðmðoÞ0 ;S
ðoÞ
0
Þ

ð8Þ

where pðaðoÞjZ; sε; sG; Z
ðoÞ
G Þ derives from Eq 7 (having replaced the other’s signal y(o) with its

definition (i.e.: y(o) = η + ε(o)), and pðZjaðsÞ; sðsÞÞ≜pðZjyðsÞ; sε; Z
ðsÞ
G ; sGÞ is the agent’s posterior

belief about the "best" policy. Here, m
ðoÞ
0 and SðoÞ

0
are the ensuing first two moments of the

agent’s prior belief on the Other’s trait. Note that, in reference to the above BPL model, the

introduction of m
ðoÞ
0 and SðoÞ

0
is essentially an abuse of notation, since they do not include the

Fig 1. Response of the BPL model. We simulated virtual BPL learners equipped with neutral priors (m
ðoÞ
0 ¼ 0),

who learned about agents (endowed with varying cost-susceptibilities) performing cost-benefit arbitrages

(T = 40 choices, as in the main experiment). The Monte-Carlo average (plain lines) and standard deviations

(shaded areas) of BPL’s posterior estimates were obtained by repeating this simulation with random pairings of

benefits and costs. We also varied BPL’s prior variance on the Other’s cost susceptibility (blue: small prior

variance, red: high prior variance). A: BPL’s posterior estimate of the Other’s cost-susceptibility (y-axis) is

plotted as a function of the true Other’s cost-susceptibility (x-axis). B: BPL’s posterior estimate of the Other’s

inverse-temperature (y-axis) is plotted as a function of the true Other’s cost-susceptibility (x-axis).

doi:10.1371/journal.pcbi.1005422.g001
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behavioural temperature. Solving for Eq 8 yields (see S1 Text for details):

m
ðoÞ
0 ¼

sG aðsÞ þ sε GG

sG þ sε

SðoÞ
0
¼

sG
2sε

ðsε þ sGÞ
2

1þ
sG

sG þ sε
þ

sεOG

sG
2

� � ð9Þ

8
>>><

>>>:

In brief, Eq 9 essentially states that the agent will exhibit a "false-consensus bias" [32,33],

since the agent’s prior m
ðoÞ
0 on the Other’s trait is a simple affine transformation of the agent’s

own attitude α(s). Formally speaking, one could define the false-consensus bias FCB as the

agent’s prior probability that the Other’s trait is identical to her own, i.e.:

FCB ¼ pðaðoÞ ¼ aðsÞjaðsÞ; sε; sG;GG;OGÞ ¼ expð� ðaðsÞ � m
ðoÞ
0 Þ

2
=2SðoÞ

0
Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffi

2pSðoÞ
0

q

ð10Þ

This definition is exemplified on Fig 2A below. One can see that the magnitude of the false-

consensus bias increases with the slope of the affine transformation in Eq 9. One can show that

FCB is maximal at the limit when agents are endowed with very vague priors (i.e. σG� σε),
where Eq 9 reduces to:

m
ðoÞ
0 � !

sG�sε
aðsÞ

SðoÞ
0
� !

sG�sε
2sε

ð11Þ

(

In brief, Eqs 9 and 10 essentially state that the false-consensus bias is indeed Bayes-optimal,

given the scattering of information about "best" policies across individuals. Incidentally, they

also imply that the accuracy of prior predictions regarding the Other’s lazy, impatient or pru-

dent behaviour increases with the similarity between the agent and the Other.

Importantly, observing the Other’s choices informs the agent both about the Other’s cost-

susceptibility (cf. BPL model above) and, eventually, about the "best" policy η. Note that the

agent’s Bayesian belief update is not entirely straightforward here, because the agent has to

recover the likelihood component from the Other’s posterior belief about the "best" policy. Let

a
ðsÞ
1 (resp., a

ðsÞ
2 ) be the agent’s posterior mean on the "best" policy η before (resp., after) having

observed the Other’s behaviour. The agent’s updated belief about the "best" policy (after having

observed the Other’s behaviour) can be derived as follows:

pðZja!t; yðsÞ; . . .Þ ¼

Z

pðZja!t; y
ðsÞ; ao; . . .ÞpðaðoÞja!t; y

ðsÞ; . . .ÞdaðoÞ

¼

Z

pðZjyðsÞ; aðoÞ; . . .ÞpðaðoÞja!t; . . .ÞdaðoÞ

¼

Z
pðZjyðsÞ; . . .ÞpðaðoÞjZ; . . .Þ

Z

pðZjyðsÞ; . . .ÞpðaðoÞjZ; . . .ÞdZ

pðaðoÞja!t; . . .ÞdaðoÞ

≜NðaðsÞ2 ; s2
Þ

ð12Þ

where pðZjyðsÞ; . . .Þ≜NðaðsÞ1 ; s1
Þ is the agent’s initial belief about the "best" policy (before having

observed the Other’s behaviour), p(α(o)|η,. . .) derives from Eq 7 (it describes how the Other’s

trait relates to the "best" policy) and p(α(o)|a!t,. . .) is the agent’s posterior belief about the

Other’s cost-susceptibility (derived from the BPL model). Intuitively, there is an "influence
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bias" if the agent’s updated belief about the "best" policy has drifted towards the Other’s trait

α(o). More formally, one can define the influence bias IB as the increase in the agent’s posterior

belief that the "best" policy is identical to the Other’s trait, i.e.:

IB ¼ pðZ ¼ aðoÞja!t; yðsÞ; . . .Þ � pðZ ¼ aðoÞjyðsÞ; . . .Þ

¼ expð� ðaðoÞ � a
ðsÞ
2 Þ

2
=2s

ðsÞ
2 Þ=

ffiffiffiffiffiffiffiffiffiffiffiffi

2ps
ðsÞ
2

q

� expð� ðaðoÞ � a
ðsÞ
1 Þ

2
=2s

ðsÞ
1 Þ=

ffiffiffiffiffiffiffiffiffiffiffiffi

2ps
ðsÞ
1

q ð13Þ

This definition is exemplified on Fig 2B above. Solving for Eq 12, one can show (see S1

Text) that the change in the agent’s trait induced by observing the Other’s behaviour is given

by:

a
ðsÞ
2 � a

ðsÞ
1 ¼ lðmðoÞt � m

ðoÞ
0 Þ ð14Þ

where m
ðoÞ
t is the agent’s posterior mean regarding the Other’s trait (after having observed t

Fig 2. Qualitative predictions of the Bayesian model of attitude alignment. We simulated a virtual

population (endowed with arbitrary cost-susceptibilities), who learn about agents performing cost-benefit

arbitrages (also endowed with arbitrary cost-susceptibilities). In panels A to C, the blue colour correspond to a

baseline simulation, where all model parameters have been set to unity. Other colours correspond to simulations

in which each model parameter has been increased by a unitary amount in turn (σε: green, σG: red, ΓG: cyan,

andΩG: magenta). The impact of model parameters can thus be eyeballed in terms of the induced changes w.r.

