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Leveraging spreadsheet analysis 
tool for electrically actuated 
start‑up flow of non‑Newtonian 
fluid in small‑scale systems
Manideep Roy 1, Pritam Chakraborty 1, Pranab Kumar Mondal 2,3* & Somchai Wongwises 3,4*

In this article, we demonstrate the solution methodology of start-up electrokinetic flow of non-
Newtonian fluids in a microfluidic channel having square cross-section using Spreadsheet analysis 
tool. In order to incorporate the rheology of the non-Newtonian fluids, we take into consideration the 
Ostwald-de Waele power law model. By making a comprehensive discussion on the implementation 
details of the discretized form of the transport equations in Spreadsheet analysis tool, and 
establishing the analytical solution for a special case of the start-up flow, we compare the results both 
during initial transience as well as in case of steady-state scenario. Also, to substantiate the efficacy 
of the proposed spreadsheet analysis in addressing the detailed flow physics of rheological fluids, 
we verify the results for several cases with the corresponding numerical results. It is found that the 
solution obtained from the Spreadsheet analysis is in good agreement with the numerical results—a 
finding supporting spreadsheet analysis’s suitability for capturing the fine details of microscale flows. 
We strongly believe that our analysis study will open up a new research scope in simulating microscale 
transport process of non-Newtonian fluids in the framework of cost-effective and non-time consuming 
manner.

With the advent of the Lab-On-a-Chip (LOC) devices/systems, typically find practical relevance in biomedi-
cal applications, biochemical processes, medical diagnostics and digital microfluidics, transportation of small 
fluid volume alongside embarking on several fluidic functionalities in these devices has become a great topic 
of research to the microfluidics community1–3. The underlying flow dynamics at microfluidic scale, however, 
is greatly influenced by the surface characteristics of the bounding substrate, and at times, is intricately gov-
erned by the solid–liquid interfacial interactions4,5. A substantial amount of practical applications together with 
the intense interests of achieving augmented fluidic functionalities in microflows have compelled researchers 
towards better understanding of the field driven flow dynamics, i.e., electrically actuated microscale transport, 
flow manipulations using applied magnetic field, thermocapillarity induced flow etc.4,6–8. Researchers have also 
studied the effect of Joule heating and thermal radiation on the thermal transport characteristics of heat in the 
purview of electroosmotic flow for both Newtonian and power law fluids considering different properties of 
the channel wall9–11. It is worth mentioning here that several intricate features associated with the field driven 
transport in microfluidic channels have been addressed by the researchers either from the paradigm of experi-
mental investigations12–14 or from theoretical perspectives15. Despite this subject being studied over the past few 
years, an analysis of the microscale start-up flow which finds relevance in aforementioned applications16,17, in 
the presence of externally applied effects like electric and magnetic field etc., using an analytical framework is 
of significant practical interest, attributed primarily to the non-involvement of expensive and time consuming 
numerical methods.

In most of the applications, as mentioned above, the working fluid exhibits non-Newtonian rheological behav-
iour. The momentum equations governing the flow dynamics of non-Newtonian fluids are, however, contain the 
non-linear diffusion terms18–24. Existence of the non-linear diffusion terms in the momentum equations makes 
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these equations analytically intractable essentially for obtaining the desired solutions15,18,25,26. The unsteady flow 
scenario brings about even more complexity to the solution process of transport equations in analytical frame-
work. Very often, these equations, which are integrated with the non-linear constitutive behaviour, are solved 
numerically, and the solution process becomes cost ineffective and time consuming as well, even in the paradigm 
of microscale transport (typically, known as low Reynolds number transport). In this aspect, the spreadsheet 
tool of Microsoft excel has successfully been used to obtain the solutions for a variety of flow problems, includ-
ing external fields16,27. Quite notable, as observed from the reported analysis, the spreadsheet analysis tool can 
effectively capture the detailed flow physics of interest at microfluidic scale16,17.

