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Imaging artifacts such as image saturation can restrict the computational analysis of
medical images. Multifractal analyses are typically restricted to self-affine, everywhere
singular, surfaces. Image saturation regions in these rough surfaces rob them of these core
properties, and their exclusion decreases the statistical power of clinical analyses. By
adapting the powerful 2D Wavelet Transform Modulus Maxima (WTMM) multifractal
method, we developed a strategy where the image can be partitioned according to its
localized response to saturated regions. By eliminating the contribution from those
saturated regions to the partition function calculations, we show that the estimation of
the multifractal statistics can be correctly calculated even with image saturation levels up to
20% (where 20% is the number of saturated pixels over the total number of pixels in the
image).
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1 INTRODUCTION

Instrumentation noise, hardware failures, and inadequate camera or spectrometer calibration
can lead to imaging artifacts (Walz-Flannigan et al., 2018; Liu H. et al., 2021). In many
circumstances, a quality control procedure eliminates imaging data that do not pass a minimal
quality requirement and the samples are re-imaged. However, in certain situations, in particular
for imaging data obtained from human samples (e.g., screening mammography), re-imaging is
often much more difficult, if not impossible. In other situations, images containing artifacts
may still be usable for subjective analyses via visual inspection, but would otherwise be
inadequate for objective, computational image analysis pipelines. Therefore, efforts are
needed to palliate the deficiencies caused by imaging artifacts on sensitive computational
analyses.

Image saturation is a type of distortion where a portion of the acquired image is limited to some
maximal pixel value (Figure 1). It can cause problems for computer vision algorithms that assume
linearity, unless saturated pixels are identified and handled appropriately (Hasinoff, 2014). Typical
approaches to deal with saturated pixels are to either ignore them (eliminate from the analysis) or
interpolate their values based on neighboring pixels (Masood et al., 2009). Image saturation also
affects calculations in the Fourier domain and needs a strategy to be mitigated (Wetzstein et al.,
2010).

The multifractal analysis of self-affine rough surfaces (Arneodo et al., 2000; Decoster et al., 2000;
Arneodo et al., 2003; Wendt et al., 2009) is very valuable in many applications with underlying
multiscale non-linear variability, from astrophysics (Khalil et al., 2006; Kestener et al., 2010),
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geophysics (Roux et al., 2000), texture-based segmentation
(Pascal et al., 2018), to biomedical imaging (Kestener et al.,
2001; Marin et al., 2017; Gerasimova-Chechkina et al., 2021).

Saturation can easily perturb the multifractal analysis,
especially for negative statistical order moments, as
discussed in detail below. Indeed, any method that uses
either an increment or gradient-based approach to estimate
the multifractal signature of rough surfaces (Arneodo et al.,
2000; Decoster et al., 2000; Arneodo et al., 2003; Khalil et al.,
2006) risks being affected by regions of saturation within the
image. Mathematically-speaking, such artifactual images do
not possess truly self-affine properties (e.g., everywhere
continuous but nowhere differentiable) because these
saturation regions are flat and thus infinitely differentiable.
Therefore, any estimation of multifractal statistics from such
images would be incorrect. To the best of our knowledge, no
approach exists in the current literature to rescue the effects of
image saturation on multifractal statistics.

The 2D Wavelet Transform Modulus Maxima (WTMM)
method has been adapted and applied in three different
forms: a multiscale segmentation method (Kestener et al.,
2001; Khalil et al., 2007; Roland et al., 2009; Grant et al., 2010;
Kestener et al., 2010; McAteer et al., 2010; Batchelder et al.,

2014; Marin et al., 2018; Liu J. et al., 2021), a multiscale
anisotropy method (Khalil et al., 2006, 2009; Tilbury et al.,
2021), and a multifractal formalism (Arneodo et al., 2000;
Decoster et al., 2000; Roux et al., 2000; Arneodo et al., 2003;
Khalil et al., 2006). The 2D WTMM multifractal method is a
multiscale formalism perfectly suited for the analysis of self-
affine rough surfaces such as mammograms by identifying
density fluctuations and spatial correlations
within these surfaces (Batchelder et al., 2014; Plourde
et al., 2016; Marin et al., 2017; Gerasimova-Chechkina
et al., 2021).

