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Abstract

A central hypothesis of ecological immunology is that immune defences are traded off against competing physiological and
behavioural processes. During energetically demanding periods, birds are predicted to switch from expensive inflammatory
responses to less costly immune responses. Acute phase responses (APRs) are a particularly costly form of immune defence,
and, hence, seasonal modulations in APRs are expected. Yet, hypotheses about APR modulation remain untested in free-
living organisms throughout a complete annual cycle. We studied seasonal modulations in the APRs and in the energy
budgets of skylarks Alauda arvensis, a partial migrant bird from temperate zones that experiences substantial ecological
changes during its annual cycle. We characterized throughout the annual cycle changes in their energy budgets by
measuring basal metabolic rate (BMR) and body mass. We quantified APRs by measuring the effects of a lipopolysaccharide
injection on metabolic rate, body mass, body temperature, and concentrations of glucose and ketone. Body mass and BMR
were lowest during breeding, highest during winter and intermediate during spring migration, moult and autumn
migration. Despite this variation in energy budgets, the magnitude of the APR, as measured by all variables, was similar in all
annual cycle stages. Thus, while we find evidence that some annual cycle stages are relatively more energetically
constrained, we find no support for the hypothesis that during these annual cycle stages birds compromise an immune
defence that is itself energetically costly. We suggest that the ability to mount an APR may be so essential to survival in
every annual cycle stage that skylarks do not trade off this costly form of defence with other annual cycle demands.
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Introduction

Seasonal variation in immune function has been found in a

variety of vertebrate taxa and has been attributed to seasonally

changing annual cycle demands, resource availability and exposure

to pathogens and parasites [1,2]. Because production, maintenance

and use of the immune system require energy [3,4], a central

hypothesis states that immune defences, particularly those compo-

nents that have high costs, are traded off against other competing

physiological and behavioural processes [5–7]. Such trade-offs

putatively explain findings of reduced immune responses in relation

to reproduction [3,8,9], during migration [10,11] or during winter

[12]. Furthermore the outcome of such trade-offs is affected by the

evolutionary pressures exerted by pathogens and parasites [13],

which may also change throughout the year. In addition to trade-

offs between the immune system and other physiological systems,

trade-offs within the immune system may also occur. For example,

organisms may shift from more to less costly defences during times

of high energy demand or low resource availability [2,14]. More

specifically, Lee [15] hypothesizes a switch from costly inflamma-

tory responses to highly specific but less costly antibody responses.

The acute phase response (APR), an innate response that is

initiated minutes after detecting an inflammatory agent, is an early

defence against threats that have already breached physical

barriers like the skin. APRs involve an array of physiological

and behavioural changes, including fever and anorexia [16], and

these responses incur costs from metabolic upregulation and tissue

degradation [5,17,18]. In birds, potential proximate mechanisms

underlying seasonal changes in APRs are hypothesized to include

hormonal suppression and seasonal differences in energy stores

[16,19]. Thus far, studies of seasonal modulations in APRs

consider only two annual cycle stages [19] and have been done on

either captive birds or wild birds that have been in captivity for at

least several weeks [20,21]. While offering some insight, the

conclusions of these studies are limited by the lack of a complete

year-round perspective on immune function and by lack of

simultaneous measurements of the energy budget.

To identify which annual cycle stages are energetically

demanding, ecologists quantify indices of energy metabolism

[22,23]. Basal metabolic rate (BMR) is the most standardized

measure [24], and BMR relates to many other ecologically-

important variables including activity level [25,26], food avail-

ability and diet [27,28], organ sizes and body composition [29–

31], and daily energy expenditure [29,32,33]. These relationships

make BMR an interesting trait for ecological studies of seasonal

variation. Metabolism represents only part of the energetic
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balance, and energetic challenges can also result from limitations

on resource availability. Thus, data on body mass and biochemical

markers can provide critical information about whether birds

obtain nutrients from available food or from body reserves. Two

such biochemical markers are glucose and ketone. Glucose is one

of the main sources for energy production in birds [34] and the

primary carbohydrate absorbed by the avian intestine [35].

