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Dynamic variations in the distances between pairs of atoms are used for clustering subdomains of biomolecules. We draw on a
well-known target function for clustering and first show mathematically that the assignment of atoms to clusters has to be crisp,
not fuzzy, as hitherto assumed.This reduces the computational load of clustering drastically, and we demonstrate results for several
biomolecules relevant in immunoinformatics. Results are evaluated regarding the number of clusters, cluster size, cluster stability,
and the evolution of clusters over time. Crisp clustering lends itself as an efficient tool to locate semirigid domains in the simulation
of biomolecules. Such domains seem crucial for an optimum performance of subsequent statistical analyses, aiming at detecting
minute motional patterns related to antigen recognition and signal transduction.

1. Introduction

Molecular dynamics (MD) can be used to investigate func-
tional elements in biomolecules [1–5]. In addition to static
structures (such as crystal structures stored in the protein
data bank (PDB) [6]) molecular dynamics yields informa-
tion on dynamic properties [7, 8], lending themselves for
evaluation of, for example, signal transduction. However, key
patterns of motion related to such a functional element may
be hidden among a large amount of “other” movements,
reflecting no more than ordinary thermal motility of the
biomolecule. Molecular dynamics itself can be carried out
along relatively standardized protocols [9, 10]. However,
recognizing specific patterns of motion, which are deemed
crucial for a functional element, remains a tricky task, requir-
ing sophisticated statistical methods [11], such as principal
component analysis [12, 13] or normal mode analysis [14].

For all the mentioned approaches, an initial and essential
step is the “fitting” of the molecular structure of each time
step of an MD trajectory (henceforward called frame) to a
reference structure, xref [15]. A given frame x

𝑖
is first translated

to let its centre of mass coincide with that of the reference
frame. Then x

𝑖
is rotated (around its centre of mass) to

minimize square deviations between corresponding atoms of
x
𝑖
and xref:

RMSD (x
𝑖
, xref) = [

1

∑
𝑖
𝑤
𝑖

𝑁

∑
𝑖=1

𝑤
𝑖

󵄩󵄩󵄩󵄩x𝑖 − xref
󵄩󵄩󵄩󵄩
2
]

1/2

󳨀→ min .

(1)

Inmany approaches, RMSD has been used not only for fitting
but also for directly (and successfully) quantifying molecular
deformations [15], including structural changes, drifts, and
trends [16]. In many cases, however, even sophisticated sta-
tistical methods fail, when applied toMD-frames after fitting.
The suspicion is that the process of fitting itself might cause
this failure. How does this come about?

By default, the GROMACS [17] fitting procedure uses
atomic masses as weights for superposition of a structure’s
atomic coordinates to a reference structure. Accordingly,
the fitting of x

𝑖
“as a whole” is being optimized. In some

cases, fitting the whole molecule may be inadequate and
even conceal what one is searching for. For example, consider
a molecule with one or more flexible loops. While the body
of such a molecule behaves like a slightly deformable, rigid
body, a loop may be conformationally flexible exhibiting
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largely uncorrelated movements with respect to the rest of
the molecule. In the fitting criterion, however, atoms within
the loop and those in the body may have equal weights. Since
all deviations enter quadratic into (1), large movements of an
even small number of loop-atoms may generate dominant
contributions to the RMSD. In such a case, in order to
minimize total RMSD, x

𝑖
is rotated predominantly to accom-

modate for the few atomswithin the loop.As a result, the large
remaining body of the molecule has to “follow its own loop,”
as if the tail chases the dog [maybe this was not the primary
intention of fitting]. Needless to say, due to such movements
caused by fitting, that minute motile elements may become
totally submerged, without any chance of being retrieved
from the trajectory, not even by sophisticated statistics.

The described situation is typical and demands more
elaborate fittingmethods. Choosing unequalweights suggests
itself as a nearby and convenient solution. The more rigid
parts of the molecule should receive more weight, the flexible
ones less. However, how should one know, prior to fitting,
which parts are semirigid and which are flexible?

One possibility would be a two-pass procedure, in the first
pass fitting to the wholemolecule with uniformweights (𝑤

𝑖
=

1) and evaluating the RMSF
𝑖
:

RMSF
𝑖
= √⟨(x

𝑖
− x
𝑖,ref)
2
⟩, (2)

where ⟨⟩ denotes the average over a trajectory and x
𝑖,ref

denotes a reference position of atom 𝑖, not changing over
time. Note that RMSF

𝑖
will highly depend on the choice of

the reference position, which is usually the mean coordinate
of atom 𝑖 over the whole trajectory. Then, in a second pass
of fitting, weights are chosen inversely proportional to the
RMSF

𝑖
, as reported by [18]. Highly motile atoms receive less

weight and lose their role in shaking the remainingmain parts
of the molecule. However, this method suffers from the fact
that RMSF

𝑖
depends on the selection of x

𝑖,ref in the first pass of
fitting; that is, the correction procedure depends on the error
it is supposed to correct.