In this manuscript, we demonstrate how the 2D WTMM
multifractal method, thanks to the ease with which its space-
scale skeleton can be partitioned, allows one to eliminate the
effects of saturation on the multifractal statistics. Moreover,
we show that the implementation of the strategy used to
eliminate these effects does not preclude the analysis of
normal (non-saturated) images. In Section 2, a detailed
recapitulation of the 2D WTMM multifractal method is
presented. The effects of image saturation on the
calculation of the multifractal statistics and the rescue
method are presented in Section 3, followed by the
conclusion and discussion in Section 4.

FIGURE 1 | Example of saturation effects on a 360, ×, 360 pixel subregion from a mammogram. (A) Original image. (B) Mesh representation of image (A) as a
rough surface. (C) Same image as in (A), but saturated at 20%. (D) Mesh representation of image (C) as a rough surface.
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2 MATERIALS AND METHODS

2.1 The 2D WTMM Multifractal Method
Let f be a function fromR2 intoR and Sh the set of all points x0 so
that the Hölder exponent of f at x0 is h. The singularity spectrum
D(h) of f is the function which associates with any h, the fractal
dimension of Sh

D h( ) � DF x ∈ R2 , h x( ) � h{ }.
The continuous wavelet transform is defined as

Tψ f[ ] b, a( ) �
Tψ1

f[ ] � a−2 ∫ψ1 a−1 x − b( )( )f x( )d2x

Tψ2
f[ ] � a−2 ∫ψ2 a−1 x − b( )( )f x( )d2x

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
where b is the space parameter, f ∈ L2(R), a represents scale, x =
(x, y), and where the first-order wavelets are defined as (Arneodo
et al., 2000)

ψ1 x, y( ) � zG x, y( )
zx

andψ2 x, y( ) � zG x, y( )
zy

with

G x, y( ) � e− x2+y2( )/2 � e−|x|
2/2.

The wavelet transform can be expressed in terms of its
modulus Mψ[f](b, a) and argument Aψ[f](b, a):

Tψ f[ ] b, a( ) � Mψ f[ ] b, a( ),Aψ f[ ] b, a( )( ), (1)
where

Mψ f[ ] b, a( ) �
����������������������������
Tψ1

f[ ] b, a( )( )2 + Tψ2
f[ ] b, a( )( )2√

Aψ f[ ] b, a( ) � Arg Tψ1
f[ ] b, a( ) + iTψ2

f[ ] b, a( )( ).
The Wavelet Transform Modulus Maxima (WTMM) are
locations b where Mψ[f](b, a) is a local maximum in the
angular direction of Aψ[f](b, a) for a given scale a. The
WTMM capture the gradient changes in the underlying rough
surface. The WTMM are on connected chains, called maxima
chains (Arneodo et al., 2000). This process is repeated at every
scale. An example for a 2D fractional Brownian motion (fBm)
surface (Mandelbrot and Ness, 1968) with Hurst roughness
exponent H = 0.7 is provided in Figure 2A, where the black
edge detection lines shown in Figures 2B–D are the WTMM
chains.

FIGURE 2 | (A) A 512 × 512-pixel fBm surface with H = 0.7. The maxima chains, i.e., positions where the modulusMψ[f](b, a) from Eq. 1 is maximum, are shown
as black lines while theWTMMM are represented as black dots for scale a = 20 pixels (B), a = 56 pixels (C), and a = 158 pixels (D). Also shown in (D) is the overlay of the
maxima chains and WTMMM on the original image smoothed with the Gaussian function G at scale a = 158 pixels. The WTMMM are then connected across scales to
make the WT Skeleton shown in Figure 3.