t. the baseline simulation. A: false consensus bias FCB, as defined in Eq 10. The agent’s prior probability about

the Other’s trait (y-axis) is plotted against possible Other’s traits. The black dotted line depicts the agent’s own

trait, and the height at which it crosses the prior probability densities signals the false-consensus bias. B:

influence bias IB, as defined in Eq 13. The agent’s updated posterior belief about the "best" cost weight (y-axis)

is plotted against possible "best" cost weights. The black dotted line depicts the Other’s trait, and the height at

which it crosses the updated posterior belief signals the influence-consensus bias (plus a correction term that

derives from the agent’s initial belief). C: influence bias IB (y-axis) is plotted as a function of false-consensus bias

FCB (x-axis). This graph was constructed from the same simulations as in panels A and B. D: same as in panel

C, but this time IB is averaged across 105 Monte-Carlo simulations that vary randomly all model parameters

(namely: σε, σG, ΓG,ΩG, a
ðsÞ
1 and α(o)). The ensuing biases have been binned according to FCB, and error bars

depict the resulting Monte-Carlo mean and standard deviation.

doi:10.1371/journal.pcbi.1005422.g002
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behavioural choices) and the "learning rate" λ depends upon the agent’s prior precisions:

l ¼
1

sεOG
s2
G
þ

sG
sGþsε

þ 1
) 0 � l � 1 ð15Þ

Eq 14 states that the agent’s cost-susceptibility drifts in proportion to m
ðoÞ
t � m

ðoÞ
0 , which is

essentially the agent’s estimate of the information that the Other holds about "best" policies

(corrected for expected prior biases). Here again, Eq 14 greatly simplifies at the vague priors

limit (i.e. when the false-consensus is maximal):

m
ðoÞ
0 � !

sG�sε
a
ðsÞ
1 ) a

ðsÞ
2 � a

ðsÞ
1 � lðmðoÞt � a

ðsÞ
1 Þ ð16Þ

Would the agent’s estimate of the Other’s trait be accurate (i.e. m
ðoÞ
t � aðoÞ), then Eq 16

would predict a positive influence bias, whereby agents update their estimate of the "best" pol-

icy in proportion to a "prediction error" signal m
ðoÞ
t � a

ðsÞ
1 , which measures how different they

are from others. In this case, the magnitude of the influence bias increases with λ. In particular,

the maximal learning rate (λ� 1) is achieved when σG� OG. However, this is also when the

prior variance SðoÞ
0

is minimal, which enforces a strong shrinkage (towards a
ðsÞ
1 ) onto the

agent’s estimate m
ðoÞ
t of the Other’s trait. In other terms, the vague prior limit also implies that

the "prediction error" m
ðoÞ
t � a

ðsÞ
1 will be small. In addition, away from the vague prior limit, the

prior variance SðoÞ
0

is relaxed and the agent’s estimate of the Other’s trait is eventually more

accurate. However, the difference between m
ðoÞ
0 and a

ðsÞ
1 does not cancel out and the ensuing

influence bias is reduced (the agent’s trait is deviated away from α(o)). Taken together, these

remarks suggest that there may be an entangled relationship between false-consensus and

influence biases. Below, we will disclose this interaction using numerical simulations.

Nevertheless, Eqs 14–16 state that the influence bias is Bayes-optimal, given that others may

hold private information about "best" policies. In addition, they imply that people’s change in

attitude decreases with the similarity between the agent and the Other. This can be directly

tested against empirical data.

In summary, Eqs 9 and 12 predict that agents observing others’ lazy, impatient or prudent

behaviour will exhibit false-consensus and influence biases on the respective cost-benefit arbi-

trages. Both these biases (i) derive from optimality principles, and (ii) are controlled by (sub-

jective) prior assumptions regarding the scattering of information about the "best" policy

across individuals. This triggers the question: is there a systematic relationship between false-

consensus and influence biases, that holds when varying the four model parameters (namely:

σε, σG, ΓG and OG) and the initial behavioural traits (namely: α(o) and a
ðsÞ
1 )? We thus conducted

a series of Monte-Carlo simulations, where we sampled randomly σε, σG, ΓG, OG, α(o) and a
ðsÞ
1 ,

and evaluated both false-consensus and influence biases according to Eqs 10 and 13, respec-

tively. The results of these simulations are summarized on Fig 2 below.

Panel A (resp., B) shows how FCB (resp., IB) varies according to the model parameters, for

a given set of model parameters. In this simulation, both FCB and IB increase with σG, and

decreases with σε, ΓG and OG. The ensuing relationship between FCB (x-axis) and IB (y-axis) is

shown on panel C. Panel D generalizes this analysis by summarizing the net relationship that

holds across all Monte-Carlo simulations. One can see that for small false-consensus biases, IB
increases with FCB (as in panel C). However, this relationship changes for higher false-consen-

sus biases. In turn, IB behaves as an inverted U-shaped function of FCB. This partly results

from the fact that IB eventually decreases when the mismatch between the agent’s trait and the
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Other’s is too high (cf. Fig A1 in S1 Text). In the next section, we introduce our experimental

design, which relies upon a direct manipulation of this difference.

2. Experimental setting

2.1. Participants. Fifty six healthy participants (36 females, age = 25.0 +/- 4.5 years) were

recruited from the RISC network (http://www.risc.cnrs.fr/).

Data from three participants in the effort discounting tasks (see below) were excluded due

to technical issues with the grip device, deception in the calibration phase or difficulty to pro-

duce any effort. We also excluded two more participants that always chose the same high-cost

option in both Effort Decision phases. Moreover, in the Effort decision task, trials in which

participants failed to produce the required effort were excluded from the analysis (0.2% of the

Effort trials).

2.2. Experimental design. In brief, our experimental design is inspired from behavioural

economics choice paradigms that aim at revealing people’s attitude towards delay, effort and

risk. These consist of sequences of two-alternative forced choices between two items that differ

in terms of reward and cost. Here, people are requested to first make a series of such choices

(Decision phase 1), then guess someone else’s choices (Prediction phase), and finally re-perform

the choice task (Decision phase 2). Critically, during the Prediction phase, participants are

unknowingly observing choices of artificial agents (instead of human individuals), which are

endowed with calibrated attitudes towards delay, effort and risk. This manipulation allows us

to quantify the false-consensus and influence biases, and validate the predictions of our model.

Our experimental design is summarized on Fig 3.

Each experimental phase (Decision 1, Prediction and Decision 2) was further subdivided into

three blocks, each corresponding to a type of cost, namely: delay, effort and risk (order coun-

terbalanced between participants). Decision phases were used to estimate each participant’s

cost susceptibility (either delay, effort or risk) by fitting a (cost-dependant) parameterized

Fig 3. Experimental paradigm. A: main structure of the task (Decision 1, Prediction and Decision 2 phases).