Another possibility is the identification of semirigid
domains (clusters) within themolecule, as reported by [18]. In
particular, the definition of clustersmay be based ondistances
𝑑
𝑖𝑗
= ‖x
𝑖
− x
𝑗
‖ between pairs of atoms rather than coordi-

nates computed in the trajectory. The standard deviation of
distance variation (STDDV) between an atomic pair (𝑖, 𝑗) is
given by

𝑆
𝑖𝑗
= √

𝑁

𝑁 − 1
⟨(𝑑
𝑖𝑗
− ⟨𝑑
𝑖𝑗
⟩)
2

⟩, (3)

where 𝑁 is the number of atoms, ⟨⟩ denotes the average
over a trajectory, and 𝑆

𝑖𝑗
is measured in nm. Evidently, pair-

distances are unaffected by any kind of arbitrariness due to
fitting.

Given a number of clusters (𝑁clust), let 𝑐𝑖𝑚 denote the
partial class membership of atom 𝑖 in cluster 𝑚. For normal-
ization we require

𝑁clust

∑
𝑘=1

𝑐
𝑖𝑚
= 1. (4)

Table 1: Molecular complexes simulated.

Molecular system Simulation length
Penta-L-alanine (A5) 1000 ns
LC13 TCR/ABCD3/HLA-B∗44:02 (B4402) 250 ns
LC13 TCR/ABCD3/HLA-B∗44:03 (B4403) 250 ns

The following criterion has been proposed to identify an opti-
mum decomposition into a given number (𝑁clust) of clusters
[18]. Minimize the target function:

𝑞 (c) =
𝑁clust

∑
𝑚=1

𝑁

∑
𝑖=1

𝑁

∑
𝑗=1

𝑐
𝑖𝑚
𝑐
𝑗𝑚
𝑆
𝑖𝑗
= tr (c𝑇Sc) 󳨀→ min (5)

under the constraints of (4). Once identified, any such cluster
may be used as “primary fitting domain,” by assigning large
weights to the atoms therein. With little motion within such
a cluster, the motility of the remaining atoms of the molecule
will appear relative to that cluster. This generally increases
the chance of tracing relevant patterns of motion outside the
cluster, for many statistical methods being applied.

The important difference from the known structure-
analyzing tools of GROMACS, whether based on RMS devi-
ation after fitting or RMS deviation of atom-pair distances,
is that there is no need of a reference structure here. Also
the clustering algorithms themselves, though with different
criteria, assign conformations to a cluster for the molecule as
a whole, while in our work, groups of atoms are assigned to
the same cluster if their mutual distances vary little over time
(a spatial clustering within the molecule).

MD trajectories for protein complexes were analyzed
by clustering of averaged standard deviations of distance
variation (STDDV); see below. Obtaining the most rigid
cluster of atoms can be seen as the first step to facilitate the
search for protein motions.

2. Methods

2.1. Construction of Complexes for Molecular Dynamics Sim-
ulation. We applied the clustering algorithm to a series of
molecular systems as follows, see Table 1.

LC13 T cell receptor (TCR) in complex with major histo-
compatibility complex (MHC)HLA-B∗44:05 and theABCD3
peptide (EEYLQAFTY) has been successfully crystallized by
Macdonald et al. [20] and its structure is accessible on http://
www.pdb.org/ assigned the PDB ID 3KPS. However, there
are no structure files of LC13 TCR in complex with HLA-
B∗44:02 and HLA-B∗44:03. Therefore, we applied homology
modelling to create these structures.

In-silico mutagenesis was carried out using Swiss PDB
Viewer [21]. For generation of LC13/ABCD3/HLA-B∗44:03,
we used PDB structure 3KPS as a template and introduced
mutations Y116D (numbers according to PDB numbering)
and D156L to the MHC thus changing the HLA type from
B∗44:05 to B∗44:03. For generation of LC13/ABCD3/HLA-
B∗44:02 we used PDB structure 3KPS as a template and
introduced mutation Y116D to the MHC thus changing the
HLA type from B∗44:05 to B∗44:02; see Figures 1 and 2.

http://www.pdb.org/
http://www.pdb.org/
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HLA numbering 140 160 180
| | |

PDB numbering 120 140 160
| | |

DGRLLRGYDQYAYDGKDYIALNEDLSSWTAADTAAQITQRKWEAARVAEQDRAYLEGLCVESLRRYLENGK

DGRLLRGYDQDAYDGKDYIALNEDLSSWTAADTAAQITQRKWEAARVAEQLRAYLEGLCVESLRRYLENGK

DGRLLRGYDQDAYDGKDYIALNEDLSSWTAADTAAQITQRKWEAARVAEQDRAYLEGLCVESLRRYLENGK

B44:05/130–200
B44:03/130–200
B44:02/130–200

Figure 1: Alignment of amino acid sequences of HLA-B∗44:02, HLA-B∗44:03, and HLA-B∗44:05 (downloaded from IMGT/HLA database
[19]). HLA-B∗44:05 was used as a template for homology modeling, because a three-dimensional structure of this MHC in complex with
ABCD3 peptide and LC13 TCR was available. Sequence alignment was done with CLC bio’s CLC sequence viewer. Note that sequence
numbering from PDB (PDB numbering) and IMGT/HLA database (HLA numbering) differ.