Frontiers in Physiology | www.frontiersin.org June 2022 | Volume 13 | Article 9218693

Juybari and Khalil Elimination of Image Saturation Effects

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


The WTMM maxima (WTMMM) are defined as the points
along the maxima chains where Mψ[f](b, a) is locally
maximum (black dots in Figures 2B–D). These WTMMM are
connected through scales, a, and form individual maxima lines.
The set of all maxima lines is called the Wavelet Transform (WT)
space-scale skeleton, as illustrated in Figure 3A.

Along amaxima line pointing to the singularity x0 in the rough
surface as a → 0+, denoted Lx0(a), the WTMMM follow (Mallat
and Hwang, 1992; Arneodo et al., 2000)

Mψ f[ ] Lx0 a( )( ) ~ ah x0( ), a → 0+ (2)
where h (x0) is the Holder roughness exponent. Note that Eq. 2
only holds if the wavelet order (= 1) is greater than the Holder
exponent (Mallat and Hwang, 1992; Arneodo et al., 2000), which
is a safe assumption to make in this study since all surfaces
considered here have roughness exponents less than 1.

This means that h (x0) can be estimated by considering

log2 Mψ f[ ] Lx0 a( )( )( )
log2 a( ) ~ h x0( ). (3)

Figure 3B shows such a log-log plot for all of the maxima lines
shown in Figure 3A. This is called a sheaf.

2.2 Partition Function and Statistical Order
Moments
LetL(a) be the set ofmaxima lines at scale a and define the partition
functions as (Arneodo et al., 2000, 2003; Khalil et al., 2006):

Z q, a( ) � ∑
l∈L a( )

sup
b,a′( ) ∈ l,a′≤ a

Mψ f[ ] b, a′( )⎛⎝ ⎞⎠q

(4)

where q are the statistical order moments. Note that negative q
values give more weight to small modulus values while positive q
values give more weight to large modulus values. The following
power-law relationship allows us to estimate the roughness of a
surface (see Arneodo et al. (2003) and references therein):

Z q, a( ) ~ aτ q( ), a → 0+. (5)
For a monofractal rough surface such as a fBm surface, this

τ(q) spectrum is a linear function of q where the slope of τ(q)
gives an estimate for the Hurst exponent, H, i.e., (Arneodo
et al., 2000):

τ q( ) � qH − 2. (6)
However for multifractal rough surfaces, τ(q) is nonlinear which
highlights the varying roughness exponents in the underlying
surface (Decoster et al., 2000).

A Legendre transform can be applied to the τ(q) spectrum to
obtain the D(h) spectrum of singularities (Arneodo et al., 2000,
2003; Khalil et al., 2006):

D h( ) � min
q

qh − τ q( )( ). (7)

Given the numerical impediments related to the Legendre
transform (Arneodo et al., 1995), one can avoid directly
performing the Legendre transform by considering h and D(h)
as mean quantities defined in a canonical ensemble, i.e., with
respect to their Boltzmann weights computed from the
WTMMM (Arneodo et al., 2000):

Wψ f[ ] q, l, a( ) � sup b,a′( ) ∈ l,a′≤ aMψ f[ ] b, a′( )∣∣∣∣∣∣ ∣∣∣∣∣∣q
Z q, a( )

where Z (q, a) was defined in Eq. 4. One can then compute the
expectation values:

h q, a( ) � ∑
l∈L a( )

ln sup
b,a′( )∈l,a′≤ a

Mψ f[ ] b, a′( )∣∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣∣Wψ f[ ] q, l, a( ) (8)

and

D q, a( ) � ∑
l∈L a( )

Wψ f[ ] q, l, a( )lnWψ f[ ] q, l, a( ). (9)

This gives the following:

FIGURE 3 | (A)WT Skeleton: each vertical line connecting theWTMMM through the scales, by linking theWTMMM closest at the next scale, is known as a maxima
line. Each WTMMM point along these maxima lines have a modulus value at each (x, y, log2(a)) position. (B) Sheaf: One can study the behavior of the modulus as a
function of the scale parameter for each maxima line by eliminating the positional information (see Eq. 3). The three vertical purple lines correspond to scales 20, 56,
158 pixels represented in Figures 2B–D. In these two plots, the scale parameter is expressed in units of 7*2a pixels.
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h q( ) � dτ q( )
dq

� lim
a→0+

h q, a( )
ln a

(10)

D q( ) � lim
a→0+

D q, a( )
ln a

, (11)

from which we obtain the D(h) singularity spectrum.
Numerical calculations following the steps outlined above are
presented in Figure 4 for sample fBm surfaces with H = 0.1, 0.3,
0.5, 0.7.