Each phase includes three subtasks, which relate to three cost-benefit arbitrages (with three cost types,

namely: delay, effort or risk, respectively). Participants are partitioned into three subgroups, depending on

which cost type is paired with the Noisy, Same or Different condition in the Prediction phase. B: Example trials

of cost-benefit arbitrages (Left: Delay, Middle: Effort, Right: Risk). Note: the low-cost/low-reward option is

displayed on the left (its associated cost is fixed across trials).

doi:10.1371/journal.pcbi.1005422.g003
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utility function to his observed choices (cf. Eqs 1–4). Subjects were rewarded in proportion to

their performance in the Prediction phase. In addition, one trial per Decision phase was ran-

domly drawn at the end of the experiment to determine participants’ final payoff (see below).

Each block of Decision phases consisted of 40 trials in which participants were asked to

choose between two options, i.e. a small-payoff/small-cost option (small payoffs ranged from 2

€ to 12€) and a high-payoff/high-cost option (the upper bound of high payoffs was 35€).

Exemplar choice alternatives are depicted on Fig 3B. To minimize cognitive load, the cost of

the small payoff option was held fixed across trials (short delay, small effort, small probability

of winning nothing) while the other three dimensions varied from trial to trial:

• In the delay discounting task, participants had to choose between a small payoff offered in 3

days (fixed delay) and a higher payoff later in time (delay as long as 1 year).

• For the effort discounting task, a calibration was first performed at the beginning of the

experiment to measure each participant’s maximal force (physiological limit) on a pneu-

matic grip device [50]. Participants were then asked to choose between a low-payoff/low-

effort option (fixed at 10% of maximal force) and high-payoff/high-effort (until 90% of maxi-

mal force) option. After their decision was made, participants had to execute the correspond-

ing effort on the grip device.

• In the lottery task, participants were asked to choose between a secure lottery (90% of win-

ning a small payoff) and a riskier lottery (lower probability to get a higher payoff). The lot-

tery outcome was not revealed during the task.

In Decision phase 1, the small payoff associated with the fixed cost was drawn pseudo-ran-

domly, whereas the payoff and cost of the second option were determined by an online (trial-

by-trial) adaptive design optimization procedure aiming at maximizing the efficiency of utility

estimation [46,51]. We refer the reader to the S1 Text for details related to the adaptive design.

In Decision phase 2, the same choices were presented to the participant in the same order. This

ensured that changes in participants’ behaviour between Decision phases 1 and 2 could not be

due to differences in proposed alternatives. Note that this is a very conservative strategy, since

people may remember and repeat their choices from Decision phase 1, thus potentially mask-

ing any covert influence bias.

In the Prediction phase, participants were asked to predict the choices from a “previous par-

ticipant” (hereafter: the “Other”, in fact an artificial agent) faced with similar two-alternative

forced choice tasks. On each trial, participants were first presented with the two alternative

options, then asked to pick a guess, and finally informed about the Other’s decision. Critically,

there were three conditions (cf. Fig 2A), which corresponded to different levels of similarity

between participants and artificial agents. In the Same condition, the Other’s cost-susceptibil-

ity (α(o)) was chosen to be identical to the participant’s cost-susceptibility (a
ðsÞ
1 , estimated dur-

ing the Decision 1 phase). In the Different condition, α(o) was chosen to be different from a
ðsÞ
1 .

More precisely, we set the Other’s cost-susceptibility α(o) to be greater (resp., smaller) than a
ðsÞ
1

if a
ðsÞ
1 was found to be smaller (resp. greater) than the median cost-susceptibility of a pre-tested

(pilot) group of participants. In these two first conditions no noise was added to the Other’s

decision (null behavioural temperature, i.e.: β(o)!1). In the Noisy condition, α(o) was chosen

identical to α(s), but noise was added to the Other’s decision process (the artificial agent’s tem-

perature was set to mimic the behavioural noise of the pilot participants).

To prevent carry-over effects between conditions, we used a between-subject design, with

three subgroups, each of which serves as a treatment group (condition Different) for a given

type of cost and as a control group (conditions Same and Noisy) for the other cost types. More
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precisely, we partitioned our participants as follows: group 1: Different delay discounting,

Same effort discounting and Noisy risk discounting, group 2:Noisy delay discounting, Different
effort discounting and Same risk discounting, group 3: Same delay discounting, Noisy effort

discounting and Different risk discounting. To avoid any overlap between options presented to

the participant in the Decision and in the Prediction phases, the fixed dimension in the predic-

tion phase was different from the decision phase: the short delay was fixed to two days instead

of three, the small effort 15% instead of 10% and the secure probability 85% instead of 90%.

This ensured that estimates of false-consensus and influence biases were not confounded by

simple anchoring or availability effects on remembered overt behaviour. In addition, another

online design optimization procedure was used to determine the payoff and the cost of the sec-

ond option proposed to the Other, under the constraint that the number of the Other’s "impul-

sive" choices (low-reward/low-cost choices) was fixed (50% in each condition). This ensured

that changes in participants’ behaviour between Decision phases 1 and 2 could not be due to

differences in the descriptive statistics of the Others’ overt behaviour between the three condi-

tions. In particular, would participants’ attitude change be higher in the Different than in the

Same condition, then it cannot be due to a mere copying of overt behaviour.

Results

All statistical data analyses (including classical ANOVAs and regressions) were performed

using the VBA freeware (http://mbb-team.github.io/VBA-toolbox/), [46,52]. Here, we proceed

with analyses of increasing sophistication. We start with model-free analyses, which rely upon

simple descriptive statistics of peoples’ aggregate behaviour in both Decision and Prediction
phases. We then perform another series of statistical data analyses, in the aim of directly evalu-

ating the qualitative predictions of our computational model. These analyses exploit inter-indi-

vidual differences to provide an empirical reproduction of Fig 2. Finally, we report the results

of Bayesian model comparisons, given trial-by-trial choice sequences in all experimental

phases.

1. Model-free analyses

The aim of these analyses is twofold: (i) testing for the existence of both false-consensus and

influence biases on effort, delay and risk attitudes, and (ii) documenting their amplitude based

on summary features of participants’ data.

Let us first consider the false-consensus bias, which we expect to be expressed during the

Prediction phase, before the agent has learned about the Other’s behavioural trait. Recall that,

by design, the Same condition matches the Other’s cost-susceptibility with the participant’s.

Thus, our prediction is twofold: (i) at the beginning of the Prediction phase, participants’ per-

formance should be higher in the Same than in the Different condition, and (ii) at the end of

the Prediction phase, there should be no performance difference. We test this prediction with a

pooled-variance ANOVA, where the dependant variable is the performance, which is mea-

sured in terms of percentage of correct responses (5 first/last trials in the Same and Different
conditions). More precisely, we included the effects of session stage (beginning/end), condi-

tion type (Same/Different) and their interaction, as well as the effect of cost type (effort/delay/

risk). Fig 4A below summarizes the performance pattern (averaged across cost types).

