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Activation of STAT3 integrates common profibrotic
pathways to promote fibroblast activation and
tissue fibrosis
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Signal transducer and activator of transcription 3 (STAT3) is phosphorylated by various

kinases, several of which have been implicated in aberrant fibroblast activation in fibrotic

diseases including systemic sclerosis (SSc). Here we show that profibrotic signals converge

on STAT3 and that STAT3 may be an important molecular checkpoint for tissue fibrosis.

STAT3 signaling is hyperactivated in SSc in a TGFβ-dependent manner. Expression profiling

and functional studies in vitro and in vivo demonstrate that STAT3 activation is mediated by

the combined action of JAK, SRC, c-ABL, and JNK kinases. STAT3-deficient fibroblasts are

less sensitive to the pro-fibrotic effects of TGFβ. Fibroblast-specific knockout of STAT3, or its
pharmacological inhibition, ameliorate skin fibrosis in experimental mouse models. STAT3

thus integrates several profibrotic signals and might be a core mediator of fibrosis.

Considering that several STAT3 inhibitors are currently tested in clinical trials, STAT3 might

be a candidate for molecular targeted therapies of SSc.
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F ibrotic diseases impose a major socioeconomic burden on
modern societies and have been estimated to account for
45% of deaths in the developed world1. Their common

histopathological feature is an excessive accumulation of extra-
cellular matrix, which disrupts the physiological tissue archi-
tecture2. Tissue fibrosis can occur after defined stimuli with a
subsequent inflammatory response, but in many fibrotic diseases,
no initiating trigger can be identified. These idiopathic fibrotic
diseases can manifest on virtually every organ. A prototypical
systemic idiopathic fibrotic disease is systemic sclerosis (SSc)3.
Failure of the affected organs is common in SSc and results in
high morbidity and mortality and no targeted therapies are yet
available for the treatment of fibrosis in SSc2,3. Myofibroblasts are
the principle source of extracellular matrix during physiologic
tissue repair as well as in fibrotic diseases. However, while tissue
remodeling is tightly controlled in normal wound healing and is
turned off as soon as the damage is repaired, the fibroblasts
escape this regulation1. Myofibroblast differentiation may initially
be depended on profibrotic cytokines, but with prolonged exter-
nal stimulation, myofibroblasts become independent of external
stimuli and remain persistently activated in fibrotic diseases.

Although the molecular mechanisms leading to aberrant acti-
vation of fibroblasts are incompletely understood, transforming
growth factor-β (TGFβ) has been identified as a core pathway of
fibrosis2–5. The levels of TGFβ are increased in fibrotic diseases
and fibroblasts display activation of TGFβ signaling with
increased transcription of TGFβ target genes4,6. Moreover, sti-
mulation of resting fibroblasts with TGFβ induces an activated
myofibroblast phenotype and a gene expression profile in resting
fibroblasts that is reminiscent of SSc fibroblasts6,7. The key role of
TGFβ signaling in the pathogenesis of fibrosis is further
demonstrated by the development of systemic fibrosis in mice
with fibroblast-specific overexpression of constitutively active
TGFβ receptor type I (TBRact)8. The effects of TGFβ are medi-
ated by a complex network of intracellular signaling events.
SMAD proteins that mediate canonical TGFβ signaling are con-
sidered as major intracellular mediators9. SMAD independent,
so-called non-canonical TGFβ pathways, such as mitogen acti-
vated involving the mitogen-activated protein kinases (MAPKs),
focal adhesion kinase (FAK), the tyrosine kinase c-ABL, and early
growth response 1 are also transducing in the pro-fibrotic effects
of TGFβ10,11. However, inhibition of these downstream pathways
does not completely abrogate the pro-fibrotic effects of
TGFβ12–14, indicating that additional pathways are important to
transduce the stimulatory effects of TGFβ. Identification of these
novel downstream mediators of TGFβ might have translational
implications and may provide the basis for novel-targeted
therapies for fibrotic diseases.

Signal transducer and activator of transcription 3 (STAT3) was
originally identified as an interleukin-6-activated transcription
factor and subsequently reported to also transduce signals from
several other stimuli including additional cytokines, hormones,
and growth factors15,16. Upon binding of these ligands to their
receptors, STAT3 is activated by phosphorylation at Tyr-705 in
the STAT3 transactivation domain. Phosphorylation of STAT3 at
Tyr-705 can be executed by kinases of the JAK and SRC families,
but also by other receptor- and non-receptor-associated tyrosine
kinases, such as JNK and c-ABL16–19. Phosphorylation at Tyr-705
is essentially required for STAT3 signaling as it allows STAT3 to
dimerize, translocate to the nucleus, and to modulate the tran-
scription of target genes and is thus commonly used to assess the
activation of STAT3 signaling. STAT3 regulates fundamental
cellular processes including inflammation, cell growth, prolifera-
tion, differentiation, migration, and apoptosis20. Given its broad
regulatory effects, it may not be surprising that deregulation of
STAT3 signaling has been linked to the pathogenesis of various

diseases. STAT3 is an oncogenic transcription factor and con-
stitutive activation of STAT3 has been observed in numerous
malignancies15,16,21–23. STAT3 is activated by several pro-
inflammatory cytokines, including interleukin-6 (IL-6)24–26,
which is a prime target for therapeutic intervention in several
inflammatory diseases including rheumatoid arthritis, Still’s dis-
ease and giant cell arthritis. The levels of IL-6 are also increased in
SSc and treatment with monoclonal antibodies against IL-6
receptor may improve clinical outcomes in an inflammatory
subgroup of SSc patients27. Of particular interest, STAT3 has also
been linked to mesenchymal tissue responses during development
and in cancer. STAT3 is essentially required for mesoderm
induction in Xenopus embryos28. STAT3 has very recently been
found to promote tumor progression by promoting desmoplastic
reactions and tumor invasion29,30. The identification of STAT3 as
a potential therapeutic target in various diseases promoted the
development of STAT3 inhibitors and these efforts generated
numerous candidates22–24,31. First of those inhibitors have
already been tested in clinical trials with promising results.