Ketone concentrations reflect lipid catabolism during fasting

[36–38].

Most temperate zone birds experience substantial changes in

their ecology over the course of a year. Energy and time budgets

change in association with seasonal activities like migration and

reproduction and with variable environmental conditions like

temperature and precipitation. The skylark, Alauda arvensis, is a

typical temperate zone passerine and a partially migratory species,

with migration dependent on breeding location [39,40]. During an

annual cycle, skylarks go through five distinct annual cycle stages:

spring migration, breeding, moult, autumn migration, winter.

With transitioning stages, skylarks face changes in environmental

conditions, social structure (pairs during breeding, flocks outside

the breeding season), and diet (predominantly insectivorous during

summer, predominantly granivorous during winter) [41].

To understand how seasonal changes in energy budgets relate to

seasonal changes in immune function, simultaneous measurements

of both are needed throughout the year in the same species. So far,

only components of this design have been investigated. For

example, studies of the energy budget of skylarks are restricted to

the breeding season. These studies show that the field metabolic

rate of breeding skylarks is 11% below allometric predictions and

that the ratio between field metabolic rate and BMR is 1.7 [42,43],

which is substantially below the optimal working capacity of four-

times-BMR for birds tending broods proposed by Drent and Daan

[44]. Measurements during other annual cycle stages are required

to determine if metabolism levels during breeding are compara-

tively low. Studies of baseline immune function in skylarks and

other birds show differences in indices among different annual

cycle stages, but these studies have been measured on un-

challenged birds and in isolation of energetic measurements

[41,45–47]. Nevertheless, these studies suggest that patterns of

immune function are linked to changing environmental conditions

[41,47]. To our best knowledge no studies linking modulations in

the energy budgets over a complete annual cycle to modulations in

energetically-costly immune responses have been carried out in

any free-living vertebrate.

We studied seasonal modulations of energy budgets and APRs

in wild skylarks across the species’ entire annual cycle. To

characterize changes in the energy budget, we measured body

mass and basal metabolic rate. To quantify the energetic and

nutritional costs of activating the APR, we measured the effects of

a lipopolysaccharide injection on metabolic rate, body mass, body

temperature, and concentrations of glucose and ketone. Based on

the hypothesis that birds should compromise expensive immune

responses during energetically-demanding times of the annual

cycle, we expected seasonal modulations in the magnitude of the

APR to occur in relation to changes in the energy budget. Since

males and females are hypothesized to differently allocate

resources to their immune system [2,14], we also investigated if

the sexes mount APRs of different magnitudes.

Materials and Methods

Ethics Statement
The study described here was specifically approved by the

Institutional Animal Care and Use Committee of the University of

Groningen under license DEC5219B. The populations study in

the Aekingerzand was done under licence D4743A and

DEC5219B of the same committee and all their guidelines and

conditions were strictly followed.

Birds and field capture
We caught skylarks during five annual cycle stages in the

northern Netherlands in 2008 and 2009 focusing on our study

population at the Aekingerzand (N 52u559; E 6u189). Skylarks in

our study population are partial migrants. Some birds migrate;

others winter locally and are accompanied by birds that breed

further north and east [48]. During breeding (15 Jun–7 Jul 2008),

we caught birds (9 m, 6 f) that were feeding nestlings with mist-

nests or traps on the nest from our study population at the

Aekingerzand. Birds were caught in the afternoon and released

early next morning to minimize the time adults were absent from

their nest. From three nests we took both parents but at different

times to help ensure continued food provisioning for the nestlings.