The ANOVA results confirm the two above predictions: there is a significant interaction

between session stage and condition type (two-tailed F-test, F1,148 = 13.5, p = 2×10−4), which is

due to a significant difference between the conditions Same and Different at the beginning of

the session (one-tailed t-test, t148 = 4.68, p = 10−5), whereas no such difference exists at the end

of the session (one-tailed t-test, t148 = -0.6, p = 0.70). Note that we checked ANOVA’s

The computational bases of attitude alignment

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005422 March 30, 2017 13 / 28

http://mbb-team.github.io/VBA-toolbox/


distributional assumptions. In particular, the empirical distribution of ANOVA residuals does

not significantly deviate from normality (Kolmogorov-Smirnov test: p = 0.15).

Finally, we performed a sanity check using the Noisy condition, which serves as a reference

point for irreducible prediction errors. In particular, we asked whether the false-consensus

bias induces stronger performance impairments than realistic volatility in the Other’s behav-

iour. Post-hoc tests show that (i) at the beginning of the session, performance is significantly

better in the Noisy than in the Different condition (two-tailed F-test, F1,148 = 21.0, p = 6×10−6),

and (ii) at the end of the session, performance is significantly better in the Different than in the

Noisy condition (two-tailed F-test, F1,148 = 8.0, p = 6×10−5). This is expected under the BPL

model, since learning will be slowed down by residual prediction errors induced by noisy

choices.

Regarding the influence bias, we expect that, in the Different condition, participants

increase (resp., decrease) their cost-susceptibility if they observe somebody more (resp., less)

susceptible to costs than themselves. Recall that participants face the exact same alternatives

during the Decision phases 1 and 2. This implies that differences between the number of, e.g.,

low-reward choices in Decision phases 1 and 2 cannot be driven by dissimilarities between

choice alternatives. However, such differences could be confounded by fluctuations in partici-

pants’ cost-susceptibility around the group mean. Thus, here again, the Same condition serves

as a control condition, this time for evaluating non-specific "regression to the mean" effects.

Thus, we evaluate the experimental evidence in favour of the existence of an influence bias

using a pooled-variance ANOVA, where the dependant variable is the difference in the

Fig 4. Model-free results. Quantification of false-consensus (A) and influence biases (B), in terms of a

comparison between the Same (yellow) and Different (purple) conditions. A: Top: average performance (+/-

standard error on the mean) during the Prediction phase is plotted as a function of session stage (beginning/

end) and condition type (Same/Different). Bottom: histogram of the ANOVA residuals (grey bars) and

moment-matched Gaussian approximation (red line). B: Top: average difference in the number of low-cost

choices between Decision phases 1 and 2 (+/- standard error on the mean) is plotted as a function of

participants’ initial cost-susceptibility (low/high) and condition type (Same/Different). Note: in the Different

condition, participants with an initial high (resp., low) cost-susceptibility have observed an artificial agent

endowed with a high (resp., low) cost-susceptibility. Bottom: histogram of the ANOVA residuals (grey bars)

and moment-matched Gaussian approximation (red line).

doi:10.1371/journal.pcbi.1005422.g004
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number of low-cost choices between Decision phases 1 and 2, which serves as a proxy for a

change in people’s covert cost-susceptibility. More precisely, we included the effects of partici-

pants’ initial cost-susceptibility (high/low, based upon the median-split), condition type

(Same/Different) and their interaction, as well as the effect of cost type (effort/delay/risk). Fig

4B summarizes the pattern of changes in cost-susceptibility (averaged across cost types).

First of all, one can see that people tend to increase (resp. decrease) the number of low-cost

choices they make when their initial cost-susceptibility is low (resp. high). Importantly, this

difference is stronger in the Different than in the Same condition. The ANOVA confirms that

there is a significant interaction between participants’ initial cost-susceptibility and condition

type (two-tailed F-test, F1,97 = 4.7, p = 0.03), which is due to a significant difference between

the low and high initial cost-susceptibility in the Different condition (one-tailed t-test, t97 = 3.6,

p = 2×10−4) whereas no such difference exists in the Same condition (one-tailed t-test, t97 =

1.1, p = 0.14). Post-hoc inspection of the Different condition shows that make people make sig-

nificantly more low-cost choices in Decision phase 1 than in phase 2 when their initial cost-sus-

ceptibility is low, i.e. when they observed an agent more susceptible to costs than themselves

(one-tailed t-test, t97 = 4.0, p = 6×10−5). Reciprocally, they make significantly less low-cost

choices in Decision phase 1 than in phase 2 when they observed an agent less susceptible to

costs than themselves (one-tailed t-test, t97 = 2.0, p = 0.02). Recall that these effects cannot triv-

ially be due to simple imitation of overt choices since, by design, people observed the exact

same proportion of low-cost choices in all conditions (50% for each participant and each

dimension). Note however that this pattern is not perfectly in line with theoretical predictions,

since people with initially high cost-susceptibility tend to decrease the number of low-cost

choices in the Same condition. In turn, these people show no significant difference between

the Same and the Different conditions. We comment on this in the Discussion section of this

manuscript. Here as well, the empirical distribution of ANOVA residuals does not significantly

deviate from normality (Kolmogorov-Smirnov test: p = 0.30).

Taken together, these results indicate that people become significantly more (resp., less)

impatient, lazy or prudent after having observed somebody more (resp., less) susceptible to

delay, effort or risk than themselves.

2. Validation of qualitative model predictions

So far, we have only looked at qualitative differences between the Same and Different condi-

tions in order to assess the existence of the false-consensus and influence biases (irrespective of

cost type). In what follows, we aim at evaluating the predicted relationships between one’s own

attitude and one’s prior on the Other’s trait (false-consensus), and between one’s prediction

error and one’s attitude change (social influence), for each type of cost, separately. We assess

these relationships through the analysis of inter-individual variability in prior/posterior

guesses (Prediction phase) and initial/final cost-susceptibilities (Decision phases). We estimate

the former by fitting the BPL model (cf. Section 1.2) to trial-by-trial data in the Prediction
phase for each participant, in all (Same, Different and Noisy) conditions. We estimate the latter

by fitting the cost-benefit arbitrage models (cf. section 1.1) to trial-by-trial data in the Decision
phases for each participant, for each type of cost. Note that none of these models (BPL and

cost-benefit arbitrage) are informed about either false-consensus or influence biases.

Let us first consider the false-consensus bias. Recall that the BPL model is simply parameter-

ized in terms of the mean m
ðoÞ
0 and variance SðoÞ

0
of the agent’s prior belief pðaðoÞÞ ¼ NðmðoÞ0 ;S

ðoÞ
0
Þ

on the Other’s trait. We expect participants’ prior m
ðoÞ
0 on the Other’s trait to behave as an affine

function of their initial cost-susceptibility a
ðsÞ
1 (cf. Eq 9 and Fig 2A). We check this prediction by

testing for a positive linear relationship between the estimated participants’ prior mean and the
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estimated participants’ cost-susceptibility, for each cost type. The results of this analysis are

summarized on Fig 5A.