(a) (b)

Figure 2: Visualisation of the D156L mutation in the MHCmolecule. MHCmolecules (gray) HLA-B∗44:02 (left), and HLA-B∗44:03 (right)
together with ABCD3 peptide (violet) are shown. The amino acids comprising the D/L polymorphisms at position 156 are shown in surface
representation (red⋅ ⋅ ⋅ oxygen, blue⋅ ⋅ ⋅ nitrogen, turquoise⋅ ⋅ ⋅ carbon, white⋅ ⋅ ⋅ hydrogen). Parts of the ABCD3 peptide closely interact with
residue 156(D/L).

2.2. Molecular Dynamics Simulation Protocol. The workflow
of the molecular dynamics simulation of the penta-L-alanine
system is closely related to that in the work of Bernhard and
Noé [18]. MD simulation of penta-L-alanine was performed
using GROMACS 4.0.7 [17] according to the following
protocol.

First, we immersed penta-L-alanine in an explicit SPC
[22] artificial water bath (cubic box) allowing for a mini-
mum distance of 1 nm between peptide and box boundaries.
Second, we minimized the solvated system using a steepest
descent method. Next, we warmed up the system to 293K
during a 100 ps position restraint MD simulation. Finally, we
carried out the MD production run with LINCS constraint
algorithm acting on bonds with hydrogen atoms using an
integration step of 2 fs and the GROMOS96 53a6 force field
[23]. Coordinates were written to the trajectory every 2 ps.
Coulomb interactions were computed using Particle Mesh
Ewald (PME) with a maximum grid spacing of 0.12 nm and
interpolation order 4. Both, Van der Waals and Coulomb
interactions were computed with a cut-off at 1.4 nm. Berend-
sen temperature coupling to 293K and Berendsen isotropic
pressure coupling to 1 bar were used. All further parameters
were set in accordance with Omasits et al. [24].

MD simulation of TCR/pMHC systems was performed
using GROMACS 4.0.7 [17] according to the following pro-
tocol. First, we immersed the TCR/pMHC complex in SPC
[22] artificial water bath (cubic box) allowing for a minimum
distance of 2 nm between complex and box boundaries. Sec-
ond, we added sodium and chloride ions to a concentration of
0.15mol/L, and at the same time neutralizing the net charge
of the system.Third, weminimized the energy of the solvated
system using a steepest descent method. Next, we warmed
up the system to 310K during a 100 ps position restraints
MD simulation. Finally, we carried out MD production
runs with LINCS constraint algorithm acting on all bonds
and using the GROMOS96 53a6 force field [23]. Hydrogen
motions were removed allowing for an integration step of
5 fs. Coordinates were written to the trajectory every 50 ps.
Coulomb interactions were computed using Particle Mesh
Ewald (PME) with a maximum grid spacing of 0.12 nm and
interpolation order 4. Both, Van der Waals and Coulomb
interactions were computed with a cut-off at 1.4 nm. Veloc-
ity rescale temperature coupling to 310K and Berendsen
isotropic pressure coupling to 1 bar were used. All further
parameters were set in accordance with Omasits et al. [24].
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2.3. Optimization of Cluster Membership. Each atom 𝑖 in a
molecular dynamics simulation may be uniquely assigned to
one of the 𝑁clust clusters considered [7, 25, 26], represented
by a “crisp” vector of cluster-membership; for example, 𝑐

𝑖𝑚
=

[0, 0, 0, 1, 0, 0] if atom 𝑖 belongs to cluster 4 out of 𝑁clust =
6 clusters. Alternatively, each atom 𝑖 may be considered to
belong to several clusters simultaneously, represented by
fuzzy, noninteger memberships, with normalization condi-
tion see (4). Fuzzy memberships are the more general case,
it seems that they might yield lower minima of the target
function than crisp memberships and should therefore be
preferred. Interestingly, Bernhard and Noé [18] report that
fuzzy memberships, upon optimization with a gradient
method, tend to end up as crisp, that is, either 0 or 1. We have
scrutinized this issue and will demonstrate how this comes
about. Even more, as one of the main results of this work, we
will prove that the solution has to be crisp. The proof is given
via mathematical arguments; see results section. This finding
allows us to restrict the search space to crisp memberships,
without diminishing the generality of the optimization prob-
lem posed.

2.3.1. Optimization of Crisp Cluster Memberships by a Two-
Stage Monte Carlo Method. Initially, the number of clusters,
𝑁clust, is chosen and the target function (5) has to be min-
imized. We will show that, under certain assumptions (see
Section 3.1), it is sufficient to search in

Ω∗ = {𝑐
𝑖𝑚
| 1 ≤ 𝑖 ≤ 𝑁, 1 ≤ 𝑚 ≤ 𝑁clust, 𝑐𝑖𝑚 ∈ {0, 1} ,

𝑁clust

∑
𝑚=1

𝑐
𝑖𝑚
= 1} .

(6)

In a less formal formulation, the objective is to assign each of
the𝑁 atoms to one particular cluster (crisp memberships).

It may become quite tricky to attack such a problem with
an analytic gradient approach since the boundary conditions
are usually difficult to handle and the search domain consists
of isolated points. We have therefore chosen a two-step
search, in which a random process is succeeded by an
exhaustive search.