Here, we discuss about the applicability of spreadsheet tool in solving the start-up flow of inelastic non-
Newtonian fluid in a microfluidic channel, which is considered to have square cross-section, in the presence of an 
applied electric field. We, first, scrutinize the capability of spreadsheet tool from the perspective of electrostatics 
essentially to obtain the potential field. Following this, we look for the solution of momentum transport equations 
to get the velocity field. In contrast to the conventional methods available in this paradigm, our analysis, consist-
ent with the spreadsheet tool, is found to provide reliable results taking the effect of electrical forcing into account. 
In particular, we have been able to establish that the proposed tool can successfully capture the effects due to 
electrical double layer phenomenon on the underlying transport quite accurately even for the non-Newtonian 
fluids at small scale. The tool can of huge interest to the researcher where commercial software is not readily 
available for solving the complex transport equations governing the flow dynamics of non-Newtonian fluids.

Discussion of the problem: definition and geometry
For the present study, we consider a non-accelerating, isothermal, unsteady flow of a non-Newtonian fluid 
through a rectangular (square) microchannel as schematically shown in Fig. 1. To incorporate the rheology of 
the homogeneous, isotropic and non-Newtonian fluid, we consider the Ostwald–de Waele power law model in 
this analysis23,28. The dimensions of the fluidic channel chosen for this analysis are as follows: height i.e., the dis-
tance between two plates is 2H , width is 2W and length is L . We consider that the width ( 2W ) and height ( 2H ) 
of the channel are of the same order, whereas the length of the channel is considered to be much larger than its 
other two dimensions ( L >> 2H ∼ 2W ). The combined effect of the electroosmotic force and applied pressure 
gradient drive the flow through the channel as considered in this study. To realise the effect of electroosmosis in 
the flow process, we consider that the walls of the microchannel to bear a net charge, which further gives rise to 
the generation of Electrical Double Layer (EDL) in contact with the ionic solution. It is because of the formation 
of EDL, a potential is developed therein and, an electric field E(Ex , 0, 0) applied externally when interacts with 
the induced potential developed inside the EDL, provides the flow with a driving force. Also, we consider the 
flow to be unidirectional u(u, 0, 0) for the present study, while we look out for the solution of flow velocity and 
electrostatics in the 2-D rectangular cross-section (YZ plane) as shown in Fig. 1. It may be mentioned here that 
the Ostwald–de Waele power law model is used by many researchers in investigating the underlying transport 
features of inelastic non-Newtonian fluid even under the influence of electrical forcing28,29. It is also assumed 
that the thermal and the physical properties of the fluid chosen in this study are constant.

Mathematical formulation
The Poisson–Boltzmann equation for the underlying electrostatics and the Cauchy momentum transport equa-
tion for the description of flow velocity dictate the flow dynamics for the case under consideration in this analysis. 
It is needless to mention here that the continuity equation needs to be solved together with the aforementioned 
equations essentially to satisfy the conservation of mass constraint in the flow field. In the succeeding sections, 
we discuss the pertinent equations and the associated conditions of the boundary both in their dimensionless 
and dimensional forms. Following the Ostwald–de Waele power law model, the constitutive equation can be 
written as: τ = m(γ̇ )n , where m is the index of flow consistency and n is the is the index of blow behaviour23,29,30. 
It is worth mentioning here that γ̇ is the tensor for strain rate and is given as γ̇ = 1

2

[

eij : eij
]1/2 , where eij is the 

strain rate tensor28,29.

Figure 1.   Plots depict the schematic view of the microfluidic channel that is considered in this study. The 
channel dimensions with the coordinate system, are shown with the zoomed-in view of the y − z cross-section.