During molt (3 Aug–22 Sep 2008), we caught birds (12 m, 7 f)

from the same population by flushing birds into nets during the

night. During winter (9 Dec 2008–15 Jan 2009) birds from the

study population use agricultural fields that surround the core

study area [48]. We caught birds (14 m, 3 f) on these fields by

flushing them into nets at night. During migration in spring (14

Mar–24 Mar 2008 and 25 Feb–1 Mar 2009; 12 m, 12 f) and

autumn (9 Oct–2 Nov 2008; 17 m, 9 f), we caught actively

migrating birds with clap-nets during periods of visible diurnal

skylark migration at a location about 15 km southeast of the

Aekingerzand. We are confident about the migratory status: when

tape-lured, migrants interrupt their migratory flight, but local birds

that are not currently migrating do not respond.

Upon capture, we punctured the brachial vein with a sterile

needle and collected blood samples into heparinised capillary

tubes before taking structural measurements. Birds were sexed

biometrically and some doubtful cases were sexed molecularly

[49]. All individuals were fully grown. Because skylarks undergo a

complete post-nuptial moult in August–September, age classes

could not be distinguished. Since skylarks breed in their first year

(Hegemann unpublished data) and both young and adult birds are

known to migrate [48,50], we have no indications that an age bias

between stages exists and could influence the interpretation of the

results.

Experimental protocol and respirometry setup
After capture, we brought birds into captivity and, assigned

each one to either the experimental or control group. We balanced

these groups for sex. Because birds were caught at different times

of the day and because the respirometry setup could measure a

maximum of three individuals per night, time in captivity varied.

Of the 101 skylarks, 76 spent ,24 h in captivity before the

experiment started (median: 17:40 h; minimum: ,2 h (n = 2);

maximum: 69 h (n = 2)). We housed up to three birds per cage

(30640660 cm) during all annual cycle stages except the breeding

season, when skylarks were territorial and housed individually.

Prior to initiation of the experimental protocol, birds had access to

water, mealworms and seeds ad libitum.

At the start of the experimental protocol at 4.30 p.m, food and

water were withdrawn and birds were isolated in a dark box for

1 h. At 5:30 p.m., we collected baseline pre-metabolic body

temperatures and masses of all birds, and we injected the

experimental birds with LPS. We inserted a thermocouple about

1 cm into the cloacae and recorded the temperature (OMEGA

ATT thermometer) to the nearest 0.1uC once the temperature was

stable for 10 sec., and we measured body mass to the nearest

Costly Immune Response not Seasonally Modulated
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0.1 g. Experimental birds were injected intra-abdominally with

2.5 mg LPS in 10 mL PBS per kg body mass.

The LPS dose was based on results of a pilot study in skylarks

and rooted in published data. In Japanese quail Coturnix coturnix

japonica, a dose of 0.5 mg LPS per kg body mass does not lead to a

significant response, and doses higher than 2.5 mg/kg do not lead

to additional increases in the response magnitude [51]. Thus, we

first tested the effects of 1.0 mg/kg (n = 3) and 2.5 mg/kg (n = 3) in

Skylarks. These birds responded more strongly to the higher dose

in terms of average mass-corrected metabolic rate (2.75 vs. 2.52 ml

O2/hr/g) and body temperature 13 hours post-injection (40.8 vs.

40.0uC). No birds died following injection with either dose of LPS.

Combined, these results suggested to us that the higher dose

(2.5 mg/kg) was appropriate for our current study and that it led

to a greater response than would be possible from the vehicle (PBS)

alone.

LPS injections mimic bacterial infection without resulting in

infection. Control birds remained un-injected because puncturing

the skin and other tissues and injecting a vehicle (e.g. PBS only)

can also result in inflammation (K. Klasing and B. Helm, personal

communications). Consequently, the experimental responses must

be viewed as a result of both the LPS and the injection procedure.

This combination of effectors does not pose interpretational

problems for our study since our central interest is inflammation

versus the absence of inflammation and not the effects of LPS

per se.

Immediately after measuring body temperature and body mass

from all birds and injecting the experimental birds, birds were

sealed individually in airtight metabolic chambers. The metabolic

chambers sat inside a larger environmental chamber that was set

to 30uC, which is within the thermoneutral zone of skylarks [42].