Every constellation (i.e., Monte Carlo trial for improve-
ment) which cannot be improved by a single move of one of
the𝑁 atoms from one cluster to another is considered a result
(minimum constellation). The result with the lowest 𝑞(c) is
the ground state, but all otherminimumconstellations should
also be included in the further analysis.

2.3.2. Search Algorithm

(i) Start-Up. Initially, each of the𝑁 components is randomly
assigned to one (of the𝑁clust) cluster.

(ii) Random Search. In the first step, each of the 𝑁 compo-
nents (atoms) is moved from its current cluster to another
randomly chosen cluster with probability 𝑃. If this mutation
yields a reduction in 𝑞(c) the new constellation is preserved;

otherwise, it is rejected. This process is repeated 𝐾 times.
A very rudimentary benchmarking analysis has shown that
𝑃 = 1/𝑁 and𝐾 = 𝑁 ⋅ 𝑁clust are reasonable values to use.

(iii) Exhaustive Search. In the second step, the algorithm tries
to improve 𝑞(c) by single step moves for each component
separately. If there is no possible move to improve 𝑞(c), the
constellation is necessarily a local minimum in our sense.

(iv) Ground State. Usually there is a large number of min-
imum constellations in the above sense. For a matrix with
significant structure, the ground state will be reached after
only a few trials. For ill-conditioned matrices (those without
structure), a minimum constellation very close to the ground
state will also be found after a few trials, although the absolute
ground state might be difficult to find.

3. Results

3.1. Crisp Cluster Membership as a Necessary Consequence.
We formulate and prove a lemma that crisp memberships are
a necessary consequence of the topology of the multidimen-
sional space of pair-distance standard deviations.

Due to its definition, S is a symmetric, nonsingular𝑁×𝑁
adjacency matrix whose entries are the standard deviations
explained earlier (3); thus, 𝑆

𝑖𝑗
> 0 for 𝑖 ̸= 𝑗 and 𝑆

𝑖𝑖
= 0. Let

Ω = {𝑐
𝑖𝑚
| 1 ≤ 𝑖 ≤ 𝑁, 1 ≤ 𝑚 ≤ 𝑁clust, 𝑐𝑖𝑚 ≥ 0,

𝑁clust

∑
𝑚=1

𝑐
𝑖𝑚
= 1} .

(7)

The objective is to find ĉ = argmin 𝑞(c) for c ∈ Ω.

3.1.1. Lemma. If S is a symmetric, nonsingular𝑁×𝑁matrix
with nonnegative entries and ĉ = argmin 𝑞(c), for c ∈ Ω,
then 𝑐

𝑖𝑚
∈ {0, 1}.

To prove this lemma one uses Lagrange multipliers:

𝑞 (𝑐
11
, . . . , 𝑐

𝑁⋅𝑁clust
, 𝜆
1
, . . . , 𝜆

𝑁
)

=
𝑁clust

∑
𝑚=1

𝑁

∑
𝑖=1

𝑁

∑
𝑗=1

𝑐
𝑖𝑚
𝑐
𝑗𝑚
𝑆
𝑖𝑗
+
𝑁

∑
𝑖=1

𝜆
𝑖
(
𝑁clust

∑
𝑚=1

𝑐
𝑖𝑚
− 1) 󳨀→ min .

(8)

Since 𝑞(c) is a polynomial of order 2, the derivatives with
respect to 𝑐

𝑖𝑚
and 𝜆

𝑖
yield a system of𝑁 × (𝑁clust + 1) linear

equations of the form:

(

𝑆 0

0 𝑆
⋅ ⋅ ⋅
⋅ ⋅ ⋅

0 𝐼
𝑁

0 𝐼
𝑁

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
0 0

𝐼
𝑁
𝐼
𝑁

⋅ ⋅ ⋅
⋅ ⋅ ⋅

𝑆 𝐼
𝑁

𝐼
𝑁
0

) ⋅(

c
1

c
2

⋅ ⋅ ⋅
c
𝑁
𝑐𝑙𝑢𝑠𝑡

𝜆

) =(

0

0
⋅ ⋅ ⋅
0

1

)

(9)

with 𝐼
𝑁
being𝑁×𝑁 identity matrix and c

𝑚
= (𝑐
1𝑚
, . . . , 𝑐

𝑁𝑚
).

The determinant of the matrix is −𝑁clust det (S)
𝑁clust−1 and
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Figure 3: Topology of target function if a group of 7 atoms is allowed
to switch between different clusters. At left and right edge of the
graphics ground states are located (black circles), with correspond-
ing values of the target function (reference minima, left somewhat
lower than right). For the left state, all 7 switchable atoms are located
according to cluster minimum 1, for the right state according to
cluster minimum 2. In between, target function values are plotted
(as red dots) for all permutations of cluster memberships for the 7
switchable atoms (3 degrees of freedom: 2 + 2 + 3 atoms). Due to the
exceedingly high number of permutations, the area is densely filled
with dots. Vertical axis: target function [nm] relative to minimum
shown at left margin. Horizontal axis: multidimensional Euclidean
distance between reference minima.

therefore, under the assumption det (S) ̸= 0, there must be a
unique solution, which is given by

𝑐
𝑖𝑚
=

1

𝑁clust
𝜆
𝑖
= −

2

𝑁clust

𝑁

∑
𝑗=1

𝑆
𝑖𝑗
. (10)