To begin with, we checked that the fitted models yield accurate accounts of participants’

trial-by-trial behaviour. We thus measured the models’ balanced accuracy, which is an unbi-

ased estimate of the rate of correct predictions for binary data [53]. On average (across partici-

pants), the balanced accuracy of the cost-benefit arbitrage models (evaluated at Decision phase

1) was 80%, 77% and 78% for delay, effort and risk, respectively. Similarly, the average bal-

anced accuracy of the BPL model (evaluated at the Prediction phase) was 88%, 85% and 79%

for delay, effort and risk, respectively. Since these models achieve a high prediction accuracy,

we can safely interpret the ensuing regression results. In addition, we checked whether inter-

individual differences in the absolute error between final BPL posterior estimates of Other’s

cost-susceptibilities m
ðoÞ
T and true Other’s cost-susceptibilities α(o) predicted between-subject

variability in performance during the last 5 trials of the Prediction phase. We found that, even

when controlling for condition type, this was indeed the case for Effort (R2 = 12.5%, p = 0.007)

and Risk (R2 = 11.7%, p = 0.009), but not for Delay (R2 = 0.2%, p = 0.37) because the end per-

formances saturate at ceiling level (90% on average across all condition types, 93% if one

discards the Noisy condition). Note that both cost-benefit arbitrage and BPL models were

favoured by formal Bayesian model comparisons (over alternative decision and learning

models). We refer the interested reader to S1 Text for details regarding statistical compari-

sons with other models.

We found that participants’ prior mean was significantly (positively) correlated with their

initial cost-susceptibility for all types of cost (one-tailed t-tests; delay: R2 = 36.0%, t49 = 5.3,

Fig 5. Validation of qualitative model predictions. Assessment of false-consensus (A) and influence

biases (B), in terms of estimated parameters of BPL and cost-benefit arbitrage models. A: Top: participants’

prior mean on the Other’s cost-susceptibility (y-axis) is plotted as a function of their own cost-susceptibility (x-

axis), for the three different types of cost (blue: delay, green: effort, red: risk). Bottom: group-level estimates

(+/- standard error on the mean) of offsets and slopes for each cost type. A: Top: participants’ change in cost

-susceptibility (y-axis) is plotted as a function of prediction error (x-axis), for the three different types of cost.

Bottom: group-level estimates (+/- standard error on the mean) of offsets and slopes for each cost type.

doi:10.1371/journal.pcbi.1005422.g005

The computational bases of attitude alignment

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005422 March 30, 2017 16 / 28



p = 2×10−6; effort: R2 = 29.2%, t49 = 4.5, p = 2×10−5; risk: R2 = 37.8%, t49 = 5.5, p = 8×10−7).

This confirms the prediction of our model, i.e. in the absence of any observation, people’s

prior guess about others’ cost-benefit arbitrage is derived from their own cost-susceptibility.

Let us now consider the influence bias (cf. Eq 12 and Fig 2B). Our theoretical prediction is

that the change in people’s cost-susceptibility a
ðsÞ
2 � a

ðsÞ
1 increases with the "prediction error"

m
ðoÞ
T � a

ðsÞ
1 , where m

ðoÞ
T is the participant’s estimate of the Other’s trait (after T = 40 trials of the

Prediction phase). We check this prediction by testing for a positive linear relationship between

the estimated change in people’s cost-susceptibility and the estimated prediction error, for

each cost type. The results of this analysis are summarized on Fig 5B.

First, note that the average balanced accuracy of the cost-benefit arbitrage models (evaluated at

Decision phase 2) was 81%, 83% and 80% for delay, effort and risk, respectively. In other terms,

there is no noticeable difference in the explanatory power of the models between theDecision
phases 1 and 2. We found that participants’ change in cost-susceptibility was significantly (posi-

tively) correlated with prediction error, for all types of cost (one-tailed t-tests; delay: R2 = 10.1%,

t49 = 2.3, p = 0.01; effort: R2 = 6.0%, t49 = 1.8, p = 0.04; risk: R2 = 26.9%, t49 = 4.2, p = 5×10−5).

Although directly validating Eq 16, a positive correlation of this sort could be partly confounded

by the common term in both dependent and independent variables (namely: a
ðsÞ
1 ). It turns out

that one can simply re-arrange Eq 16 to yield: a
ðsÞ
2 � l m

ðoÞ
T þ ð1 � lÞa

ðsÞ
1 . This suggest another

(more indirect) way of validating Eq 16, by regressing a
ðsÞ
2 against both m

ðoÞ
T and a

ðsÞ
1 . Here, evi-

dence for an influence bias derives from the significance of the contribution of m
ðoÞ
T . Note that m

ðoÞ
T

and a
ðsÞ
1 are anti-correlated by design, which is why we orthogonalized a

ðsÞ
1 w.r.t. m

ðoÞ
T prior to per-

forming the multiple regression analysis. Eventually, we found that m
ðoÞ
T explained a significant

amount of variance, for all types of cost (one-tailed t-tests; delay: R2 = 46.9%, t48 = 6.5, p = 2×10−8;

effort: R2 = 22.6%, t48 = 3.7, p = 2×10−4; risk: R2 = 71.6%, t48 = 11.0, p<10−8). Of course, -orthogo-

nalized- a
ðsÞ
1 was also found to significantly contribute to inter-individual variability in a

ðsÞ
2 (delay:

p<10−8; effort: p = 2×10−7; risk: p<10−8). Taken together, these analyses confirm the prediction

of our model, i.e. people align their attitude towards delay, effort and risk with others’.

Finally, we tested the inverted U-shaped relationship that we expect to hold between the

false-consensus and the influence biases (cf. Fig 2). Note that, in contradistinction to the false-

consensus bias, we cannot directly apply the formal definition of the influence bias. This is

because the derivation of IB in Eq 13 requires the specification of parameters from the Bayes-

ian model of attitude alignment. However, we took inspiration from [8], and used a model-

free proxy for IB, i.e.:

IB̂ ¼
a
ðsÞ
2 � a

ðsÞ
1

aðoÞ � a
ðsÞ
1

ð17Þ

Using the former numerical Monte-Carlo simulations, we verified that the correlation

between IB and IB̂ was indeed very high (r = 0.79), and that IB̂ also behaved as an inverted U-

shaped function of FCB. In particular, when fitting a quadratic model of FCB to IB and IB̂, the

quadratic regressor explained 5.3% of the variance of IB and 7.4% of IB̂. We then performed

this analysis with estimated behavioural traits in the Different condition (because IB̂ is ill-

defined when aðoÞ � a
ðsÞ
1 ), having pooled the data across cost types. The latter is justified both

by the predicted low statistical power of the test, and because we expect the inverted U-shaped

relationship to hold across subjective attributes of attitude alignment. The results of this analy-

sis are summarized on Fig 6 below.
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First of all, we asked whether the average influence bias, as proxied with IB̂, was significant.