3

Vol.:(0123456789)

Scientific Reports |        (2022) 12:20059  | https://doi.org/10.1038/s41598-022-24287-2

www.nature.com/scientificreports/

Poisson Boltzmann equation.  The Poisson Boltzmann equation considering negligible variation of the 
ionic species in the axial direction is given as:

Here, ψ is the electric potential induced, κ
(

=
[(

2z2e2n0
)/

(ε0εrkBT)
]
1/2

)

  is the parameter for Debye–Hückel 

linearization for the electrolyte layer, z is the valence of ions, ε0 is the permittivity of the free space, e is the pro-
tonic charge, εr is the relative permittivity, kB is the Boltzmann constant, n0 is the neutral charge density, and T 
is the absolute temperature.

In order to obtain the potential distribution, the following boundary conditions are used to solve Eq. (1) 
and given as:

Specified zeta potential at the wall of the microchannel and symmetry at the center:

Here, we incorporate the dimensionless quantities: ψ = ψ
/

ζ , y = y
/

H , z = z
/

H , κ = κH and ζ = kBT
/

ze 
to make Eq. (1) and the associated boundary conditions dimensionless. The dimensionless form of Eq. (1) and 
the associated boundary conditions [Eq. (2)] reads as:

Discretization of non‑dimensional potential distribution equation.  We shall represent as well as 
compare the results of this analysis, obtained from both spreadsheet analysis and numerical method in “Results 
and discussion”. We shall take this endeavour essentially to ascertain the applicability of the spreadsheet analysis 
tool in capturing the detailed flow physics of our interest. Since we look for the depiction of numerical results 
obtained from a scheme consistent with finite difference methods as well26, it would be more appealing to discuss 
about the discretization of the transport equations. Accordingly, here we write the discretized form of Eq. (3), 
used for obtaining the numerical solutions. By appealing to the central difference second-order discretization 
scheme for space, we get the following expression for potential.

Here, we consider a very unique case of equal width and height for this analysis. Also, we consider uniform 
grid sizes i.e., �z2 = �y2 = hyz . Considering this aspect, Eq. (4) reduces to the following form.

Momentum transport equation.  The Cauchy momentum equation describing the fully developed flow 
of a non-Newtonian power law fluid in the chosen fluidic configuration is given as:

In Eq. (6), p is the pressure, and ρ is the density of the fluid. It is worth adding here that pertaining to the 
power law model, µapp

(

= mγ̇ n−1
)

 is the apparent dynamic viscosity of the fluid29. Other parameters appearing 

in Eq. (6) are already defined in “Poisson Boltzmann equation”. Note that the expression 

[

m

(

(

∂u
∂y

)2

+
(

∂u
∂z

)2

)
n−1
2

]

 

in Eq. (6) accounts for the apparent viscosity 
(

µapp

)

 of the fluid for the flow configuration considered in this 
analysis.

For the description of hydrodynamics of the present problem, we use the no slip i.e., zero velocity condition 
at the walls of the channel and velocity symmetry at the channel centre while solving Eq. (6).
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In an attempt to write Eq. (6) in its dimensionless counterpart, we use the Helmholtz–Smoluchowski velocity 

UHS

[

= nκ(1−n)/n
(

−εrε0kBTEx
mze

)1/n
]

 as the reference velocity, while half height of the channel is taken as the refer-

ence length scale. By using these reference scales, we obtain the dimensionless form of Eq. (6) as written below.

Note that in Eq. (8), Re
(

= ρUHSH
/

µeff

)

 is the Reynolds number and Ŵ = 1
2

(

∂p
∂x

)/(

mUn
HS

Hn+1

)

 , which compares 
the relative strength between the force due to electroosmosis and the pressure force, is termed as the force com-
parison parameter31,32.

Discretization of non‑dimensional momentum transport equation.  Here we briefly discuss about 
the discretization of Eq. (8). For discretizing Eq. (8), we use the forward first-order difference method in time 
and central second-order difference method in space. Below we write the discretized form of Eq. (8) as:

where,

To eliminate the nonlinearity of Eq. (8), we take into account another function g(y,z). The calculation of g(y,z) 
is based on the values obtained from the previous iteration.

Now for the discretization of function g(y,z), we employ the central difference discretization scheme for space 
to obtain the expression as given below.