Unfortunately, this solution yields the maximum of 𝑞(c) for
c ∈ Ω. However, since Ω is convex and bounded, one knows
that any argmin 𝑞(c) must be on 𝛿Ω. Therefore, there must
be at least one 𝑐

𝑖
󸀠
𝑚
󸀠 = 0. Reducing the above system of linear

equations by this constraint, one sees that the revolving sys-
tem again has a unique solution:

𝑐
𝑖𝑚
󸀠 =

1

𝑁clust − 1
for 𝑚 ̸=𝑚󸀠 𝑐

𝑖𝑚
=

1

𝑁clust
for 𝑖 ̸= 𝑖󸀠

𝜆
𝑖
= −

2

𝑁clust

𝑁

∑
𝑗=1,𝑗 ̸= 𝑖

𝑆
𝑖,𝑗

(11)

which again gives a maximum of 𝑞(c). The derivation of the
value of 𝜆

𝑖
is rather involved and not shown.

With the same argument as before, one can proceed by
setting all 𝑐

𝑖𝑚
equal to zero with the exception of one 𝑐

𝑖𝑚
for

each 𝑚. This iterative procedure shows that clustering with
respect to 𝑞(c) leads to a unique assignment of each of the𝑁
components to one particular cluster.

3.2. Heuristic Evaluation of Solution Space around theMinima.
Our theoretical result, that memberships are crisp, can be

illustrated very intuitively; see Figure 3. Left and right end
of 𝑥-axis correspond to constellations with minimum target
function, located at the boundary, and no other minimum is
found in between.

3.3. Clusters of Atomic Motions in MD Trajectory. For above
mentioned TCR/pMHC complexes B4402 and B4403,
STDDV matrices were computed from the MD trajectories;
see Figure 4. Only the second parts of the trajectories (corre-
sponding to approx. 125 ns simulation time) were considered
to exclude relaxation effects; see also Section 3.6.1.

STDDV matrices were clustered as described above for
𝑁clust = 2 to 6. After computation, clusters are renumbered
according to size (=number of atoms), the largest one always
being labelled as cluster 1. For 𝑁clust = 5, 6 cluster member-
ships for B4402 and B4403 were remapped onto the protein
structure and displayed in VMD [27]; see Figure 5.

Note that NO information whatsoever about secondary
structural elements, such as 𝛼-helices and 𝛽-sheets, has
entered the clustering procedure. Still, clusters more or
less seem to retrieve some of these structural elements; see
Figure 5.This could be related to extensive hydrogen bonding
in 𝛼-helices and 𝛽-sheets stabilizing these secondary protein
structure elements. How could bond constraints in MD sim-
ulations influence the resulting clusters? In our calculations,
we just considered the protein backbone, because amino acids
side chains show larger spatial fluctuations. The backbone
𝐶
𝛼
atoms are separated by a planar and rigid amid bond,

so neighboring 𝐶
𝛼
atoms will experience less variation in

distance.

3.4. More Clusters Improve Target Function. The number of
clusters has to be preselected in our approach. If we had just
one cluster, the total distance variability contained in matrix
S would be part of that cluster. Increasing the number of
clusters generally reduces the fraction of variability contained
within clusters, expressed as percentage of total in Figure 6.

3.5. Larger Clusters Turn Out to Be More Rigid. Clusters were
constructed to achieve maximum internal “rigidity,” that is,
a minimum sum of pair-distance standard deviations. One
might expect that large clusters, since they accommodate
many atoms within larger spatial domains, should turn out
to be less rigid then smaller clusters. However, the opposite
is true: larger clusters turn out to be more rigid; see the
declining trend of normalized STDDVwith increasing cluster
size in Figure 7. This demonstrates again that structures in
motility are captured via clustering. If there is no structure
within matrix S, normalized cluster sizes would result nearly
equal, that is, centered around 1.

Clearly, clusters do not result identical for different
subsections of aMD trajectory. In Figure 7, data are shown for
two trajectories and 50 subsections each, each clustered for
𝑁clust = 5 and 6. For details, see legend of Figure 7. 100Monte
Carlo attempts were performed for each clustering, out of
which the optimum (smallest target function) was adopted.
These results confirm the general trend that larger clusters are
more rigid.
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Normalised STDDV of B4402
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Figure 4: Standard deviation of pair distances (STDDV) in the second half of the trajectories of TCR/pMHC molecules B4402 (allogeneic)
and B4403 (nonreactive). Values of STDDV [nm] have been normalized and are color coded (see bar on the left). Averaging over a row yields
the mean distance variation against all other atoms (see subgraph on right). The dashed blue line shows the mean value of the row means,
clearly indicating that the second half of the 250 ns trajectory of B4403 is more dynamic than B4402. Note that only 𝐶

𝛼
atoms are considered.

An overview of dispersions within and between clusters
is given in Figure 8, the numerical results for 6 clusters being
given in Table 2.

3.6. Stability of Clusters. Clusters have been evaluated regard-
ing stability, in order to check whether they lend themselves
as reliable semirigid domains for fitting MD-configurations.
Of note that (at least) two sources of variability of cluster
memberships need to be scrutinized as follows:

(i) variability due to the stochastic nature of the Monte
Carlo clustering method and

(ii) variability due to different parts of an MD trajectory
being clustered.