This was indeed the case (one-tailed t-test: t48 = 4.4, p = 6×10−5, R2 = 29.3%). In addition,

there was no strong difference across cost types (F-test: F2,47 = 2.4, p = 0.1, R2 = 9.3%). Then,

we asked whether IB̂ follows an inverted U-shape relationship with FCB. When binning the

data according to FCB (cf. panel 6.A), this relationship is barely visible, due to high between-

subject variability. In fact, when fitting the quadratic model on un-binned data, the quadratic

regressor showed a trend that did not reach statistical significance (one-tailed t-test: t47 = 1.3,

p = 0.09, R2 = 3.6%). We could only reveal the quadratic effect above between-subject variabil-

ity when including both participants’ age and gender as possible confounding factors in the

regression model. The resulting analysis is shown on panel 6.B. In this case, the quadratic effect

was deemed significant (one-tailed t-test: t45 = 1.7, p = 0.04, R2 = 6.0%). Note that the empirical

histogram of the ensuing residuals shows no significant deviation to normality (Kolmogorov-

Smirnov test: p = 0.51). We will comment on these results in the Discussion section below.

3. Model-based analyses

In brief, the above analyses highlight the existence of false-consensus and influence biases,

which verify the main predictions of our Bayesian model (according to classical significance

testing procedures). However, we have not yet addressed the issue of assessing the model’s

explanatory power, given the full set of participants’ trial-by-trial behavioural data (across all

Decision and Prediction phases). In particular, under our social Bayesian model, the false-con-

sensus and influence biases are related through people’s priors regarding the scattering of

information about "how good" cost-benefit arbitrages are (cf. section 3.3). In what follows, we

perform a statistical comparison of our model, with and without false-consensus and/or influ-

ence biases, given trial-by-trial choice sequences in all experimental phases.

In principle, one can pool the cost-benefit arbitrage models (for Decision phases 1 and 2)

with the BPL (for the Prediction phase) in four different ways, depending on whether one

includes or not the false-consensus bias (according to Eq 9) and/or the influence bias (accord-

ing to Eqs 14 and 15). On the one hand, the absence of a false-consensus bias can be simply

accounted for by releasing the moments of the agent’s prior (mo
0

and So
0
) on the Other’s beha-

vioural trait from the constraint of Eq 9. This simply means that they belong to the set of

Fig 6. Assessment of the relationship between false-consensus and influence biases. This figure

summarizes the attempt to validate the prediction summarized on Fig 2D. A: participants’ influence bias IB̂ (y-

axis) is plotted as a function of their false-consensus bias FCB (x-axis), in the Different condition, across all

cost types. The data have been binned according to FCB, and blue error bars depict the resulting mean and

standard errors around the mean. The red line depicts the best fitting quadratic expansion. B: Same as in A,

but this time with influence biases corrected for age and gender inter-individual variability.

doi:10.1371/journal.pcbi.1005422.g006
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unknown model parameters, which have to be estimated given participants’ behaviour. In

turn, this decouples the Prediction phase from the first Decision phase (they share no common

parameter). Note that this still leaves open the possibility of other sorts of prior guesses about

others’ behavioural trait. On the other hand, the absence of an influence bias is simply mod-

elled by equating the agent’s initial and final cost-susceptibility (in Decision phases 1 and 2,

respectively). This effectively decouples Decision phase 2 from the Prediction phase (no influ-

ence bias).

We thus considered the following 2×2 factorial model space for each participant and each

cost type (delay, effort and risk): m1 (no false-consensus bias, no influence bias), m2 (false-con-

sensus bias, no influence bias), m3 (no false-consensus bias, influence bias) and m4 (false-con-

sensus and influence biases). Model parameters were allowed to vary across participants and

cost types. To account for model complexity when quantifying how likely these models are

given the participants’ choice sequences, we evaluated their marginal likelihood or Bayesian

model evidence, under a variational-Laplace approximation [46,47,52]. These were then

inserted into a group-level random-effect Bayesian model comparison (RFX-BMS) [54,55].

This analysis treats models as random effects that could differ between participants, with an

unknown population distribution (described in terms of model frequencies/proportions). In

particular, we report the exceedance probability (EP) associated with models (or family of

models), which corresponds to the posterior probability that a given model is the most fre-

quent one in the population.

To begin with, between-condition comparisons allows us to ask whether model attributions

are stable across cost types [54]. It confirms that the underlying model (within the comparison

set) is invariant across cost types (EP = 100%). Thus, we sum log-evidences over cost types

(fixed effect across cost types), and performed RFX-BMS. The results of this analysis is summa-

rized in Fig 7.

Let us first consider inter-individual differences in model attributions, i.e. the posterior

probabilities that each model explains each participant’s data. These are essentially summary

statistics of Bayesian model comparison at the subject-level. One can see that, although a few

participants seem to show no evidence of influence bias (model m2), model attributions mostly

supports model m4, i.e. the presence of both false-consensus and influence biases, as predicted

Fig 7. Model-based results. Evaluation of the joint treatment of false-consensus and influence biases, in

terms of a group-level statistical comparison of four candidate models of participants’ behaviour over all

Decision and Prediction phases (m1: no false-consensus, no influence; m2: false-consensus, no influence;

m3: no false-consensus, influence; m4: false-consensus and influence). Left: model attributions for each

model (x-axis) and each participant (y-axis). Middle: estimated model frequencies (+/- posterior standard

error) of each model. Right: exceedance probabilities (light grey) and protected exceedance probabilities

(dark grey) of each model.

doi:10.1371/journal.pcbi.1005422.g007
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by Eqs 9, 14 and 15. We refer the interested reader to S1 Text for reports of best and worst

model fits (across participants). This eventually transpires in the RFX-BMS estimates of model

frequencies, which account for within-subject uncertainty regarding model attributions. In

brief, about 85% of people are best described in terms of either model m4 (frequency ± two

standard deviations = 58.1% ±6.3%) or model m2 (26.9% ±5.7%). The Bayesian omnibus risk

was very low (BOR = 1.6%), indicating that this pattern of model frequencies is very unlikely

driven by chance [54]. Finally, the exceedance probability shows that model m4 is likely to be

most prevalent in the population (EP = 99.6%, protected EP = 98.4%).

Taken together, these analyses provide an independent piece of evidence in favour of our

Bayesian interpretation of attitude alignment, which results from the interaction between

false-consensus and influence biases.

Discussion

In this paper we introduce and validate a computational model of how people learn about and

from others’ lazy, impatient or prudent attitudes. This model predicts that such learning exhib-

its both false-consensus and influence "biases", which arise from Bayes-optimal information

processing. It also predict that the magnitude of attitude alignment results from a non-trivial

interaction between false-consensus and influence biases. In a behavioural experiment, we

show that healthy adults behave in accordance to the predictions of the model. In particular,

we demonstrate a strong false-consensus bias, whereby people’s prior guess about others is

derived from their own attitude, and is then refined with observational information. In addi-

tion, people’s cost-benefit arbitrage drifts towards others’, leading to an influence bias on

effort, delay and risk attitudes. Finally, the influence bias seems to follow the predicted inverted

U-shaped relationship with false-consensus.