The first 1.5 hours in the chamber served as acclimation and

equilibration period. We recorded O2-consumption and CO2-

production from 7:00 p.m. to 6:30 a.m. the following morning

using standard flow-through respirometry [52]. Briefly, com-

pressed ambient air was dried and pumped through calibrated

mass-flow controllers (model 5850S; Brooks Instrument, PA, USA)

at 40 L h21 and through the metabolic chambers. After leaving

the chambers, the air passed through silica gel filters to remove the

moisture added by the birds (e.g. through respiration). Then, the

percentages of O2 in the air were measured with gas analyzers (O2:

Servomex Xentra 4100, Crowborough, UK). A reference stream

of dried air that bypassed the metabolic chambers was analysed at

least once every two hours.

We calculated O2 consumption (mL h21 g21) using equations

adapted from Hill [53]. Nightly metabolic rate was calculated as

the average O2 consumption per bird between 7:00 pm and 6:30

am. BMR was calculated as the lowest average O2 consumption

during any 12 min interval during the night.

At 6:30 a.m. (14 h after the start of the experimental protocol and

after 11.5 h of metabolic measurements) we took birds out of the

chambers, immediately measured body temperature, collected a

blood sample and re-measured body mass. All data and samples were

collected ,10 min after opening the metabolic chamber. We used

,15 uL of fresh blood to measure glucose and ketone concentrations

with a handheld diagnostic device (CardioChek PA Analyzer 1708

with glucose test strips 1713 and ketone test strips 1718; Polymer

Technology Systems, IN, USA). Ketone concentrations were not

measured during autumn migration. Upon completion of the entire

protocol, birds were released at the site of capture.

Effects of duration in captivity
We conducted a pilot study to compare effects of short term and

longer term captivity. Three skylarks were held in captivity for

8 hours (short); four other skylarks were acclimated to captivity

over 55 days (long). Following these captivity periods, we subjected

the birds to the protocol of this study. We found no difference

between these two groups in their responses to a challenge with

1.0 mg LPS/kg body mass (e.g., mass loss: short = 9.061.1%

(SD), long = 9.962.2%, t(5) = 0.6, P = 0.6; O2 consumption:

short = 3.360.5 mL/hr/g, long = 3.560.8, t(5) = 0.4, P = 0.7).

While the stress of short term captivity did not appear to affect

these metabolic parameters of APRs, captive birds generally differ

from their wild counterparts in many other ways (e.g., nutrition,

activity). As a result, we favoured studying birds that were in

captivity for as short a period as possible.

We also explored if stress from short-term captivity affected

birds differently in different annual cycle stages. We used

heterophil/lymphocyte ratios and concentrations of heat shock

protein 70 as indicators for stress [54–56], and we found no

differences in the effects of captivity among annual cycle stages.

Statistics
We compared experimental and control groups for each

response variable using linear models analysed with the program

R version 2.9.2 [57]. We included sex, annual cycle stage,

treatment and all possible interactions as explanatory variables.

We always started with the full model and simplified it using

backwards elimination based on log likelihood ratio test with

P,0.05 as selection criterion (‘‘drop1’’ in R) until reaching the

minimal adequate model. Assumptions of all models were checked

on the residuals of the final model. Graphs were made using the

package ‘‘gplots’’ [58]. Sample sizes differ slightly among response

variables due to technical problems (e.g. thermometer failure).

Experimental and control groups did not differ significantly in

body mass (x2
1,99 = 1.95, P = 0.17) or glucose concentration

(x2
1,87 = 0.03, P = 0.86) when measured in the field just after

catching and thus well in advance of the LPS injection. We also

found no significant pre-metabolic differences in body mass

(x2
1,99 = 1.42, P = 0.24) and body temperature (x2

1,99 = 0.65,

P = 0.42) between the two treatment groups immediately prior to

the LPS injection.