We will demonstrate that variability due to our Monte Carlo
clustering method is negligible. As opposed to that, the
“adequate” choice and preparation of the MD trajectory has
tremendous impact and remains an issue of a never ending
debate [28–32].

3.6.1. Variability between Different Parts of a Single MD Tra-
jectory. Adequate sampling of phase space is essential regard-
ing MD-simulations [33]. Much work has been done to
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(c) (d)
Figure 5: This 3D representation shows the LC13 TCR in complex with ABCD3 peptide and either HLA-B∗44:02 (panels (a), (c)) or HLA-
B∗44:03 (panels (b), (d)). Number of clusters has been preset to five (upper panels) and six (lower panels). Clusters are rainbow-colored
according to decreasing size (number of atoms in the cluster): violet (largest cluster), blue, green (relevant only for 6 clusters), yellow, orange,
and red (the smallest cluster). The optimal clustering solution suggests that in these cases the most rigid clusters are the largest or the second
largest ones (see also Figure 7). For panel (a) the most rigid cluster is blue and for panel (c) it is violet. For panel (b) the most rigid cluster is
violet and for panel (d) it is blue. The most rigid cluster is therefore dependent on the prespecified number of clusters𝑁clust.

detect changes, drifts, and trends as markers for inadequate
sampling [16, 29, 34]. Block averaging was proposed as one of
the remedies [35].

In this work, the clustering presented above was based
on matrices S computed from whole 250 ns MD trajectories.
Clearly, the matrices S(𝑡

1
, 𝑡
2
) for each subset (𝑡

1
, 𝑡
2
) of a tra-

jectory would be different, entailing different results for clus-
tering. The question is which is the most reliable clustering
for a given molecule?

To answer this question, we shall quantify the variability
of clusters for subsets, relate it to the result for the whole tra-
jectory, and derive a “stiff kernel,” that is, those atoms which
do not (or very rarely) change clusters between subsets of the
trajectory.

Table 2: Dispersion of pair-distances within and between clusters.

1 2 3 4 5 6
1 0.058 0.115 0.093 0.145 0.178 0.167
2 0.115 0.068 0.146 0.193 0.219 0.129
3 0.093 0.146 0.079 0.123 0.175 0.212
4 0.145 0.193 0.123 0.075 0.210 0.264
5 0.178 0.219 0.175 0.210 0.090 0.241
6 0.167 0.129 0.212 0.264 0.241 0.124
The full trajectory of protein complex B4402 was clustered into 6 clusters.
Numbers in main diagonal give averaged STDDVs [nm] within clusters,
corresponding to left markers (symbols: mean, minimum, maximum) in
Figure 8. Off-diagonal values relate to STDDVbetween clusters, correspond-
ing to right marker in Figure 8.
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, example shown

for B4402) computed for 50 subsets of trajectory, of 5 ns each.
Straight lines have been fitted through time ranges 0–130 ns and 70–
250 ns to illustrate a necessary discrimination between initial and
ergodic phase of simulation.

First, we inspect the total dispersion contained within
𝑆
𝑖𝑗
, evaluated separately for 50 subsets of 5 ns each (i.e.,

100 frames out of 5000 frames in a whole trajectory); see
Figure 9. In this trajectory we observe an irregular oscillat-
ing time behavior, starting with a declining tendency. The
existence of such a substantial initial phase indicates that the
influence of the starting configuration does not die out until
after (roughly) half of the total simulation time has passed by.
To account for this fact in a heuristic way, straight lines were
fitted to the first and second half of the trajectory, allowing
for some overlap.This accommodates with the finding of our
previous work [29] that only the second half of the trajectory
can be considered an unbiased sample from phase space and
should be taken for further evaluations.

3.6.2. The Path along Most Stable Clusterings. For a prese-
lected (number of clusters) 𝑁clust, clustering was performed
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Figure 11: Migration of atoms between clusters. 50 subset-tra-
jectories have been clustered (example shown for B4402,𝑁clust = 2).
After relabelling (according to optimum permutation), the num-
ber of migrating atoms with respect to previous clustering is
shown. Along this trajectory, two episodes of massive migration
occur (around 100 and 220 ns, resp.). However, migrations turn out
to be almost reversible; that is, most atoms finally end up in their
former clusters (those of sub-trajectory 1), only about 50 (out of 826)
do not.

for each of the 50 subset-trajectories (5 ns each), yielding an
assignment for each atom to one of the clusters. Note that
clusters were primarily labeled (cluster 1, 2, etc.) according to
their size in that particular clustering (see Figure 10). Thus,
the following situation may occur. Given a clustering of a
subset-trajectory with first and second cluster about equal in
size. Then, when clustering the following subset-trajectory,
a few atoms from cluster 1 may end up in (i.e., “migrate”
into) cluster 2, which may suffice to make cluster 2 now the
largest cluster and therefore receiving the label “cluster 1”
in the second clustering. This would yield a very peculiar
result. The few “migrating atoms” would formally belong to
the same cluster (in this example cluster 1), while themajority
of atoms would switch between clusters 1 and 2. To avoid this
misleading and undesired artifact, we refined the procedure
as follows. In the first clustering, clusters were assigned labels
(1, 2, etc.) according to decreasing size. After each subsequent
clustering, we evaluated all permutations of cluster labels
regarding the number of “migrating atoms” with respect to
the first clustering. That permutation of labels, which yielded
a minimum of migrating atoms, was finally adopted. As an
example, the resulting number of migrating atoms is shown
for B4402 and𝑁clust = 2 in Figure 11.