Statistical order moments (q values) play a crucial role in the
2D WTMM multifractal method. These values allow one to

FIGURE 4 | (A) h (a, q) curves (Eq. 8) and (B) D (a, q) curves (Eq. 9) for q values from −3 to 5 for fBm surfaces with H = 0.5. (C) h(q) (Eq. 10) for fBms with H = 0.1,
0.3, 0.5, 0.7. (D) List of q values used. Corresponding (E) D(q) (Eq. 11) and (F) D(h).
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emphasize different singularity strengths of the underlying
surface by weighing the modulus of the wavelet transform
along the maxima lines. The quantity and quality of the
underlying data will determine the range of the available
statistical order moments (for an in-depth discussion, see
Khalil et al., 2006).

2.3 Numerical Implementation
We followed previously established numerical calibration studies
using the 2D WTMM multifractal method (Arneodo et al., 2000;
Decoster et al., 2000; Khalil et al., 2006). For each Hurst value
explored, 32 synthetic fBm surfaces 1,024 × 1,024 pixels in size
were generated using a Fourier filtering synthesis algorithm (see
Arneodo et al. (2000) and references therein). The results
presented in this manuscript correspond to the average
partition functions over these sets of 32 surfaces.

Saturation was introduced by considering the cumulative
density distribution of pixel values for a given image and
determining the critical pixel value corresponding to the
saturation level desired. Then all pixel values above that
critical value were changed to the maximal value.

The calculations of h(q) andD(q) were obtained from the slope
of the linear fit of the log-log representation of the h (q, a) (Eq. 10)
and D (q, a) (Eq. 11) curves, respectively. In this manuscript, a
fixed range of scales was used for fBm surfaces of allH values and
all saturation levels: from 17 to 56 pixels.

The numerical calculations described in this section were
performed using Xsmurf, a Tcl\Tk software package that runs
C-based routines (https://github.com/pkestene/xsmurf).

3 RESULTS

3.1 Effects of Saturation on WTMM
Statistics
The apparition of extraneous maxima lines in the sheafs of
saturated fBm images are displayed in Figure 5. Compared to
the original, non-saturated fBm surfaces, two categories of new
maxima lines appear in higher numbers with increasing
saturation: 1) maxima lines associated with extremely low
modulus values, and 2) other maxima lines with an overall
negative slope.

FIGURE 5 | (A) A sample fBm surface with H = 0.7 and its corresponding sheaf (right). (B) The same fBm surface as in (A) but saturated at 1% and the
corresponding sheaf directly below. (C–E) Saturated fBms at (C) 5%, (D) 10%, and (E) 20% and sheafs below. Maxima lines associated with extremely low modulus
values, and others with an overall negative slope, appear in higher numbers with increasing saturation. These extraneous maxima lines will interfere with h (a, q) and D (a,
q) calculations, which then reduces the number of statistical order moments as shown Figure 6.
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Keeping these maxima lines in the skeleton that is fed to the
partition function calculation (Eq. 4) affects the behavior of the h (a,
q) and D (a, q) curves for a range of q values, as shown in Figures
6A,B. The non-linear behavior of log-log representation of the h (a,
q) andD (a, q) curves for several q values precludes the calculation of
h(q) (Eq. 10) and D(q) (Eq. 11), as shown in Figures 6C,D.

As a consequence, whereas a range of −3 ≤ q ≤ 5 was adequate
for the non-saturated fBms (Figure 4), this range becomes limited
to ~ 0< q≤ 5 for the saturated fBms of H = 0.7, regardless of the
saturation level (1, 5, 10, 20%).