It may be mentioned here that the discretized equations [Eqs. (9)–(11)] are solved numerically as well as by 
using the spreadsheet analysis tool in order to get the desired results.

In the present study, the value of Re , �t and hyz is taken as 0.01, 10−7 and 0.02 respectively, for all the cases in 
order to achieve an accurate solution with faster convergence. It is assumed that the fluid is initially at rest, i.e., 
u
(

y, z, 0
)

= 0 . Now, by using the pertinent boundary conditions for potential and velocity, as mentioned in Eqs. 
(2) and (7) respectively, we obtain the potential and velocity distributions in the flow domain.

Analytical solution of the transport equations: a limiting case scenario
In this section, we make an attempt to derive the analytical solution for the transport equations in the limiting 
case pertaining to unsteady, 1-D flow 

(

width, 2W >> height, 2H
)

 of a Newtonian fluid (n = 1) . Here, we 
consider the flow to be fully developed 

(

∂u
∂x = 0

)

 and the axial variation of the ionic concentration to be negligible 

i.e., 
(

∂ψ
∂x = 0

)

 . We take this attempt for justifying the applicability of the spreadsheet analysis in reproducing the 
correct results in the context of electrically actuated transport. Under this case, i.e.,

(

∂
∂z () ≪

∂
∂y ()

)

 , the potential 
and momentum transport equations reduce to the following.
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Now, we seek solutions for Eqs. (12)–(13) using the boundary conditions mentioned before [cf. Eqs. (2) and 
(7)] in analytical framework as discussed below.

Considering ψ = ψ(y) , Eq. (12) can be rearranged as,

Now, on solving this equation we obtain,

where A,B are constants. By making use of the boundary conditions: ψ(y = ±1) = −1 and ∂ψ
/

∂y
∣

∣

y=0
= 0 , we 

get, A = −1
/

cosh (κ) and B = 0.
So, the final form of potential distribution takes the form as:

For the momentum transport equation [Eq. (13)], we consider the solution in the form as:

It may be mentioned here that in order to find uCF , we need an auxiliary equation. The same can be derived 
from Eq. (13) as given below.

Now, considering u = Y(y)T(t) , Eq. (17) reduces to the following equation as:

Now, solving for Y  and T we get,

Therefore, the expression of uCF becomes as follows:

Note that in Eq. (20), P(= AF) , Q(= BF) , R(= EG) and S(= DG) are all arbitrary constants.
Now, in an effort to obtain uPI , Eq. (13) can be reduced to the following,

Hence, we get the following,

Now, we can write that

Now, from Eqs. (22)–(24), we can write the following as:

Note that upon substituting Eqs. (20) and (25) in Eq. (16), we get the following as:
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Next, we need to find the constants P , Q , R , S and α by making use of different boundary conditions perti-
nent to this analysis. Applying boundary conditions u(y = 1, t) = 0 and ψ(y = ±1) = −1 , we get the following 
equation as:

And, applying another set of boundary conditions u(y = −1, t) = 0 and ψ(y = ±1) = −1 , we get the below-
given expression.

Now, upon subtracting Eq. (28) from Eq. (27), we get the following.

Now, we calculate the Wronskian of exp
(

−α2t
Re

)

 and 1 with respect to t  as given below.
W

[

exp
(

−α2t
/

Re
)

, 1
]

(t) �= 0 , so exp
(

−α2t
/

Re
)

 and 1 are linearly independent. Now, by using the condition 
of the theorem of linear independence in Eq. (29), we get the following as:

Upon substituting the second condition of Eq. (30) in Eq. (26), we can write the below given form.

We further use the boundary condition u(y = 0, t = 0) = 0 in Eq. (31), and obtain the following.

Also, on applying the boundary condition u(y = 1, t = 0) = 0 and ψ(y = 1, t = 0) = −1 and using first 
condition of Eq. (30) in Eq. (31), we get the expression as written below.