Several of the upstream kinases that regulate phosphorylation
and thus activation of STAT3, such as JAK2, JNK, and SRC, have
previously been characterized as mediators of non-canonical
TGFβ signaling6,13,17,32. Given the convergence of those media-
tors toward STAT3 activation, we hypothesized that STAT3, in
addition to its central role in inflammation, may be a crucial
checkpoint for fibroblast activation and tissue fibrosis.

In this study, we demonstrate that STAT3 signaling is hyper-
active in SSc by the combined action of JAK, SRC, c-ABL, and
JNK kinases. Pharmacological or genetic inactivation of STAT3
inhibits TGFβ-induced fibroblast-to-myofibroblast transition and
collagen release in cultured fibroblasts and ameliorates skin
fibrosis in two mouse models of SSc. We thus demonstrate that
STAT3 is a central integrator of multiple profibrotic signals and a
candidate for molecular-targeted therapies of fibrosis in SSc.

Results
Phosphorylated STAT3 accumulates in fibrotic skin. We first
analyze whether STAT3 signaling is activated by analyzing the levels
of STAT3 phosphorylated at tyrosine 705 (P-STAT3), the common
readout for STAT3 activation, in the skin of SSc patients as
compared to age- and sex-matched healthy volunteers. P-STAT3
accumulates in the SSc skin with prominent staining in spindle-
shaped cells in the dermis, whereas only few cells in the dermis
stains positive for P-STAT3 in healthy individuals (Fig. 1a–d).
Costaining of P-STAT3 with vimentin demonstrates that 84± 7%
of SSc fibroblasts stain positive for P-STAT3, as compared to only
34± 3% in healthy skin (P< 0.0001 by Mann–Whitney U-test)
(Fig. 1a, c). Consistent with the persistent activation of SSc fibro-
blasts under culture conditions, we observe an increased accumu-
lation of P-STAT3 in SSc fibroblasts even after several passages in
culture (Fig. 1b, d). The activation of STAT3 signaling in SSc is also
mimicked in experimental models of skin fibrosis. Challenge of
mice with bleomycin or overexpression of TBRact in the skin of
mice significantly increases the levels of P-STAT3 as compared to
non-fibrotic control mice (Fig. 1e–j).

TGFβ induces phosphorylation of STAT3. Given the consistent
activation of STAT3 signaling in fibroblasts of SSc patients and in
different experimental models, we speculate that a core pathway
such as TGFβ might drive the activation. Indeed, recombinant
TGFβ induces phosphorylation of STAT3 in cultured fibroblasts,
with maximum accumulation of P-STAT3 observed after 3 h of
TGFβ stimulation (Fig. 2a–d). Immunofluorescence staining further
confirms the activation of STAT3 signaling by TGFβ and demon-
strates nuclear localization of P-STAT3 in TGFβ-stimulated
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Fig. 1 Activation of STAT3 signaling in fibrotic SSc skin. a–d Evaluation of STAT3 signaling in human samples: a Representative images and b quantitative
analysis of immunofluorescence staining for P-STAT3 (left) and total STAT3 (right) co-stained with the vimentin (fibroblast marker) and DAPI (staining
of nuclei) shown at 200-fold and 1000-fold magnification (n= 12 for SSc and n= 10 for healthy skin). c Western blots and d quantification of the levels of
P-STAT3 and total STAT3 in human dermal fibroblasts from 13 SSc patients and 12 healthy individuals. e–g Evaluation of STAT3 signaling in the mouse model of
bleomycin-induced skin fibrosis: e Representative images of immunofluorescence stainings (200-fold and 1000-fold magnification) showing P-STAT3 (left) and
total STAT3 (right) along with f quantification and g confirmation by western blot analyses in the skin of mice injected with NaCl or bleomycin (n≥ 6 for each
group). h–j Evaluation of STAT3 signaling in the mouse model of TBRact-induced fibrosis: h Western blot and i, j immunofluorescence analyses of P-STAT3
expression in the skin of mice injected with TBRact. N≥ 6 for each group with two or three technical replicates for all experiments. Expected band size for
P-STAT3 and STAT3 are 79 kDa (lower faint band) and 86 kDa (higher intense band) and the ladder represents 100 kDa. Beta-actin expected molecular
weight/size is 42 kDa. Horizontal scale bar, 100 μm. Results are shown as median± interquartile range (IQR). Significance was determined by Mann–Whitney
test, as compared to healthy volunteers or with non-fibrotic control mice, respectively. *P<0.05; **P<0.01, ***P<0.001
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fibroblasts (Fig. 2b–c). Furthermore, selective inhibition of TGFβ
signaling by SD-208, a TGFβ receptor I inhibitor33, prevents the
upregulation of P-STAT3 in bleomycin-challenged mice (Fig. 2e–f).
Taken together, these results demonstrate that P-STAT3 is over-
expressed in SSc fibroblasts in a TGFβ-dependent manner.

JNK JAK SRC and c-ABL kinases jointly activate
STAT3 signaling in fibroblasts in response to TGFβ. We next
evaluate which upstream kinases mediate phosphorylation of
STAT3 in response to TGFβ. Immunofluorescence staining shows

activation of JAK2, JNK, SRC, and c-ABL signaling in SSc
with increased staining for P-JAK2 (Tyr-1007/1008), P-JNK
(Thr-183/ Tyr-185), P-SRC (Tyr-416), and P-c-ABL (Tyr-412) in
fibroblasts of SSc skin as compared to skin from healthy indivi-
duals (Fig. 3a, b). Stimulation of cultured human dermal fibro-
blasts with recombinant TGFβ also promotes accumulation of
P-JAK2, P-JNK, P-SRC, and P-c-ABL in a time-dependent
manner (Fig. 3c, d). We thus inhibit JAK2, SRC, JNK, and c-ABL,
all of which have also been demonstrated to phosphorylate
STAT3 and are known to transduce the pro-fibrotic effects of
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TGFβ from the cell surface to the nucleus13,18,19,34,35. P-JAK2,
P-JNK, P-SRC, and P-c-ABL accumulate in fibroblasts in bleo-
mycin- and TBRact-induced experimental fibrosis to a similar
degree as in human SSc, confirming their suitability to study
STAT3 signaling in SSc (Fig. 3e, f).