Results

Seasonal modulation in body mass and basal metabolic
rate

Body mass and BMR of skylarks varied among annual cycle

stages (x2
4,46 = 34.66, P,0.001; x2

4,46 = 31.46, P,0.001; Figure 1),

suggesting a seasonal modulation of the energy budget. Both body

mass and BMR were lowest during the breeding season and

highest during winter (Figure 1). During spring migration, moult

and autumn migration values of body mass and BMR were

comparable and intermediate.

Seasonal modulation of the acute phase response
The experimentally-induced APR led to increases in metabolic

rate, body temperature, mass loss and ketone concentrations, but

we found no evidence for different effects of LPS in different

annual cycle stages (Table 1, Figure 2A–F; body masses relevant

for interpretation of metabolic measures are provided in Table 2).

For every variable, we removed the non-significant interaction

term (treatment*annual cycle stage) before testing the main effects

of LPS injection and annual cycle stage. Both were significant

(Table 1).

LPS injection caused a significant increase in mass-specific

nightly metabolic rate, mass-specific BMR, body mass loss, body

temperature and ketone concentrations (Table 1). On average, the

Costly Immune Response not Seasonally Modulated
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LPS injection increased mass-specific nightly metabolic rate by

9.06% (Figure 2A), body temperature by 0.7uC (Figure 2B),

increased mass loss by 0.6 g or 13.6% (Figure 2C, D). Glucose

concentrations did not significantly change in response to LPS

injection (Table 1, Figure 2E).

Annual cycle stages differed in mass-specific nightly metabolic

rate, body mass loss, glucose and ketone concentrations (Table 1).

Moreover, the shape of the seasonal patterns differed among these

variables (Figure 2). Mass-specific nightly metabolic rate

(Figure 2A) followed the patterns of BMR (Figure 1) with a dip

during breeding. Nightly mass loss in percentage or absolute terms

was highest during moult and lowest during winter (Figure 2C, D).

Glucose concentration was highest during breeding and lowest

during autumn migration (Figure 2E); ketone concentration was

lowest during breeding and high during moult and winter

(Figure 2F).

Sex differences
Males and females differed significantly in mass-specific nightly

metabolic rate, nightly body mass loss in grams and ketone

Figure 1. Body mass and mass-specific basal metabolic rate (BMR) of control skylarks throughout the annual cycle. Body mass
measurements were taken in the mornings upon completion of the metabolic measurements. Numbers represent samples sizes.
doi:10.1371/journal.pone.0036358.g001

Table 1. Statistics and coefficients of the linear models of measures of metabolism, body mass and temperature in skylarks.

Trait Annual cycle stage Sex Treatment Treatment6Annual cycle stage

df Chi2/F p df Chi2/F p b{ df Chi2/F p b{ df Chi2/F p

Nightly metabolic rateu 100,4 27.56 ,0.001 100,1 13.36 ,0.001 0.144 100,1 28.04 ,0.001 0.205 100,1 2.54 0.639

Basal metabolic rateu 100,4 37.41 ,0.001 100,1 6.17 0.013 0.087 100,1 25.66 ,0.001 0.176 100,1 3.35 0.502

Body mass loss, grams* 100,4 25.77 ,0.001 100,1 15.16 ,0.001 20.441 100,1 12.16 ,0.001 0.371 100,1 3.66 0.454

Body mass loss, %* 100,4 45.48 ,0.001 100,1 0.02 0.884 100,1 8.18 0.004 0.796 100,1 3.32 0.506

Body temperature 98.4 5.72 0.221 98,1 1.80 0.180 98,1 15.49 ,0.001 0.668 98,1 1.23 0.873

[Glucose] 96,4 12.10 0.017 96,1 0.47 0.495 96,1 0.31 0.575 96,1 5.69 0.223

[Ketone] 67,3 14.39 0.002 67,3 7.48 0.006 0.717 67,3 5.69 0.017 0.590 67,3 2.26 0.521

{Reference category is ‘male’;
{Reference category is ‘control’;
umass-specific;
*Calculated over the 13 h experimental period.
Experimental birds were injected with LPS; control birds were un-injected. Results are from linear models after removing all non significant terms (P.0.05). All tests are
based on chi-square statistics.
doi:10.1371/journal.pone.0036358.t001