3.6.3. Quantifying the Stability of Cluster Assignments. In
Figure 11 the number of migrating atoms was considered.
Now, we evaluate which atoms migrate. For quantification,
we resort to the Kullback-Leibler-distance [36, 37]:

KLD
𝑖
=
𝑁clust

∑
𝑚=1

𝑝
𝑖𝑚
⋅ log

𝑝
𝑖𝑚

1/𝑁clust
. (12)

1/𝑁clust represents the assumed background probability if
the assignment of atom i to any of the clusters were equally
probable. 𝑝

𝑖𝑚
is the actual probability for atom i to belong to

cluster m, estimated from an average over cluster member-
ships 𝑐

𝑖𝑚
obtained from clustering subsets of the trajectory:

𝑝
𝑖𝑚
= ⟨𝑐
𝑖𝑚
⟩ . (13)

Large values of KLD
𝑖
indicate that atom 𝑖 stays predomi-

nantly in the same cluster throughout the trajectory. On the
contrary, values of KLD

𝑖
close to zero indicate a random dis-

tribution of an atom between all clusters. Figure 12 shows
KLD
𝑖
for B4402 and𝑁clust = 5.

4. Discussion

4.1. Clustering Reflects Structure within STDDV-Matrix. Tar-
get function (5) only counts distance variability within the
clusters, not between atoms belonging to different clusters.
Thus, if we reorder atoms according to their cluster mem-
bership, clusters appear as squares along the main diagonal
of the matrix S; see Figure 15. If we hypothetically assume
that elements S

𝑖𝑗
are more or less homogenously distributed

across the matrix, the “area” of each cluster in the matrix
will roughly correspond to the variability within that cluster.
Clearly, these squares have to be of equal size to make their



10 BioMed Research International

0 100 200 300 400 500 600 700 800 900
0

0.5

1

1.5

2

Atom number

Ku
llb

ac
k-

Le
ib

le
r d

ist
an

ce

Figure 12: Kullback-Leibler distance as a measure for stability of
cluster assignments among 50 subtrajectories. For each of the 50
subtrajectories, a separate clustering was performed. Comparing
these clusterings, atoms are seen to move between the clusters
several times. We consider the Kullback-Leibler distance (KLD) to
estimate how far the distribution of the individual atoms among
clusters deviates from a uniform distribution. Maximum possible
values KLD = log

10
(50), shown as red dashed line, correspond to

atoms which never changed clusters. This can be observed, for
example, for atoms with indices between 200 and 300.The lower the
KLD, the more often the atoms move from one cluster to another.
Data are shown for B4402,𝑁clust = 5.

joint area minimum (and thus minimize the total distance
variation within clusters).

We have verified this prognosis by randomly rearranging
elements of matrix S and then performing the clustering
procedure. Cluster sizes resulted almost equal (for illustration
see left panel of Figure 13) in each of 20 trials of random
rearrangement and clustering. This finding was verified for
2 ≤ 𝑁clust ≤ 6 (data not shown).

As opposed, clusters of very different sizes resulted for
matrices S derived from MD simulation (illustrated in right
panel of Figure 13). This clearly indicates that clusters of
unequal size do not result by chance but reflect distinct
dependencies within S. The sensitivity of clustering to exist-
ing structures within S is also reflected in target function
𝑞(S), as can be seen by comparing matrices S from MD
and their randomly rearranged counterparts; see Figure 14.
In both cases averaged STDDV decreases (improves) with
increasing number of clusters. However, in presence of real
dependencies between atomic mobility, clustering achieves
much more improvement.

4.2. Many Small Clusters Are More Rigid but Cover Less Dis-
tance Variation. One might ask why a larger cluster number
is less favorable. Obviously, the extreme case of defining
each single pair of atoms as a separate cluster would lead
to minimum STDDV within clusters but would represent a
trivial and useless solution. Note that STTDV within clusters
decreases with increasing 𝑁clust, which makes clusters more
homogeneous and is a desired effect. However, at the same
time the overall amount of variability caught within clusters
also decreases, which is an undesired effect, since larger
portions of the molecule are disregarded. These trends are
reflected by the total area of coloured squares along the diag-
onal in Figure 13. The smaller the squares (with increasing
𝑁clust), the smaller their total area, even if there are more
squares (the area decreases quadratic with the side lengths of
squares).

This tendency has been quantitatively demonstrated for
real MD-data in Figure 6. On top of that, Figure 14 shows
that the same trend also holds for unstructured matrices, as
mentioned above. However, results also show that matrices
without structure (randomly rearranged elements) allow for
very little reduction in the STDDV covered within clusters,
as compared to structured matrices and that this difference
further increases with𝑁clust.

4.3. Clustering Is Stable and Self-Contained. Powerful statis-
tics on MD-trajectories (which is, e.g., able to detect small
motions related to signaling) needs careful fitting of config-
uration frames as a prerequisite. Fitting to a domain which
should be as rigid and large as possible is one of the options.