Now, we compare Eqs. (32) and (33) to obtain as follows: If cosα = 1 , then Ŵ + 1 = {cosh(κ)}−1 , which 
is practically impossible as Ŵ and κ  are independent of each other. Thus, what follows is that cosα  = 1 , which 
implies sin α  = 0 . Now, from Eq. (30) we get, Q sin α = 0 , which implies Q = 0 . We next substitute Q = 0 in 
Eq. (31) and get the below written expression.

We next apply the boundary condition  u
(

y = 1, t = 0
)

= 0 and ψ
(

y = 1, t = 0
)

= −1 in Eq. (34) essentially 
to find out constants P and S . The obtained form is written below.

Now, as exp
(
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)

 and 1 are linearly independent, it suffices to the following expression.

Now, P = 0 leads to the form of velocity as u = S + y2Ŵ − ψ  , and then u has no time-dependence. Thus, 
this is not possible since the problem considered in this study is unsteady one. Therefore, cosα = 0 , and gives 
α = (2n− 1)π/2 , where n ∈ Z . Now from Eq. (32), we get,

Thus, we obtain the final form of velocity as:
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where, S = −(Ŵ + 1) , α = (2n− 1)π/2 where n ∈ Z and P = −
(

S + (cosh(κ))−1
)

.

Selection of model parameters
Before describing the results, we here mention numerical value of several parameters as considered in this 
analysis. The chosen values of different parameters are κ = 20 , n = 0.8, 1 and 1.2 , Ŵ = 0, 1 and 2 . Although 
the present analysis focuses on the flow dynamics of power law non-Newtonian fluids, we consider n = 1 in 
depicting results for some cases for two different reasons. First, results pertaining to n = 1 are considered to 
validate the modelling framework employed in this work with our own analytical results from the perspective 
unsteady electrically actuated transport as well as with the results reported by Zhao et al.28. Second, pertinent to 
this analysis, the depicted variation for n = 1 is of significance as to isolate the rheological effect on the underly-
ing flow dynamics.

Electroosmotic flow analysis using microsoft excel
Microsoft excel configuration.  Here, we present the solution strategies of the discretized form of the 
governing equations using spreadsheet analysis tool in Microsoft Excel. The entire computational domain is 
divided into 100 × 100 grids. Each cell in the Excel sheet represents one grid. The grey-colored cells represent 
the boundary conditions. In the present study, no-slip boundary condition is taken into consideration for the 
velocity i.e., u = 0 and ψ = −1 for potential.

The spreadsheet contains seven panels. They are described as follows.

•	 First panel—It computes the distribution of potential ψ  required for the calculation of the velocity profile.
•	 Second panel—It computes the velocity of the fluid at the time t i.e., u(t,y,z).
•	 Third panel—It computes the velocity of the fluid at the time t +�t i.e., u(t+�t,y,z).
•	 Fourth panel—It computes the function g(y,z).

(38)u = (P cosαy) exp

(

−α2t

Re

)

+ S + y2Ŵ − ψ ,

Figure 2.   Contour plot of non-dimensional (a) potential distribution and (b) velocity distribution for κ = 20 , 
and Ŵ = 0 for  n = 0.8 and n = 1.2 in the top and the bottom panel respectively using Microsoft Excel.
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•	 Fifth panel—It computes the function F1(y,z).
•	 Sixth panel—It computes the function F2(y,z).
•	 Seventh panel—It computes the function F3(y,z).

All the panels are color-coded. Figure 2a,b represent the potential and velocity distribution contours respec-
tively, obtained from spreadsheet analysis for κ = 20 , Ŵ = 0 . While the variation shown in the top panel conforms 
to n = 0.8 , the same at the lower panel is obtained for n = 1.2 . Quite notably, we do not find any noticeable dif-
ference in the potential distribution with a change in n as witnessed in Fig. 2a. Nevertheless, distinct difference in 
the velocity distribution with n as observed in Fig. 2b is attributed to the fluid rheological effect. The magnitude 
of potential is found to be maximum ( ψ = −1 ) near the walls due to the development of the electrical double 
layer (EDL) and minimum ( ψ = 0 ) at the center of the microchannel. The velocity is found to be minimum 
( u = 0 ) at the walls due to zero tangential velocity along the wall. We have also used color bars at the right of 
Fig. 2a,b in order to facilitate easy understanding of the readers.