In vitro studies demonstrate that not only inhibition of JAK2, but
also of JNK, SRC, and c-ABL by both siRNA-mediated knockdown
and by respective small molecule inhibitors of JAK2, JNK, SRC, and
c-ABL all significantly inhibit the TGFβ-induced phosphorylation
of STAT3 (Fig. 4a–f). These results are further substantiated by
demonstrating that individual inactivation of JAK2, JNK, SRC, and
c-ABL all reduced STAT3-dependent reporter activity in TGFβ-
stimulated fibroblasts (Fig. 4g–j). Taken together, these findings
suggest that JAK2, JNK, SRC, and c-ABL all contribute to the
TGFβ-induced activation of STAT3 in fibroblasts.

To confirm those findings in vivo, we selectively inhibited
JAK2, JNK, SRC, and c-ABL by selective small molecule
inhibitors in the experimental murine models of bleomycin-

induced skin fibrosis and TBRact-induced skin fibrosis. Indivi-
dual inhibition of JAK2, JNK, SRC, or c-ABL signaling all
significantly ameliorates the bleomycin-induced accumulation of
P-STAT3 (Fig. 5a–c). Consistently, treatment with small molecule
inhibitors of either JAK2, JNK, SRC, or c-ABL all reduces the
accumulation of phosphorylated STAT3 in mice overexpressing
TBRact (Supplementary Fig. 2). However, despite relatively high
doses of each inhibitor, none of the treatments completely
abrogates the activation of STAT3 signaling by bleomycin. These
data demonstrate that the activation of STAT3 in activated
fibroblasts results from the combined activation of JAK2, JNK,
SRC, and c-ABL kinases.

As recent findings suggest that JAK1 might also be capable of
activating STAT3, either directly32,36 or indirectly by transpho-
sphorylation of JAK237, we decide to further investigate the
effects of JAK1 inhibition on TGFβ-induced activation of STAT3.
Inhibition of JAK1 by siRNA-mediated knockdown or small
molecule inhibitors targeting JAK1 and JAK2 partially reduces
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STAT3 activation in human dermal fibroblasts (Supplementary
Fig. 1).

We are further interested to study potential crosstalk between
STAT3 and SMAD signaling in TGFβ-stimulated fibroblasts.
We first analyze the kinetics of the activation of both pathways
by analyzing the accumulation of P-STAT3 and P-SMAD3
upon stimulation with TGFβ. The accumulation of P-SMAD3
precedes the accumulation of P-STAT3 with initial increases
after 15min for P-SMAD3 and 2–3 h for P-STAT3 (Supplementary
Fig. 3a). Co-immunoprecipitation (CoIP) studies with SMAD3
antibodies demonstrate that SMAD3 binds to non-phosphorylated
STAT3 in dermal fibroblasts (Supplementary Fig. 3b). The
interaction between SMAD3 and non-phosphorylated STAT3 is
further enhanced by coincubation of fibroblasts with the STAT3
dimerization inhibitor S3I-201, a small molecule inhibitor that
interferes with the dimerization of STAT331, likely by increasing the
availability of monomeric STAT3 in the cytoplasm as a binding
partner for SMAD3. Incubation with S3I-201, however, does not
promote binding of SMAD3 to P-STAT3. Consistent with a
recently proposed model that the binding of non-phosphorylated
SMAD3 to STAT3 may inhibit STAT3 signaling36, siRNA-
mediated knockdown of SMAD3 promotes STAT3 signaling with
a trend toward increased levels of P-STAT3 and significantly

increases STAT3-dependent transcription in reporter assays
(Supplementary Fig. 3c–f). However, inhibition of STAT3 dimer-
ization using S3I-201 has no significant impact on TGFβ-induced
SMAD3 phosphorylation in cultured fibroblasts and on SMAD3-
dependent transcription in reporter studies, suggesting a predomi-
nantly unidirectional regulation.

Inactivation of STAT3 inhibits TGFβ-induced myofibroblast
differentiation and collagen release. We wonder whether
the TGFβ-induced activation of STAT3 may contribute to
the stimulatory effects of TGFβ on fibroblasts. To target
STAT3 signaling, we first use S3I-201, a small molecule inhibitor
that binds to the STAT3–SH2 domain to block STAT3
phosphorylation and STAT3 DNA binding24,38. Treatment with
S3I-201 inhibits the transcription of the TGFβ target gene Ctgf and
reduces the differentiation of resting fibroblasts into myofibro-
blasts with impaired upregulation of αSMA mRNA and
protein and decreased formation of stress fibers upon stimulation
with TGFβ (Fig. 6a–f). Moreover, inhibition of STAT3 also
reduces the stimulatory effects of TGFβ on collagen synthesis with
decreased mRNA levels of col1a1 and col1a2 and reduced release
of collagen protein (Fig. 6c–e). To exclude that the anti-fibrotic
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effects of S3I-201 are due to off-target effects, we confirm these
results by a genetic approach using fibroblasts depleted of STAT3.
Consistent with the findings obtained with S3I-201, fibroblasts
deficient in STAT3 are less sensitive to the stimulatory effects of
TGFβ with decreased expression of Ctgf, impaired myofibroblast
differentiation and reduced collagen synthesis (Fig. 6g–l).