3.2 The Rescue Method on Saturated
Surfaces
We propose an approach to eliminate the two categories of
extraneous maxima lines that are responsible for the bad power-
law behavior of the h (a, q) and D (a, q) curves. As discussed below,
this technique is referred to as the rescuemethod. In short, it consists
of eliminating a subset of maxima lines by applying a first threshold
filter on the modulus value at scale a = 1 (referred to below asMF),
and a second adjusted slope threshold filter (referred to below as SF).

Let l ∈ L(a) be a maxima line ending at scale amax and define
Ml(a�a′) as the value of the modulus for maxima line l at scale a′.
The modulus filter (MF) is used to eliminate the maxima lines
that have a low modulus value at scale a = 1, i.e., when
Ml(a�1) ≤MF.

Next, we define the adjusted slope, madj, as:

madj � log2 Ml a�1( )( ) − log2 Ml a�amax( )( )
log2 Ml a�amax( )( ) .

Therefore, to calculate madj, one takes the starting modulus
value of a maxima line (at scale a = 1) and subtracts the ending
modulus value (at scale a = amax), all divided by the ending
modulus value. For a given slope filter threshold, SF, the subset of
maxima lines that satisfy madj ≥ SF, are eliminated.

3.2.1 Determination of Numerical Filter
Parameters SF and MF
When comparing sheafs from saturated surfaces to sheafs from
non-saturated surfaces, we empirically determined that any

FIGURE 6 | (A) h (a, q), (B)D (a, q), (C) h(q), and (D)D(q) forH = 0.7 with 20% saturation. The colors corresponds to the different q values as described in the legend
in Figure 4D. Image saturation reduces the range of statistical order moments because of the lack of a good power law fit in the h (a, q) and D (a, q) plots. Thus in the
corresponding h(q) and D(q) plots there are less statistics for saturated images (black dots). Similar plots are shown in the Supplementary Material for saturation levels
1, 5, and 10%.
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maxima lines with Ml(a�1) of 16 (24) or less should be removed,
i.e., log2 (MF) = 4.

The data mining approach that we took to determine the
optimal value for SF is explored in Figure 7 for a fBm surface with
H = 0.7 with 20% saturation, where a fixed value of log2 (MF) = 4
was used, with SF = 0.2, 0.5, 0.8 in the left (Figures 7A,D,G),
center (Figures 7B,E,H), and right (Figures 7C,F,I), respectively.
Our goal was to explore different values of SF that would remove
the maxima lines that caused the saturated sheaf to look different
from an unsaturated sheaf. For instance, in Figure 7G (SF = 0.2),
the resulting filtered saturated sheaf has maxima lines that are

truncated (too many good maxima lines were eliminated) while
Figure 7I has many negative sloping, low valued maxima lines
compared to the unsaturated case (not enoughmaxima lines were
eliminated). Figure 7H displays what was determined to be the
optimal filtering coefficients. Figure 7J is the sheaf corresponding
to the unsaturated fBm surface. Note that although only three
different values of SF and a single value of MF are explored in
Figure 7, we numerically explored a much larger collection of
values for these parameters (data not shown).

A sample fBm surface with H = 0.7 at 20% saturation level is
shown in Figures 8A,B. Also shown are the maxima chains,

FIGURE 7 | Determination of the numerical values for SF andMF for a fBm surface with H = 0.7 and saturation level of 20%. Maxima lines that were eliminated due
to the modulus filter (Ml(a�1) ≤MF), are shown in red, while maxima lines that were eliminated due to the adjusted slope filter (madj ≥ SF) are shown in green. The
remaining maxima lines are shown in black. Here a fixed modulus filter value of log2 (MF) = 4 is used while the left column has SF = 0.2, the middle column has SF = 0.5,
and the right column has SF = 0.8. In (A–C) the complete original sheaf is shown with the eliminated and kept maxima lines, in (D–F) only the eliminated maxima
lines are shown, and in (G–I) only the kept maxima lines are shown. As a comparison, the sheaf from the unsaturated surface is shown (J).
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color-coded according to their elimination process (red based on
theMF and green based on the SF) in Figure 8C. And Figure 8D
shows the corresponding skeleton of eliminated maxima lines.