Iteration.  There is no requirement for iteration inside a single time instant because the numerical method 
employed to solve Eq. (9) is first-order in time. The maximum number of iterations is therefore set to 1. Accord-
ing to this plan, one time step must be completed without requiring any additional iterations. To accomplish 
this, follow the steps below: click "File—Settings—Computation options," then click "Enable iterative calcula-
tion," then "Maximum Iterations" should be set to 1. The F9 key on the keyboard is used to perform successive 
iterations that stand in for various temporal instants. The implementation procedure of the numerical scheme 
is depicted in a schematic diagram for the readers’ in-depth knowledge, as schematically shown in Fig. 3. The 
Supporting Information part of the article “Electroosmotic start-up microflows.xlsx” contains the detailed steps.

Model characterization and validation
Validation of spreadsheet solution with the analytical results.  We try to thoroughly benchmark 
the modelling framework used for this investigation. In doing so, we adhere to the dual benchmarking technique 
and go over the following in detail. First, the velocity profile at different temporal instants obtained by solving 
Eq. (38), is depicted in Fig. 4a and is compared with that of spreadsheet solution for a limiting case considering 
unsteady, 1-D flow (2W >> 2H) . Second, the analytical solution of the steady state scenario produced from 
the spreadsheet analysis tool is also validated with the analytical solution of Zhao et al.28 in Fig. 4b. The other 
parameters used for these validation plots are κ = 10 , Ŵ = 0 and n = 1 . It is worth adding here that the results 
reported by Zhao et al.28 conform to the analytical solution of steady state electroosmotic velocity distribution 
in a parallel plate channel. As witnessed in Fig. 4a,b, the results obtained from spreadsheet analysis are in good 
agreement with both the analytical solutions. The effectiveness of the spreadsheet analysis used in this work for 
capturing the intended flow physics is supported by this observation.

Comparison of spreadsheet results with the analytical solutions: Validation from the perspec‑
tive of fluid rheology.  In this section, we take into account the effect of fluid rheology for the validation of 
the present model as graphically demonstrated in Fig. 5. For the plots depicted in Fig. 5, we take the parameters 
as κ = 10 , Ŵ = 0 , while the shear-thinning (n = 0.8) and shear-thickening (n = 1.2) effects are considered. It 
is observed that the steady-state velocity profile obtained from both the numerical methods and spreadsheet 
analysis tool closely matches with the analytical results of Zhao et al.28. This aspect signifies the creditability of 
the numerical scheme employed in this study.

Figure 3.   Schematic diagram describing the implementation procedure of the numerical scheme in Microsoft 
Excel.
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Figure 4.   (a) Plots depict velocity profile at different instances of time at z = 0 and (b) Plots depict steady 
state velocity profile at z = 0 . The parameters used for these variations are κ = 10 , and Ŵ = 0 for n = 1 . The 
analytical solutions are represented by solid lines, whereas the spreadsheet analysis tool-derived solutions are 
shown by markers.

Figure 5.   Plots depict validation of the present CFD code with that of Zhao et al.28 using Spreadsheet analysis 
tool. The solid lines depicts the velocity half profile obtained from the present study, while, the markers 
represent the analytical solution obtained by Zhao et al.28. The parameters used for validation are κ = 10 , and 
Ŵ = 0 for n = 0.8 and n = 1.2 . The velocity profile is obtained at z = 0 for both cases.