Fibroblast-specific knockout of STAT3 ameliorates experi-
mental fibrosis. We next investigate whether inactivation of STAT3
exerts anti-fibrotic effects in murine models of SSc. As
STAT3 signaling is particularly active in fibroblasts and as mice with
complete, non-conditional knockout of STAT3 are not viable39,40, we
generate mice with selective and inducible deletion of STAT3 in
fibroblasts. Knockdown of STAT3 in fibroblasts does not alter the
basal skin histology, leukocyte infiltration, or the collagen content in
the absence of pro-fibrotic stimuli (Figs 7 and 8 and Supplementary
Fig. 4). Furthermore, the fibroblast-specific knockdown of STAT3 in

bleomycin-challenged mice does not have any noticeable or adverse
effect on STAT3 activation in other cell populations in the murine
skin (Supplementary Figs. 5–9).

However, mice with conditional deletion of STAT3
in fibroblasts are protected from experimental fibrosis.
Consistent with the inhibitory effects of STAT3 inactivation on
TGFβ-induced fibroblast activation in vitro, mice lacking
STAT3 selectively in fibroblasts are less sensitive to TBRIact-
induced fibrosis and demonstrate reduced dermal thickening,
decreased myofibroblast counts, and lower hydroxyproline levels
compared to TBRIact mice with normal STAT3 expression
(Fig. 7a–g). Consistent with decreased myofibroblast counts and
the reduced collagen deposition, the mRNA levels of Acta2,
Col1a1, and Col1a2 are also reduced in mice with fibroblast-
specific deletion of STAT3-overexpressing TBRIact as compared
to control littermates (Fig. 7c–e).

The mRNA levels of the TGFβ-regulated genes Thbs1 and
Comp have recently been shown to correlate with the changes in
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along with their l quantitative analyses. All experiments were performed in dermal tissue sections from the experimental mouse model of TBRact-induced
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median± interquartile range (IQR). Horizontal scale bar, 100 μm. Significance was determined by Mann–Whitney test, as compared to vehicle-treated,
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Fig. 8 Fibroblast-specific knockout of STAT3 ameliorates bleomycin-induced skin fibrosis. a Representative histological sections stained with hematoxylin
and eosin (top) and trichrome (bottom). b Dermal thickness, c–e mRNA levels of Acta2, Col1a1, and Col1a2, respectively, f hydroxyproline content,
g myofibroblast count, and h–k levels of h Ctgf mRNA, i Pai-1 mRNA and of the proposed biomarkers, j Thbs1 mRNA, and k Comp mRNA. m, n
Representative immmunofluorescence stainings of P-STAT3 (left) and total STAT3 (right) at 200-fold and 1000-fold magnification, respectively, along
with their l quantitative analyses. All experiments were performed in the skin tissue sections from the experimental mouse model of bleomycin-induced
skin fibrosis in mice with fibroblast-specific, tamoxifen-inducible, Cre-loxP-based (Col1a2-Cre-ER) knockout of STAT3 in STAT3fl/fl mice and control
littermates (C57Bl/6background, 12 weeks of age). N≥ 6 mice with 2 technical replicates per group for all experiments. Results are shown as
median± interquartile range (IQR). Horizontal scale bar, 100 μm. Significance was determined by Mann–Whitney test, as compared to vehicle-treated,
fibrotic mice, respectively. *P< 0.05; **P< 0.01***; P< 0.001. Tam tamoxifen, CO Corn-oil
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the modified Rodnan skin score41–44 as the common
clinical readout of skin fibrosis and changes in the mRNA levels
of Thbs1 and Comp in fibrotic skin are thus considered
as potential biomarkers for SSc. The mRNA levels of Thbs1
and Comp decrease in mice with fibroblast-specific deletion of
STAT3 (Fig. 7j, k). The mRNA levels of other TGFβ-regulated

genes, such as Pai-1 and Ctgf, are also found to be reduced
(Fig. 7h, i).

In addition to TBRIact-induced fibrosis, mice with fibroblast-
specific knockout of STAT3 are also protected from bleomycin-
induced skin fibrosis with reduced dermal thickening, myofibro-
blast differentiation, and hydroxyproline content in lesional skin
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compared to control mice (Fig. 8a–g). The levels of Acta2, Col1a1,
Col1a2, Thbs1, Comp, Pai-1, and Ctgf mRNA lessen in mice with
fibroblast-specific deletion of STAT3 upon challenge with
bleomycin than in control littermates (Fig. 8h–n).

Pharmacological inhibition of STAT3 exerts potent anti-
fibrotic effects in experimental models of SSc. To test the
translational potential of those findings, we next use S3I-201 to
inactive STAT3 in experimental fibrosis. Treatment with S3I-201
exerts potent anti-fibrotic effects in TBRIact- and bleomycin-induced
skin fibrosis at well-tolerated doses (Figs. 9 and 10). S3I-201 effec-
tively reduces TBRIact-induced dermal thickening, myofibroblast
differentiation, and collagen accumulation (Fig. 9a–h).

Treatment with S3I-201 also strongly ameliorates bleomycin-
induced skin fibrosis (Fig. 10a–h). In both models, treatment with
S3I-201 reduces the mRNA levels of Acta2, Col1a1, Col1a2,
Thbs1, Comp, Pai-1, and Ctgf (Figs. 9 and 10i–l).

Of note, no evidence of toxicity of anti-fibrotic doses of S3I-201
has been observed, either clinically or on necroscopy.