Costly Immune Response not Seasonally Modulated
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concentrations (Table 1). We found no differences between the

sexes among annual cycle stages (sex by annual cycle stage always

F,5.56 and P.0.23) or in their response to the LPS injection (sex

by LPS injection always F,1.32 and P.0.25). Compared with

males, females had a 7.2% higher mass-specific nightly metabolic

rate and a 18.9% higher ketone concentration. Males lost more

grams of body mass during the night than females (males 3.06 g,

female 2.68 g), but this effect was proportional to the difference in

body mass between the sexes, and disappeared when relative mass

loss was considered (males 7.9%, female 8.1%).

Discussion

We found that the acute phase responses of skylark was

consistent among five annual cycle stages (spring migration,

breeding, moult, autumn migration, winter). This constancy of

inflammatory responses contrasted sharply with the observed

seasonal variability in the skylark energy budget, which was

Figure 2. Effect of LPS injection on a) mass-specific nightly metabolic rate, b) body temperature, c) relative mass loss during the
night, d) absolute mass loss during the night, e) glucose concentration and f) ketone concentration of skylarks after 13 hours.
Experimental birds were injected with LPS; control birds were un-injected. Black symbols represent experimental birds (LPS-injected), grey symbols
control birds (un-injected). Bars represent the difference between these two groups. Means and standard errors are shown; numbers in bars represent
sample sizes per group (control/experimental). The graphs show raw data without correcting for sex effects. There was never a significant treatment*
annual cycle stage interaction (all P.0.084). See Table 1 for statistics.
doi:10.1371/journal.pone.0036358.g002

Table 2. Body mass of skylarks per annual cycle stage after
13 h of nightly metabolic measurements.

Body mass (in g ± s.e.)

Control Experimental

Spring migration 33.561.17 32.760.80

Breeding 28.561.00 29.961.13

Moult 33.160.62 31.760.87

Autumn migration 33.961.16 35.560.97

Winter 38.660.67 39.761.26

Experimental birds were injected with LPS; control birds were un-injected.
doi:10.1371/journal.pone.0036358.t002

Costly Immune Response not Seasonally Modulated
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reflected by changes among annual cycle stages in terms of energy

metabolism, body mass and concentrations of glucose and ketone.

Thus, while we find evidence that some annual cycle stages are

relatively more energetically constrained, we find no support for

the hypothesis that during these annual cycle stages birds

compromise an immune defence that is itself energetically costly.

Testing the trade-off hypothesis
Our results clearly demonstrate that the inflammation caused by

an LPS injection was energetically costly for skylarks, but we have

no evidence for seasonal modulation of the inflammatory response

in this species. A lack of seasonal modulation contradicts current

hypotheses relating compromised inflammatory responses with

other life-history demands [2,16,59]. Consistent APRs throughout

the annual cycle might signal that this innate defence is simply too

important to be compromised. Maintenance of this response,

however, does not rule out possible trade-offs with other

physiological and behavioural processes. For example, some birds

change their territorial behaviour in response to an inflammatory

challenge [19,20]. If inflammatory responses are indeed linked to

broader physiological functioning via a resource budget and the

responses are seasonally consistent as our data suggest, then birds

undergoing an APR might be forced to reduce the resources they

spend on other traits, for example by delaying migration [60],

reducing parental effort [3] or postponing moult [61]. These types

of adjustments support the life-history trade-off hypothesis [16] in

the sense that, instead of the immune system being compromised,

other annual cycle events are suppressed, which in turn may

negatively impact individual fitness.

Skylarks in our study population are partial migrants, with some

birds migrating and others wintering locally [48]. We chose to focus

our study on the year-round inflammatory responses of skylarks in

the breeding location, reflecting that part of our study population

that winters locally. Because birds from northern and eastern

populations join the local skylark population outside breeding and

moult, we potentially caught a mixture of birds from different

populations during winter and migration. We explored if this led to

larger coefficients of variation (CV) for the various response

variables, but found no difference in the CV during winter and

migration in comparison with breeding and moult. This is in

agreement with our expectation that inflammatory responses (e.g.