Let us first discuss how consistent and/or novel our results are with respect to the existing

literature

First of all, we found that people are capable of learning about others’ lazy, impatient or

prudent behaviour (reaching a choice prediction accuracy of about 85%, cf. Fig 4A). Moreover,

our results suggest that this learning skill relies upon sophisticated mentalizing, which is

bound to a false-consensus bias that gradually disappears as informative feedbacks are pro-

vided. From an experimental viewpoint, this result is in line with recent neuroscientific stud-

ies, which confirmed that typical mentalizing brain systems -more precisely, medial prefrontal

regions- are involved when people are predicting others’ delay arbitrages [56] and choices in a

learning task [57]. However, these studies were neither in a position to detect false-consensus

biases, nor did they provide any computational insight into how people mentalize in such

tasks. Our work also extends previous computational studies, which indicate that people are

more likely to rely on Bayesian mentalizing schemes than on heuristics when predicting oth-

ers’ choices over good bundles [58]. Here, the incremental aspect of our work is twofold: we

disclose a computationally efficient (variational) approximation to exact Bayesian inference

(cf. S1 Text), and (ii) we incorporate both false-consensus and influence mechanisms into the

mentalizing process. The former issue is extremely relevant to neuroscientific inquiries

because it suggest a simple algorithmic implementation of mentalizing that could be traced

back in neuroimaging trial-by-trial signals. The latter issue is important, because it sheds new

light on a vast amount of empirical findings from social psychology. In particular, an estab-

lished view on "false consensus effects" is that it fulfils the need for self-esteem, in that it

deludes people into thinking that their values or beliefs are shared by others [59]. We refer the

interested reader to [60] for variants of this type of explanations. Here, we argue that one does

not need to resort to constructs of this sort. Rather we suggest that the ultimate cause of false-
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consensus biases is that they (paradoxically) improve mentalizing performance (in terms of

behavioural prediction accuracy). We will come back to this later on, when discussing the opti-

mality of false-consensus and influence biases.

Second, we found that people learn from others’ lazy, impatient or prudent behaviour.

More precisely, we have shown that people’s attitude towards effort, delay or risk drifts

towards that of others. This extends previous findings regarding similar “social contagion”

effects on aesthetic judgments [18,61,62]. To the best of our knowledge, only two studies dis-

cuss the influence of others’ covert attitudes [8,9]. Their inconsistent results (in terms of the

significance of delay discounting influence) may be due to differences in experimental designs,

which may not have afforded enough statistical power to detect this effect. In this context, our

results are important, because the influence bias may explain some form of preference instabil-

ity, which has been largely documented in the behavioural economics literature [63–65]. A

related question is whether such phenomena are driven by simple public compliance that only

induces short-term changes in overt preference ratings [66] or reflect more enduring changes

in deep determinants of behaviour [67]. Although we cannot directly address this question, we

provide empirical evidence that the influence of others’ attitude towards effort, risk or delay is

not simply due to the imitation of overt behaviour. This is because, in our experimental setting,

the influence bias occurs despite the fact that the statistical properties of observed overt behav-

iour (such as the number of low-cost choices) were kept identical across conditions. In any

case, our study is the first to demonstrate the impact of computational properties of mentaliz-

ing upon attitude alignment. In particular, we have disclosed the non-trivial interaction

between false-consensus and influence biases, which was predicted by the Bayesian model of

attitude alignment we have proposed. Although further work is clearly needed to establish this

effect and explore its practical relevance, this result is undoubtedly unprecedented.

Let us now discuss the limitations of our study

First of all, recall that we performed three types of statistical data analyses, with increasing

sophistication (from model-free summary statistics to validations of qualitative model predic-

tions, to quantitative model comparisons given trial-by-trial choice sequences). Beyond its

internal consistency, one could question the strength of the reported empirical evidence. For

example, using model-free analyses, we found that people with initial high-cost susceptibility

changed their choices similarly in the conditions Same and Different. This is problematic

because the condition Same serves to evaluate baseline uncontrolled preference instabilities

(including, e.g., regression to the mean effects). This is however, likely imputable to a combi-

nation of weaknesses in our design, namely: the fact that we used a between-subject design

(where inter-individual differences may partly confound the comparison of the Same and the

Different conditions), our use of a prior pilot study for partitioning subjects inHigh versus Low
initial cost-susceptibility subgroups (which resulted in slight statistical imbalance, whereby the

variance of the prediction error aðoÞ � a
ðsÞ
1 was higher in the High group than in the Low

group), etc. . . All these issues may have resulted in a loss of statistical power, which would

explain the absence of evidence for a difference between the Same and the Different conditions

for people with initial high-cost susceptibility. One may also ask whether the empirical evi-

dence for the false-consensus bias may not be deemed stronger than for the influence bias. A

simple possibility is that the false-consensus bias may be a more stable phenomenon than the

social influence bias. This is perhaps best exemplified in the evaluation of the qualitative model

predictions, in terms of the effect sizes of related affine transforms (cf. Fig 4). In fact, a simple

two-sample t-test confirms that the difference in percentages of explained variance is signifi-

cant (p = 0.02). Recall, however, that our Bayesian model of attitude alignment was predicting

that the affine relationship between the agent’s prior and her initial attitude should be much
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less noisy than the relationship between her attitude change and the prediction error. This is

perhaps best exemplified on Figure A1 of S1 Text. In relation to this, although we found evi-

dence for an inverted U-shaped relationship between false-consensus and influence biases, we

acknowledge that this evidence is not definitive. Recall that the quadratic effect only became

significant when we explained away between-subject variability that was induced by inter-indi-

vidual differences in age and gender. Here again, although the predicted statistical power was

rather weak (expected R2 = 7.4%), we had not optimized the experimental design w.r.t. the

detection of this effect. Clearly, further work is needed here to firmly establish this effect.

Second, despite the converging empirical evidence reported in this study, one may argue

that the validation of our Bayesian model of attitude alignment is incomplete. For example, we

did not include any explicit comparison with alternative explanations, which would make

qualitatively similar predictions. The issue here is in identifying scenarios that can explain how

people learn about and from others’ lazy, impatient or prudent behaviour the way they do; in

particular, these scenarios have to account for both false-consensus and influence biases. For

example, during the Prediction phase, if people do not learn some form of (hidden) parameter-

ized utility function when predicting others’ cost-benefit arbitrages, what do they learn? A pos-

sibility is that people update an estimate of the probability that others’ will choose the low-cost

option. However, Bayesian model comparison with the BPL dismisses this assumption (see S1

Text). More generally, no simple heuristic strategy based upon the statistics of overt behaviour

would work here, because these are matched across conditions (by design, the frequency of

observed low-cost choices is fixed to 50%). In other terms, learning is impossible without

explicitly accounting for the cost-benefit properties of choice alternatives. This is why simple

variants of reinforcement learning models (as used in, e.g., [57]) cannot explain how people

eventually learn to predict others’ cost-benefit arbitrages. Also, one may ask how close people’s

internal models of others’ cost-benefit arbitrages are to the mathematical form of the specific

utility functions we employed to simulate attitudes towards delay, effort or risk. In fact, our

experimental claim does not go as far as to assert that behavioural economic models are best

representatives of people’s mentalizing intuitions. Rather, they serve as simple proxies for

adjustable cost-benefit arbitrages, which can account for people’s sensitivity to inter-individual

differences. But then: what if our selection of ad-hoc utility functions provides distorted repre-

sentations of people’s mentalizing processes? This is of course theoretically possible. Neverthe-

less, Bayesian model comparison of different underlying utility functions (including linear

utilities) in the Prediction phase supports the current selection of cost-specific utility functions

(see S1 Text).