Discussion
In this study, we characterize STAT3 as an intracellular mediator
of the pro-fibrotic effects of TGFβ. We show that knockdown of
STAT3 in cultured fibroblasts by siRNA or by pharmacological
inactivation prevents TGFβ-induced differentiation of resting
fibroblast into myofibroblasts and significantly reduces the
stimulatory effect of TGFβ on collagen release. Moreover,
fibroblast-specific knockout of STAT3 strongly ameliorates
TBRact-induced fibrosis, further highlighting the crucial role of
STAT3 in TGFβ-induced fibroblast activation. We establish that
pharmacological or genetic inhibition of STAT3 also reduces the
levels of TGFβ-target genes in skin experimental fibrosis,
including those of potential biomarkers such as Thbs1 and Comp.
TGFβ also activates STAT3 signaling and promotes accumulation
of P-STAT3. The stimulatory effects of TGFβ on STAT3 are not
restricted to fibroblasts and the skin, but have also been observed
in other cell types and tissues such as follicular T-helper cells and
hepatic stellate cells32,45–47. Together, these data demonstrate that
STAT3 acts as a non-canonical downstream mediator to transmit
the profibrotic effects of TGFβ.

Although JAK2 is a key regulator of STAT3 phosphorylation,
several other kinases have also been shown to phosphorylate and
activate STAT3 in a JAK2-independent manner16,19,48,49. As
inhibition of JAKs would not block those alternative pathways
of STAT3 phosphorylation, targeting of JAK2 may thus not
completely abrogate the pathological activation of STAT3 in
fibrotic diseases. Indeed, we elucidate that STAT3 is phosphory-
lated not only by JAK2, but that SRC, c-ABL, and JNK kinases
also contribute significantly to the phosphorylation of STAT3 in
cultured fibroblasts and in fibrotic tissues. In addition, JAK1 also
seems to contribute to activation of STAT3 in fibroblasts in
response to TGFβ, but further studies are required to determine
whether JAK1 directly phosphorylates STAT3 in this context or
whether the effects or mediated indirectly via JAK1-dependent
activation of JAK232,36,37. These findings demonstrate that the

signals transmitted through JAK2, SRC, c-ABL, and JNK all
converge on STAT3. This is particularly intriguing as all these
kinases are hyper-activated in SSc and have been shown to
contribute to the aberrant activation of fibroblasts13,34,35,50. In
addition to these kinases, serine/threonine kinases, such as CK2,
have also been implicated in the pathogenesis of SSc36. Whether
CK2 and other serine/threonine kinases are also capable of
activating STAT3 signaling remains to be determined. These data
provide evidence that STAT3 serves as a key molecular check-
point for fibroblast activation by integrating and converting
activation of JAK2, SRC, c-ABL, and JNK kinases into
pro-fibrotic responses with induction of myofibroblast differ-
entiation and upregulation of collagen release.

We also investigate the crosstalk of STAT3 signaling with
canonical TGFβ/SMAD signaling. In some contexts, STAT3 and
SMAD3 signaling pathways have been reported complementary to
each other32,36, whereas recent data generated in HaCaT cells
suggest that STAT3 signaling may also attenuate TGFβ-induced
SMAD signaling51. We demonstrate that the activation of
SMAD3 signaling precedes the activation STAT3 signaling in
primary human dermal fibroblasts. Moreover, in this setting,
SMAD3 binds to non-phosphorylated STAT3, but not to P-STAT3.
Knockdown of SMAD3 enhances TGFβ-induced STAT3 signaling,
whereas inhibition of STAT3 does not promote SMAD signaling.
These findings provide evidence that the binding of non-
phosphorylated SMAD3 to STAT3 may inhibit STAT3 signaling
in fibroblasts in the context of fibrosis, a model that is consistent
with recent findings in hepatic stellate cells32,36. Activation of
SMAD signaling in fibrotic diseases may thus further boost TGFβ-
dependent activation of STAT3 in addition to direct phosphoryla-
tion by the upstream kinases SRC, JAK2, c-ABL, and JNK.

The central role of STAT3 as an integrator of pro-fibrotic
signals from several upstream kinases suggests STAT3 as a
potential target for anti-fibrotic therapies. Indeed, we demon-
strate using genetic approaches as well as a selective pharmaco-
logical inhibition of STAT3 that inactivation of STAT3 signaling
exerts potent anti-fibrotic effects. Inactivation of STAT3 inhibits
bleomycin-induced fibrosis as a model of early, inflammation-
driven fibrosis, but also demonstrate potent anti-fibrotic effects in
TBRact-induced fibrosis as a model of late, non-inflammatory
stages of SSc with endogenous activation of fibroblasts52.
Targeting STAT3 may thus be effective in different stages and
different subpopulation of SSc patients. Moreover, treatment with
S3I-201 is not only effective in preventive settings, but also in
therapeutic regimens. When treatment with S3I-201 is initiated
after fibrosis has already been established, inhibition of STAT3
does not only prevent further progression of fibrosis despite
ongoing challenge with bleomycin, but induces regression of
fibrosis to below-pre-treatment levels.

Although our in vitro studies on cultured fibroblasts and our
in vivo data on mice with ablation of STAT3 specifically in
fibroblasts demonstrate that fibroblasts are key-target cells, the
anti-inflammatory effects of STAT3 inhibitors likely contribute to
the anti-fibrotic effects of pharmaceutical STAT3 inhibition.
STAT3 transmits the intracellular signals of multiple cytokines,
such as IL-1β, IL-6, or TNFα, that are known to promote