Hence, finding large clusters is desirable. However, large
clusters in general might prove unstable. Therefore, we have
carefully investigated this issue for the target function pro-
posed by Bernhard and Noé [18] in conjunction with our
clustering method.

It turned out that larger clusters are even more stable (see
Figure 7), which is a strong indicator of stability and self-
containment of our results.

4.4. Ergodicity. Atomic motions in a large molecule consti-
tute a highly dimensional phase space, and MD-simulations
can in most cases explore only part of the total phase space.
At least, one can never be sure about the exact fraction of
phase space actually visited in a specific simulation run. As a
consequenceweuse only the secondhalf of ourMD trajectory
for final clustering (see Figure 5), in accordance with our
previous work [29].

4.5. Computational Resources. Clustering takes very little
iteration steps for A

5
, due to monotonous, continuous rela-

tionships between elements of S; see the appendix. Note that
the rapidity of clustering in this case is not only a primary
consequence of the small number of atoms but a matter of
simplicity in structure.

Randomized matrices S take significantly more iterations
for clustering, since many minima are almost equal regard-
ing the target function, rendering solutions ambiguous. As
opposed to this, clustering large molecules with structured
internal motion, such as B4402 and B4403, yields well-
defined minima after a reasonable number of trials.

4.6. Cluster Interpretation. There is an obvious difference
in visual appearance between STDDV matrices for B4402
and B4403 as seen in Figure 4. Trajectory B4402 yields an
unstructured, rather flat STDDV matrix (upper panel in
Figure 4), while B4403 shows a distinctly structured STDDV
matrix (lower panel in Figure 4).The relation between cluster
rigidity and size is illustrated in Figure 7 and shows a clear
trend: cluster rigidity increases with increasing cluster size,
reflected in a decreasing STDDV within clusters. However,
this does not mean that the largest cluster is always the most
rigid cluster (i.e., has lowest STDDV). For 𝑁clust = 5, we see
that in B4403 the largest cluster is at the same time the most
rigid one. For𝑁clust = 5 in B4402 the second largest cluster is
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“B4402 randomly rearranged” stems from a matrix with randomly
rearranged elements (STDDVs).

the most rigid one. For𝑁clust = 6 the situation is inverted: in
B4402 the largest cluster is the most rigid one. In B4403 the
second largest cluster is most rigid.

All in all, the most rigid cluster was always found among
the two largest clusters.Themappings of the clustering results
for𝑁clust = 5 and𝑁clust = 6 for B4402 and B4403 have been
displayed in Figure 5.

4.7. Conclusion and Prospects. A main result of the paper is
the finding that the target function proposed by others [18]
has only crisp solutions; that is, each atom belongs to one
single cluster only (and not to several clusters in a fuzzy

sense). This finding allows for a much more efficient search
for optimum clustering.

Based on this new finding, the process of clustering was
evaluated regarding various aspects to provide concomitant
information for possible application by other investigators.
Applicability was demonstrated for two trajectories of 250 ns
each for large biomolecular complexes whose dynamics is of
key importance for the understanding of immune reactions.

Further improvements can be expected from a more
detailed investigation of the Kullback-Leibler distance [36,
37]. In this work it has only been reported as a means for
assessing the quality of clustering by some given method.
In future work, the Kullback-Leibler-distance may enter the
clustering procedure itself and render clusters even more
stable between subtrajectories and over time.

Appendices

A. Pair-Distance Variations in
a Small Molecule

For comparison, we applied our clustering method also to
the A
5
penta-L-alanine peptide already analyzed by Bernhard

and Noé [18]. They choose penta-L-alanine to evaluate their
clustering algorithm on MD simulations for reasons of
simplicity of this molecule. A

5
has four amide bonds, each

comprising four atoms (CONH). The delocalization of the
nitrogen’s free electron between conjugated carbonyl and
amine groups poses planarity and rigidity onto this structure.

Mu et al. [38] showed thatA
5
does not remain in an alpha-

helical conformation, but rather exhibits repeated folding
and unfolding events. As expected for such a molecule,
our clustering of the averaged STDDV matrix indicates
that atoms close together show little fluctuations of their
mutual distances, such as the atoms in the middle of the
pentapeptide; they are, so to speak, in the centre of the
storm. Conversely, atoms near the edges show large distance
fluctuations with respect to all other atoms.
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Figure 15: Matrix of standard deviation of distance variation (STDDV) for the A
5
pentapeptide (33 atoms). Values of STDDV [nm] are color

coded (see bar on the left). Averaging over a row yields the mean distance variation against all other atoms (see subgraph on the right).

Clustering such a homogeneous matrix S does not reveal
structural elements within the molecule, but rather splits
it into equal parts, according to the number of clusters
preselected. Note, however, that this behavior is a property
of the equally distributed matrix values S

𝑖𝑗
and not a general

rule.

B. Software Availability

The software used for clustering into crisp domains of
preselected number is currently being implemented in Java
and will be made available for free download from http://
www.meduniwien.ac.at/msi/biosim/index.php?lang=en&
seite=en forLehreIt pairDistanceClustering.
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