Third, we acknowledge that our theoretical framework falls short of related psychologi-

cally-relevant objectives. To begin with, our Bayesian model cannot be used to predict which

internal aspects of mentalizing are conscious/explicit and which are unconscious/implicit.

Recall that this as a general limitation of models based upon information theory, which ignores

this distinction. This is because the conscious/unconscious dichotomy makes a difference nei-

ther to its mathematical constituents (probability distributions) nor to their manipulation

(probability calculus). In brief, a Bayesian agent is neither conscious nor unconscious: it is auto-

matic. This might be considered unfortunate, given the current debate regarding the relative

contributions of implicit and explicit components of mentalizing [24,68–70]. Note that the anal-

ysis of the experiment’s written debriefing indicates that only 19% of the participants became

aware of a change in their attitude towards effort, delay or risk. Interestingly, awareness of atti-

tude change does not correlate with its magnitude. We thus are inclined to think that, although

partially accessible to some form of metacognitive self-monitoring, the influence bias is likely to

be mostly implicit. This is in line with studies reporting "blindness" or social influence on cate-

gorical judgments [71,72]. Yet another limitation of our model relates to the dynamics of
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attitude alignment. Strictly speaking, the model specifies neither when attitude alignment

occurs nor how long it lasts for. Addressing the former issue would require comparing model

variants in which attitude alignment occurs either while people are mentalizing about others, or

when they are about to perform cost-benefit arbitrages. A first hint here comes from recent neu-

roscientific evidence, which indicates that preference malleability occurs in parallel to learning-

induced plasticity in medial prefrontal cortex [8]. The latter issue is related to the robustness of

the influence bias. Owing to the relative weakness of the effect sizes reported in this study (at

least when compared to the false-consensus bias), we would argue that further work is clearly

needed here.

Let us now discuss the Bayes-optimality of false-consensus and influence biases in the light

of evolutionary thinking. We have argued that these phenomena should be expected, from

information-theoretic principles. More precisely, our Bayesian model of attitude alignment

suggest that they arise from prior assumptions regarding the scattering of people’s information

about how “good” behavioural policies are. This joint treatment of false-consensus and influ-

ence biases deserves a few clarifying comments.

Recall that, beyond the context of attitude alignment, Bayesian models of cognition seem to

be paradoxically plagued by their (somewhat undesirable) normative perspective on informa-

tion processing [73,74]. This sort of criticism undoubtedly applies to the work we present here.

We acknowledge that it may be difficult, if not impossible, to claim that the learning mecha-

nisms behind false-consensus and influence biases are quintessentially Bayesian. In fact, it

would be almost trivial to capture, e.g., the influence bias, using ad-hoc learning models (e.g.,

variants of Rescorla-Wagner learning rules). However, such models would not provide an

explanation as to why one should expect to see an influence bias in the first place. In addition,

it is unlikely that models of this sort would predict more intricate phenomena, such as the

existing interaction between false-consensus and influence biases. From our point of view,

here lies the value of our Bayesian account of attitude alignment: it predicts most (if not all) of

the salient features of these biases from first (normative) principles.

We start with the premise that one’s behavioural trait can be thought of as one’s subjective

and uncertain estimate of the "best" policy. It follows that one may guess others’ cost-suscepti-

bility from one’s own belief about "best" policies, hence the false-consensus bias. In turn, the

false-consensus bias results from the combination of two necessary factors, namely: (i) one’s

behavioural trait determines one’s prior expectation for others’, and (ii) the precision of this

prior guess is not null (finite prior variance). Note that, in principle, the prior bias that would

eventually yield the fewest prediction errors on average should be derived from the distribu-

tion of traits within the population. So why is there any false-consensus bias at all? The reason

lies in the non-trivial relationship between the false-consensus and influence biases. As one

aligns with more and more individuals, one’s trait would slowly converge to the group mean

(up to sampling errors). In turn, the false-consensus bias would tend towards the optimal

prior.

Let us now turn to the influence bias, which we see as yet another consequence of the above

premise. Similarly to information cascades in serial judgments [75], being exposed to others’

attitudes towards delay, effort or risk provides the observer with an opportunity to learn utile

information regarding "best" policies. At this point, there are two (related) remarks to be

made. First, a given environmental niche might favour some behavioural traits through selec-

tive pressure. Critically, whether attitude alignment facilitates or hinders this distal selection

pressure is a nontrivial question [76]. The key idea here, is that attitude alignment may have

adaptive fitness, essentially because it serves to correct potentially inaccurate (oddball) innate

traits. To support this claim, one would need to show, using, e.g., Evolutionary Game Theory

[77], that phenotypes exhibiting attitude alignment (as documented in this study) eventually
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persist, irrespective of the adaptive fitness of any particular attitude (which depends upon arbi-

trary features of the socio-environmental niche). Second, our treatment of attitude alignment

bypasses established evolutionary explanations that rely on social norms and the avoidance of

social rejection [67,78,79]. Note that under the latter view, false-consensus biases are but a

form of "wishful thinking" [80], i.e. a (pleasant?) delusion of conformity. But then, wouldn’t

false-consensus aggravate the risk of social rejection, hence eventually impairing the adaptive

fitness of social agents? This is important, because it would imply that social conformity and

"oddball correction" would act as opposing evolutionary forces on phenotypes that exhibit

both influence and false-consensus biases. Here again, Evolutionary Game Theory can be used

to identify which features of the species’ socio-environmental niche would control which of

these forces would dominate.

These remarks are in fact reminiscent of the debate regarding the evolutionary origins of

"herding", i.e. the uncoordinated alignment of behaviours of individuals in a group (herd) that

occurs without centralized coordination [81]. Early field investigations suggested that herding

can emerge from the uncoordinated behaviour of animals engaged in, e.g., predator avoidance

or foraging [82]. More generally, herding behaviour includes, but is not limited to, insect

swarming [83], bird flocking [84] or human crowding [85]. The latter takes impressively diverse

forms, ranging from panic crowd behaviour [86,87], to fashions, cultural customs and the local-

ized conformity of political opinions [75,88]. The breadth of the phenomenon extends largely

beyond that of human attitude alignment, as can be possibly captured by the model we have

presented here. Nevertheless, attitude alignment may be viewed as one of the many cognitive

mechanisms that contribute to the self-organization of collective (human?) behaviour [89,90].

The non-trivial issue here is to predict the transient dynamics of social group interactions that

result from the intrinsic properties of attitude alignment [91]. This unresolved question opens

many fascinating questions that may require the development of novel experimental and theo-

retical tools [92].

Supporting information
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