Fig. 9 Pharmacological inhibition of STAT3 induces the regression of TBRact-induced experimental skin fibrosis. a–o Treatment of TBRact-induced skin
fibrosis with the STAT3 inhibitor S3I-201 in mice (DBA/2 background, 12 weeks of age). a Representative histological sections stained with hematoxylin
and eosin (top) and trichrome (bottom). b Dermal thickness, c western blot analysis of P-STAT3, shown by the ladder representing 100 kDa (expected
intense upper band size, 86 kDa and lower faint band size, 79 kDa). Beta-actin (expected molecular weight/size, 42 kDa) is shown by ladder at 40 kDa.
d–f mRNA levels of d Acta2, e Col1a1, and f Col1a2, g hydroxyproline content, h myofibroblast counts and levels of i Ctgf mRNA, j Pai-1 mRNA and of the
proposed biomarkers, k Thbs1 mRNA, and l Comp mRNA. m–o Immunofluorescence analysis including n, o representative immunofluorescence stainings of
P-STAT3 (left) and total STAT3 (right) at 200-fold and 1000-fold magnification, respectively, along with their m quantitative analyses. N≥ 6 mice with 2
technical replicates per group for all experiments. Results are shown as median± interquartile range (IQR). Horizontal scale bar, 100 μm. Significance was
determined by Mann–Whitney test, as compared to vehicle-treated, fibrotic mice, respectively. *P< 0.05; **P< 0.01***; P< 0.001
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inflammation in fibrotic diseases including SSc26,27,53–55. Inhibi-
tion of IL-6 signaling may be of particular interest for the
pathogenesis of SSc, as treatment with anti-IL6-receptor anti-
bodies may improve the clinical outcome in an inflammatory
subgroup of SSc patients27,56. Although approximately only
one-third of SSc patients shows an inflammatory gene expression
profile in fibrotic skin or presents with clinical features of

inflammation57–60, inhibition of inflammation may contribute to
the efficacy of STAT3 inhibitors in particular in the inflammatory
subset of patients. For the same reasons, inhibition of STAT3 may
not only be effective in classical fibrotic diseases, but may also
ameliorate pathologic repair responses in inflammatory diseases.
For example, treatment with Stattic, a first-generation inhibitor of
STAT3, also improves strictures in Crohn’s diseases61; treatment
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with a small STAT3 inhibitor STA-21, ameliorates psoriasis-like
skin lesions not only in experimental mouse models, but may also
improve human psoriasis21,53,62. The prominent role of STAT3 in
the pathogenesis of psoriasis is intriguing, i.p. as we also observe
staining for P-STAT3 in keratinocytes in our mouse models.
However, the levels of nuclear P-STAT3 in epidermal keratino-
cytes are not altered by induction of fibrosis with bleomycin
(Supplementary Fig. 10 and Supplementary Movies 1 and 2).

These findings may have direct translational implications.
Several approaches to target STAT3 are currently in clinical
development with small molecular inhibitors of STAT3 dimer-
ization and oligodeoxynucleotides being most common. Indeed,
more than 10 different clinical trials investigating STAT3 inhi-
bitors in various solid tumors, hematologic neoplasms, or psor-
iasis are currently ongoing or have already been completed (www.
clinicaltrials.gov), highlighting that STAT3 is considered as a
prime target for pharmaceutical intervention.

Methods
Patients. Dermal fibroblasts were isolated from skin biopsies of 27 SSc patients
fulfilling the criteria for SSc63 (Supplementary Table 1) and from skin biopsy
samples of 31 healthy individuals matched for age and sex as described. Clinical
characteristics are provided in Supplementary Table 1. The human studies were
approved by the Ethical Committee of the Medical Faculty of the University of
Erlangen-Nuremberg. All patients and controls signed a consent form approved by
the local institutional review board.

All patients had SSc according to the 2013 ACR/EULAR64. The disease subset
was determined according to the criteria proposed by LeRoy et al. Disease duration
was measured from the onset of the first non-Raynaud symptoms attributable to
SSc. Pulmonary arterial hypertension was diagnosed by right heart catheterization.
Disease activity was determined using the EULAR Systemic Sclerosis Activity
Score. Patients with scores of ≥3 were classified as having active disease. DMARD,
disease-modifying antirheumatic drug; F, female; M, male; NSAID, non-steroidal
anti-inflammatory drug.

Cell culture. Murine and human dermal fibroblasts were obtained from sterile
3 mm × 3mm skin punches from murine or patients. The skin fragments were
further fragmented using sterile scalpel and digested with Dispase II solution (from
Bacillus polymyxa, Gibco BRL, Darmstadt, Germany) (0.8 mg/ml in PBS) for 3 h at
37 °C and 800 rpm. The digested sample was filtered using 100 µm nylon filter and
centrifuged at 1400 rpm for 5 min. The pellet was resuspended in Dulbecco’s
modified Eagle’s medium-Ham’s F-12 (DMEM) containing 10% fetal bovine serum
and put in culture flasks. Before an experiment, dermal fibroblasts were serum-
starved in DMEM containing 0.1% fetal bovine serum for 24–48 h. In selective
experiments, serum-starved cells were incubated with recombinant human TGFβ-1
(10 ng/ml) (R&D Systems, Abingdon, UK), the STAT3 inhibitor S3I-201 (15 µM)
(Selleckchem, Houston, USA), the JAK2 inhibitor TG101209 (500 nM) (Sell-
eckchem), the JAK1/2 inhibitor Ruxolitinib (5 µM) (LC Laboratories, Massachu-
setts, USA), the SRC inhibitor SU6656 (500 nM) (Calbiochem, Seattle, USA), the
JNK inhibitor SP600125 (500 nM) (Tocris Bioscience, Bristol, UK), and the c-ABL
inhibitor imatinib mesylate (500 nM) (Novartis, Basel, Switzerland). To delete
STAT3 from cultured murine fibroblasts isolated from STAT3fl/fl Cre−/− mice,
fibroblasts were infected with type 5 adeno-associated viruses (AAV) encoding for
Cre recombinase at an IFU of 80/cells. AAV encoding for LacZ served as controls.