3.2.2 Pruned Sheafs
Using the filtering parameters selected through the data mining
approach outlined above, (log2 (MF) = 4 and SF = 0.5) these
resulting “pruned” sheafs were then passed to the partition
functions calculations (Eq. 4). From these, we get h(a,q) (Eq. 8)
and D(a,q) (Eq. 9) shown in Figures 9A,B, respectively, where we
can see the lack of stair step behavior compared to their saturated
counterparts in Figures 6A,B and Supplementary Figures S1–S3.
With these now robust h(a,q) and D(a,q) curves, from which a
reliable power law fit can be obtained, we are able to expand the
range of statistical order moments for the calculation of h(q) and
D(q), as displayed in Figures 9C,D. For reference, the saturated
images had a q range of ~ 0< q≤ 5 while with the rescue method
the range was expanded to −2 ≤ q < 5.

The lowmodulus maxima lines (shown in red in Figures 7 and
8) are likely responsible for the step size behavior of the h (a, q)
curves for negative q value shown in Figures 6 and
Supplementary Figures S1–S3. However, Table 1 shows that
only eliminating these maxima lines would be insufficient to

eliminate the effects of saturation. Indeed, the number of maxima
lines removed depends on the saturation level, which also dictates
which of the two filtering processes removes more lines. For
example, for the set of fBm surfaces with H = 0.7 and saturation
level 1%, using log2 (MF) = 4 and SF = 0.5, the average percentage
of removedmaxima lines was 0.4% due toMF and 4.8% due to SF.
For saturation level 5%, these averages were 3.9% due to MF and
4.9% due to SF. For saturation level 10%, more maxima lines were
removed due to MF (9.3%) than due to SF (4.9%). And for
saturation level 20%, the average percentages of removed maxima
lines were 21.8% due toMF and 4.6% due to SF. The percentages
of removedmaxima lines by filtering method for each Hurst value
and for each saturation level are listed in Table 1.

3.3 The Rescue Method on Unsaturated
Surfaces
We used the filtering parameters empirically determined above
(log2 (MF) = 4 and SF = 0.5) on the sheaf of a non-saturated fBm
surface with H = 0.7. There were only very minor differences
between the h(q) and D(q) curves from the unsaturated surfaces
with non-filtered sheafs (normal) vs. the unsaturated surfaces
with filtered sheafs (treated) (Figure 10).

FIGURE 8 | (A) A sample fBm surface with H = 0.7. (B) The same surface as in (A) but saturated at 20%. (C) The saturated surface overlaid with maxima chains (at
scale 20 pixels) that were kept (black), those that were eliminated by applying the modulus filter log2 (MF) = 4 (red), and those eliminated by applying the slope filter SF =
0.5 (green). (D) The corresponding extraneous maxima lines that were removed.
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We note that the rescue method will limit the range of q
values only if the underlying surface was saturated. This is to
be expected as it is due to the removal of maxima lines from the
sheaf that is fed to the partition function. Therefore, one
should only compare the range of q values of a pruned
sheaf to that of a smaller unsaturated image, for which the
range of q values will be smaller (see Khalil et al. (2006)).

4 DISCUSSION

The multifractal analysis of rough surfaces inherently assumes
that these surfaces are scale-invariant and everywhere singular.
These conditions are not met when image saturation regions are
present. The rescue method proposed here takes full advantage of
the space-scale partitioning capability that is intrinsic to the 2D
WTMMmultifractal method, which allows for the elimination of
a subset of the wavelet transform skeleton corresponding to
saturated regions.

The concept of pruning a sheaf was first introduced in
Kestener et al. (2001) and then further explored in Batchelder
et al. (2014). However, pruning a sheaf to mitigate image
saturation effects had yet to be explored. As a contribution to
the medical imaging field, data with image artifacts that would
have otherwise been rejected could now potentially be rescued
and included for multifractal statistical analyses.