Figure 6.   Plots depict potential distribution profile for κ = 20 : (a) Three-dimensional potential distribution 
using Spreadsheet analysis tool, and (b) Potential distribution profile at z = 0 using both MATLAB and 
Spreadsheet analysis tool.
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Results and discussion
Potential distribution.  We initiate our discussion with Fig. 6a,b, which shows the distribution of potential 
in the square domain for κ = 20 . As was previously said, when an electrolytic solution is present, the walls of 
the micro-channel are subjected to net charge, which causes the creation of a (EDL) Electric Double Layer. As 
a result, potential is found to be zero at the centre of the channel and its magnitude increases towards the walls. 
This phenomenon results in a plug-like profile as observed in Fig. 6a,b.

Transient flow hydrodynamics.  In this section, we show how power law non-Newtonian fluids start to 
flow dynamically under the influence of a field in a microfluidic channel. For obtaining the results, we consider 
both the applied pressure gradient and electroosmotic effect. For each case, we compare the results obtained 
from numerical methods and spreadsheet analysis considering different values of Ŵ , and n . We discuss them 
systematically in the forthcoming sections.

As seen in Fig. 7a,b, which depict the temporal variation of flow velocity for shear-thinning (n = 0.8) and 
shear-thickening (n = 1.2) fluids respectively, initially the velocity profile exhibits its maxima near the wall of 
the microchannel, and depression is found at the centre of the channel. We consider results obtained from both 
numerical method and spreadsheet analysis in plotting the variations depicted in Fig. 7a,b. The parameters used 
for this plot are κ = 20 and Ŵ = 0 . A plug-type velocity profile is obtained in the steady state as the depression 
that initially appeared on the velocity profile flattens over time. From the depicted variations in Fig. 7a,b, the 
maximum value of velocity is found at the center of the channel. A fairly accurate match between the results 
obtained from numerical calculations and spreadsheet analysis as verified in Fig. 7 indicates the efficacy of 
spreadsheet analysis in obtaining complex details of the start-up electrokinetic flow of non-Newtonian fluids.

Now, we discuss in Fig. 8a,b the variation of steady-state velocity profile for shear-thinning (n = 0.8) and 
shear-thickening (n = 1.2) fluids respectively, obtained for different values of Ŵ =(0, 1, and 2) and κ = 20 . 

Figure 7.   Plots depict velocity profile at different instances of time at z = 0 . The parameters used for these 
temporal variations are κ = 20 , and Ŵ = 0 for (a) n = 0.8 and (b) n = 1.2 . The MATLAB solutions are 
represented by solid lines, whereas the spreadsheet analysis tool-derived solutions are shown by markers.

Figure 8.   Plots depict velocity profile for different values of Ŵ at z = 0 . The other parameters are taken as 
κ = 20 for (a) n = 0.8 and (b) n = 1.2 . The MATLAB solutions are represented by solid lines, whereas the 
spreadsheet analysis tool-derived solutions are shown by markers.
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The MATLAB solutions are represented by solid lines, whereas the spreadsheet analysis tool-derived solutions 
are shown by markers. It is found that with the increase in Ŵ , the maximum value of velocity increases. It may 
be mentioned here that Ŵ being the force comparison parameter, compares the impact of force due to applied 
pressure gradient to the electroosmotic effect on the underlying transport. Thus, following this definition, for 
Ŵ > 1, electroosmotic effect becomes less effective than the applied pressure gradient on the transport. While for 
Ŵ < 1, forcing due to applied pressure gradient becomes less effective than electroosmotic effect of the underly-
ing transport, and for Ŵ = 1, both of these two forces have an equal effect on the flow dynamics. Therefore, it is 
found that as Ŵ increases, the velocity profile tends to become more parabolic in nature. However, for the lesser 
values of Ŵ , the velocity profile showing similarity with the electroosmotic velocity exhibits plug-like in nature. 
This observation once more signifies the capability of spreadsheet analysis in accurate description of flow field 
accounting for the applied field effect in the analysis.