Transfections and luciferase reporter assays. Human dermal fibroblasts were
transfected with reporter plasmid constructs or siRNAs using using the Nucleo-
fection technique and Nucleofector Solution V (Lonza, Cologne, Germany) using
the manufacturer’s recommended protocol. Experiments were conducted 24–48 h
after transfection and thereafter cells were harvested. Gene silencing was achieved
by nucleofecting 3 μg pre-designed siRNA duplexes against JAK2, JAK1, SRC, c-
ABL, and SMAD3 (all Eurogentec, Seraing, Belgium) and 100 nM SignalSilence
siRNA I for SAPK/JNK (Cell Signaling Technology, #6232). The transfection

efficiency was determined by western blot analysis. Non-targeting siRNAs (nt
siRNA) (Life Technologies, Darmstadt, Germany) served as controls. The sequences
of the pre-designed sense siRNAs are described in Supplementary Table 2.

Cignal Lenti STAT3 Reporter (luc) Kit and Cignal SMAD Reporter (luc) Kit
from Qiagen (Hilden, Germany) were used to determine STAT3- and SMAD3-
dependent reporter activities. Dual-luciferase activities were determined by using
Luminoskan™ Ascent Microplate-Luminometer (ThermoFisher Scientific, Madrid,
Spain). The constitutively expressed non-inducible Renilla luciferase activity served
as internal control for normalizing transfection efficiencies.

Quantitative real-time PCR. Gene expression was quantified by SYBR Green real-
time PCR using the ABI Prism 7300 Sequence Detection System (Life Technolo-
gies). Samples without enzyme in the reverse transcription reaction (non-RT
controls) were used as negative controls. Unspecific signals caused by primer
dimers were excluded by non-template controls and by dissociation curve analysis.
Beta-actin (ACTB) was used to normalize for the amounts of cDNA within each
sample. All primer sequences are presented in Suppplementary Table 3.

Western blot analysis. Proteins were separated by SDS-PAGE and transferred to
polyvinylidene difluoride membrane, which was incubated overnight with the
appropriate primary antibody. The primary antibodies included mouse anti-STAT3
(1:1000), rabbit anti-P-STAT3 (Tyr705, dilution 1:500), rabbit anti-JAK2 (dilution
1:1000), rabbit anti-P-SRC (Tyr 416, dilution 1:500), rabbit anti-SRC (dilution
1:800), rabbit anti-c-ABL (dilution 1:800), rabbit anti P-c-ABL (Tyr 245/412,
dilution 1:500), rabbit and anti-JNK (SAPK/JNK, dilution 1:500) from Cell Sig-
naling Technology (Frankfurt, Germany); rabbit anti-JAK1 (1:200), goat anti-P-
JAK1 (Tyr 1022, dilution 1:200), and rabbit anti-P-JAK2 (Tyr 1007/1008, dilution
1:200) from Santa Cruz Biotechnology (Heidelberg, Germany); rabbit anti-SMAD3
(dilution 1:500), rabbit anti-P-SMAD3 (dilution 1:250), and rabbit anti-P-JNK
(Thr183/Tyr185, dilution 1:500) from Abcam (Cambridge, UK) and rabbit anti-P-
SRC (dilution 1:500) from MyBioSource (San Diego, USA). Horseradish peroxidase-
conjugated antibodies (Dako, Hamburg, Germany) were used as secondary anti-
bodies. Blots were visualized using enhanced chemiluminescence (ECL from GE
Healthcare, Braunschweig, Germany). Beta-actin (Sigma-Aldrich, Deisenhofen,
Germany) or Lamin A/C (Cell Signaling Technology) antibodies served as controls
for equal loading. PageRuler™ Prestained Protein Ladders #26616 and #26619 from
ThermoFisher Scientific (Darmstadt, Germany) were used. Bands were quantified
using the ImageJ Software (NIH, version 1.49). The original uncropped scans of
western blots presented in the main figures are shown in Supplementary Fig. 11.

CoIP. Fibroblasts were collected in lysis buffer composed of 400 mM NaCl, 20 mM
HEPES (pH 7.9), and 1 mM EDTA. An aliquot of 20 μg from the lysates was used
as input. Cell extracts were incubated with 20 μl Protein A/G Sepharose and 3 μg of
SMAD3 or normal IgG antibodies (no. sc-5569, no. sc-101154, and no. sc-2027, all
Santa Cruz Biotechnology, Heidelberg, Germany). Unbound proteins were
removed by washing with 0.05% NP-40. Sepharose-bound protein complexes were
analysed by western blotting.

Quantification of collagen protein. Total soluble collagen in cell culture super-
natants was quantified using the SirCol collagen assay (Biocolor, Belfast, Northern
Ireland) as described previously50,65. Briefly, cell culture supernatant was mixed
with sirius red dye for 30 min at room temperature. After centrifugation, the pellet
was dissolved in alkali reagent. Measurement was performed using a SpectraMax
190 microplate spectrophotometer (Molecular Devices, Biberach an der Riß,
Germany) at a wavelength of 540 nm.

Immunohistochemistry and immunofluorescence staining. Formalin-fixed,
paraffin-embedded skin sections or 4% PFA-fixed, 0.25% Triton X-100-
permeabilized cells were stained with appropriate primary antibodies, including
mouse anti-STAT3 (dilution 1:200) (Cell Signaling Technology) and rabbit anti-P-
STAT3 (dilution 1:500) (Abcam). For double-staining experiments, the samples
were incubated again with primary antibodies against P-SRC (dilution 1:500),
P-JAK2 (dilution 1:500), P-c-ABL (dilution 1:300), and P-JNK (dilution 1:500).
Fibroblasts were stained specifically with vimentin (Sigma-Aldrich) overnight at
4 °C. HRP-conjugated or Alexa Fluor antibodies (Life Technologies, Darmstadt,
Germany) were used as secondary antibodies. Fibroblasts incubated with isotype