Although several applications may benefit from this rescue
method, as discussed in the introduction, an immediate benefit is
for the sliding-window analysis of mammograms (Marin et al.,
2017; Gerasimova-Chechkina et al., 2021). To offer the best
possible computational aid to the radiologists in their

FIGURE 9 | Efficacy of the rescue method. The h (a, q) (A) and D (a, q) (B) plots have better power law fits for a wider range of statistical order moments relative to
their saturated counterparts. This expanded range of q values is reflected in the h(q) (C) and D(q) (D) plots. The saturated images had a q range 0.1 < q < 5 while the
rescue method had −2 ≤ q ≤ 5.

TABLE 1 | Percentages of maxima lines removed by filtering processes.

Hurst Value Filter Value Saturation Level

1% 5% 10% 20%

H = 0.7 MF = 16 0.4 3.9 9.3 21.8
SF = 0.5 4.8 4.9 4.9 4.6

H = 0.5 MF = 48 0.3 1.6 4.0 10.2
SF = 0.5 9.6 9.8 10.0 10.4

H = 0.3 MF = 96 0.1 0.8 1.8 4.7
SF = 0.5 17.1 17.6 18.2 19.5

H = 0.1 MF = 192 0.0 0.2 0.8 2.8
SF = 0.5 28.2 28.5 29.3 31.0
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interpretation of these mammograms, it is critical to extract as
much quantitative information as possible from each subregion
of each mammogram. A key to this success lies in reducing the
number of subregions that have to be rejected, in particular due to
image saturation, for which the implementation of this rescue
method will be crucial.

4.1 Limitations and Future Explorations
In this study, only positive values of the Hurst exponent were
considered for the calibration fBm surfaces (H = 0.1, 0.3, 0.5,
0.7), which is motivated, and justified, by the Hurst values
measured in mammogram subregions (Marin et al., 2017;
Gerasimova-Chechkina et al., 2021). Despite only using four
Hurst values, the effects are similar, which precludes the
need to investigate smaller intervals. We have no reason to
suspect that exploring other values, for example H = 0.2, 0.4,
0.6, would produce results that require a substantially
different approach. However, future efforts should be
undertaken to investigate the effects of saturation on
surfaces with −1 < H < 0. It is likely that the slope filter
(SF) would have to be calibrated. One could also expand the
investigation on multifractal surfaces (Decoster et al., 2000;
Roux et al., 2000).

The numerical determination of MF and SF was done
subjectively. We observe that a constant value of SF = 0.5
worked well for all Hurst values considered in this study,
whereas MF is strongly correlated with the Hurst exponent.
A future effort could be to implement objective approaches.
For example, an automated determination of these two
thresholds could be implemented based on the calculation
of outliers in the probability density functions of log(M)
and madj.

Another improvement to the approach could be to use two
thresholds instead of one for SF (e.g., SFhigh and SFlow).
Maxima lines for which madj ≥ SFhigh would be eliminated,
those for which madj < SFlow would be kept, and those in
between would require an additional classification procedure.

And finally, there may be methods from machine learning to
use in order to improve the maxima lines classification,
assuming the unsaturated image has scale-invariant
properties.

We note that the calculations of the Hurst values reported
in this manuscript are underestimates of the theoretical values.
This is a known phenomenon for 1D fBm signals (Muzy et al.,
1991, 1994; Arneodo et al., 1995) and 2D fBm surfaces
(Arneodo et al., 2000). The underestimates reported here
are perhaps slightly more accentuated than previous works
(Arneodo et al., 2000; Khalil et al., 2006). This could be due to
the fact that a fixed universal range of scales was used for every
set of fBm surfaces and all saturation levels in this study, as
mentioned in Section 2.3.

The rescue method presented in this manuscript could be
used on any medical imaging where the 2D WTMM
multifractal method is applicable, such as lung CT scans, or
histology slides (Khalil et al., 2009). It is also likely that the
rescue method could be integrated into the 1D WTMM
method, and therefore applicable to 1D signals such as
electro-encephalograms (Richard et al., 2015) or
thermography time series (Gerasimova et al., 2013, 2014),
for which the MF and SF values would need to be fine-
tuned for the application.
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