Next, we make an attempt, in Figs. 9 and 10, to denote the difference in steady-state velocity distribution 
profile for two different values of n = 0.8 and n = 1.2 , obtained at κ = 20 and Ŵ = 0 . It is found that the velocity 
profile gets more flattened with decreasing the value of n . We attribute this finding as follows. With the increase 
in the value of n , the apparent viscosity of the fluid increases. This is because, the influence of electroosmotic body 
force being delivered on the fluid reduces as the apparent viscosity of the fluid increases. Albeit the strength of 
electroosmotic forcing remains constant for a given set of parameters, its realisation on the underlying transport 
phenomenon becomes less effective with increasing the value of n , primarily due to flow’s increased viscous 
resistance. In particular, upon experiencing a relatively lesser resistance, shear-thinning fluid (n = 0.8) attains 
maximum flow velocity nearer to the walls of the channel. Also, as seen from Figs. 9 and 10, the maximum value 
of the flow velocity at the center of the microchannel is approximately equal in all cases. Looking at the varia-
tion represented in Fig. 9, it may be inferred that spreadsheet analysis tool is equally effective in capturing the 
intuitive flow physics quite accurately.

Discussion on net throughput.  In order to complete the discussion, we look into the variation of net 
throughput, commonly named as volumetric flow rate, for different values of Ŵ and n as depicted in Fig. 11. 

Figure 9.   Plots depict velocity profile for different values of n at z = 0 . The other parameters are taken as 
κ = 20 , and Ŵ = 0 . The MATLAB solutions are represented by solid lines, whereas the spreadsheet analysis 
tool-derived solutions are shown by markers.

Figure 10.   Plots depict three-dimensional velocity distribution for different values of n at κ = 20 , and Ŵ = 0 
using Spreadsheet analysis tool.
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The net throughput is an important parameter to be considered for the optimal design of microfluidic devices. 
In microfluidic devices/systems, the purpose of embedding various types of annexations ultimately aim at the 
improvement of the net throughput flow rate as well as its precise control by several means, essentially to fulfil 
the demanding need of MEMS and μTAS. In the context of present fluidic configuration, the expression for the 
dimensionless volume flow rate is given as:

Figure 11a plots the variation of net throughput in Ŵ − n plane and obtained for κ = 20 . With the increase 
in Ŵ , pressure gradient increases. Hence, the effective net throughput in the channel increases significantly as 
the pressure gradient’s magnitude increases because it entirely acts over lateral aspect of the microchannel. As a 
result, the volume flow rate increases with the increase in Ŵ , which is also shown in Fig. 11b. Also, it is found that 
the net throughput enhances with decreasing the value of n . This observation is better understood in Fig. 11b. 
This is because the viscous resistance of the shear-thickening fluid ( n > 1 ) is more than that of the shear-thinning 
fluid ( n < 1 ), and this higher viscous resistance results in a reduction in net throughput of shear-thickening 
(n > 1) fluid.

Conclusion
Using analytical methodology and numerical analysis, we have examined the electroosmotic unsteady flow of 
non-Newtonian fluids in a microfluidic channel having square cross-section. In keeping with the main goal of 
this study, we have appropriately discussed the solution methodology of the transport equations by incorporating 
their discretized forms into the Spreadsheet tool and deliberated on the variation of electrostatic potential as well 
as flow velocity in the selected fluidic domain for a number of cases. Also, we have demonstrated an analytical 
method for the solution of an unsteady, electrically actuated flow in the limiting case and used analytical results 
to compare the solutions obtained from Spreadsheet analysis. We have demonstrated that the spreadsheet tool is 
effective at capturing the crucial flow mechanics in both the initial transience and steady state conditions under 
the modulation of the electric double layer phenomenon by demonstrating one-to-one comparison between the 
solutions obtained from Spreadsheet analysis vis-à-vis corresponding numerical results for the cases pertaining 
to this analysis. We anticipate that the shown deductions from this analysis will attest to the capability of read-
ily accessible Spreadsheet tools in efficiently and affordably resolving computationally demanding challenges.

Data availability
All data generated or analysed during this study are included in this article and its supplementary information 
files (Electroosmotic start-up microflows.xlsx).
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