Fig. 10 Pharmacological inhibition of STAT3 exerts potent anti-fibrotic effects in bleomycin-induced experimental skin fibrosis model. a–o Treatment of
bleomycin-induced skin fibrosis with the STAT3 inhibitor S3I-201 in mice (DBA/2 background, 12 weeks of age). a Representative histological sections stained
with hematoxylin and eosin (top) and trichrome (bottom). b Dermal thickness, c western blot analysis of P-STAT3, shown by the ladder representing 100 kDa
(expected intense upper band size, 86 kDa and lower faint band size, 79 kDa). Beta-actin (expected molecular weight/size, 42 kDa) is shown by ladder at
40 kDa. d–fmRNA levels of d Acta2, e Col1a1, and f Col1a2, g hydroxyproline content, hmyofibroblast counts and levels of i CtgfmRNA, j Pai-1mRNA and of the
proposed biomarkers, k Thbs1mRNA, and l CompmRNA.m–o Immunofluorescence analysis including n, o representative immmunofluorescence stainings of P-
STAT3 (left) and total STAT3 (right) at 200-fold and 1000-fold magnification, respectively, along with theirm quantitative analyses. N≥ 6 mice with 2 technical
replicates per group for all experiments. Results are shown as median± interquartile range (IQR). Horizontal scale bar, 100 μm. Significance was determined by
Mann–Whitney test, as compared to vehicle-treated, fibrotic mice, respectively. *P<0.05; **P<0.01***; P<0.001
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control antibodies (Santa Cruz Biotechnology, Heidelberg, Germany) were used as
controls. Counter staining of cell nuclei was performed using DAPI (Santa Cruz
Biotechnology). Stained cells were visualized using a Nikon Eclipse 80i microscope
(Nikon).

For quantification, single, spindle-shaped cells in the dermis positive for the
required positive antibody were counted in six randomly chosen high-power fields
at 200-fold magnification by two experienced researchers in a blinded manner as
described13.

Integrated density was analyzed using ImageJ Software (NIH, version 1.49).

Confocal microscopy and analysis. Confocal images of tissue sections were
acquired using a Leica SP5 II confocal laser scanning microscope (Leica Micro-
systems, Heidelberg, Germany) with ×63 glycerol-immersion objective and scan-
ning resolution of 512 × 512 pixels, zoom factor 6.4. Image stacks consisting of a
series of images at 1 μm intervals throughout the entire cell nucleus were taken at
randomly selected tissue areas. The images were deconvoluted with the Huygens
deconvolution software (Scientific Volume Imaging B.V.). The DAPI channels
were then smoothed by convolving with a Gaussian kernel (sigma= 5 pixels) and
nuclei were segmented by automatic global thresholding (using ImageJ’s Otsu
method). Likewise, YY in the XX channel were segmented using automatic Otsu
global thresholding. Afterwards, the ratios of YY between inside and outside of
nuclei were calculated for each image. The entire workflow was performed fully
automatically to exclude any bias, by a custom ImageJ macro.

Animal studies. Two different mouse models were employed: bleomycin-induced
skin fibrosis, and fibrosis induced by injections of replication-deficient type 5 ade-
noviruses encoding for a constitutively active TBRI construct52,66. For bleomycin-
induced skin fibrosis, 6-week-old mice received repeated subcutaneous injections of
bleomycin (100 µl) at a concentration of 0.5mg/ml in defined areas of 1 cm2 at the
upper back every other day for 4 weeks. Mice injected with equal volumes of 0.9 %
sodium chloride served as controls. In a subset of experiments, mice were treated with
intraperitoneal injection of c-ABL inhibitor imatinib mesylate (150mg/kg/day) or
SRC inhibitor SU6656 (12mg/kg/day dissolved in 20% DMSO/80% NaCl) or an oral
gavage of JAK2 inhibitor TG101209 (200mg/kg/day) or JNK inhibitor CC-930
(300mg/kg/day, Celgene, New Jersey, USA) for 21 days. Control mice were injected
with bleomycin and with vehicle for the respective individual inhibitors. All inhibitors
were dissolved in 0.9% NaCl unless otherwise mentioned. For TBRact-induced
fibrosis, 4-week-old mice received of 6.67 × 107 pfu/mouse of replication-deficient
type 5 adenoviruses encoding for TBRIact into defined areas of 1 cm2 at the upper
back four times per 2 months. Mice injected with LacZ-expressing viruses served as
controls. To selectively inactivate STAT3 in fibroblasts, mice carrying two conditional
alleles of STAT3 (STAT3fl/fl) were crossbred with col1a2-Cre-ER mice to generate
col1a2-Cre-ER STAT3fl/fl. Cre-mediated recombination was induced by repeated i.p.
injections of tamoxifen over 5 days. Control groups were injected with corn oil. For
pharmacological inhibition of STAT3, we used selective STAT3 inhibitor S3I-201
(10mg/kg/day). All mouse experiments were approved by the governments of Mit-
telfranken and/or Unterfranken.

Histologic analysis. The injected skin areas of all mice were fixed in 4% formalin
and embedded in paraffin. Histologic sections were stained with hematoxylin and
eosin for the determination of dermal thickness. The dermal and hypodermal
thickness was visualized using a Nikon Eclipse 80i microscope (Nikon) and ana-
lyzed at four different sites in each mouse in a blinded manner as described13,65.
For visualization of collagen content, trichome staining was performed (Sigma-
Aldrich). Hydroxyproline content and α-smooth muscle actin positive myofibro-
blasts were analyzed as described previously65,67.

Statistics. All data are presented as median with interquartile range (IQR). Dif-
ferences between the groups were tested for their statistical significance by
Mann–Whitney U-test for non-related samples and by the Wilcoxon signed rank
tests for related samples. In a subset of experiments, the mean values of the control
groups were set to 1. All other values were expressed as x-fold changes compared
with the respective controls used as ‘comparison mean values’. P values less than
0.05 were considered significant.

Data availability. All data generated or analysed during this study are included in this
published article (and its Supplementary Information files). Additional supporting
informations are available from the corresponding author on reasonable request.
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