APRs) relate to the local and current conditions experienced by

birds, because they are mounted over very short periods of time

(minutes to hours). We therefore conclude that the APR for skylarks

experiencing the annual environmental variation in the Netherlands

is similar in magnitude in all seasons, and crucial enough to be not

traded off against other annual cycle functions.

Consistent induced responses but variable baseline
levels

The lack of seasonal modulation in the magnitude of an APR

contrasts with the literature and with the results of a related study

in which we measured constitutive immunological parameters in

unchallenged skylarks. In this study, lysis and agglutination titers,

haptoglobin concentrations, and proportions of eosinophils,

basophils and monocytes differed among annual cycle stages

when measured directly upon capture in the field [41]. Studies on

other species also find reductions in particular immunological

components during specific annual cycle stages [3,8–12,62,63].

Taken together, these studies point out that seasonal modulations

of immune systems differ among species, environments, life-

histories, and, importantly, immune parameters. Our skylark

results develop this further by showing that within a species

baseline values of some immune indices were seasonally variable,

but the magnitude of response to a standard inflammatory

challenge was seasonally consistent. Overall, these studies identify

some interpretational limitations of different approaches as well as

the importance of distinguishing between baseline values and

induced responses when studying ecological immunology. Fur-

thermore, the contrasting results, in effect, make the case for

measuring both baselines and response when linking ecology,

evolution and immunology.

Physiological responses to LPS injection
Significant changes in six of the seven measured parameters

indicated that the LPS injection successfully triggered an

inflammatory response. The increase in nightly metabolic rate,

BMR and body temperature fall within the expected costs of fever

[64]. The average increase in metabolic rate (regardless of stage)

was similar to the increases reported in other studies after immune

challenges in single annual cycle stages [4,12,65,66]. Thus,

inflammation-associated metabolic costs may be fairly conserved

among avian species and not simply consistent among annual

cycle stages within skylarks.

LPS-injected skylarks lost on average 13.6% more body mass

over night than control birds. It has been suggested that mass

losses following an LPS injection are mainly due to sickness-related

anorexia [16,19] rather than metabolic costs per se. As we

measured mass loss over the night while all birds were resting and

none had access to food, our estimates of mass loss reflect a true

metabolic cost. Likewise, experimental birds had significantly

higher ketone concentrations, which reflect lipid catabolism during

fasting [37], and this elevation can be seen as a direct consequence

of the LPS-induced metabolic changes. Body mass at the point of

capture in the field did not predict mass loss over the metabolic

measurement period, even though body mass showed strong

seasonal variation. Thus, our data do not support the idea that

energy stores are a proximate mechanism for seasonal modulations

in immune defences [16,19].

Although we found sex differences in most parameters, we

found no evidence that the LPS injection had different effects in

males and females. We acknowledge that sample sizes per sex are

limited and that a lack of sex*treatment interactions could be due

to low statistical power. However, Owen-Ashley et al. [20] also

find little evidence for sex differences in LPS-induced sickness

behaviour in white-crowned sparrows Zonotrichia leucophrys. These

results contrast with the idea that the two sexes allocate resources

to the immune system differently [2,14] but support our hypothesis

that the APR is critically important and always maintained.

Conclusions
We found no evidence for seasonal modulation of acute phase

responses among the five distinct annual cycle stages of a wild

temperate zone bird, even though energy budgets show strong

seasonal variation. Skylarks undergoing an experimentally trig-

gered inflammatory response exhibited increases in metabolic rate,

body mass loss, body temperature and ketone concentration, and

these changes demonstrate energetic costs of an APR. The

consistent lack of interaction between treatment and annual cycle

stage suggests that the acute phase response is an essential

immunological defence, one that is too crucial for survival to be

compromised through trade-offs with other life-history activities

despite the response’s clear costs.
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