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Abstract
Honeybees (Apis mellifera) and bumblebees (Bombus spp.) often undergo exploitative competition for shared floral resources, 
which can alter their foraging behaviour and flower choice, even causing competitive exclusion. This may be strongest in 
summer, when foraging conditions are most challenging for bees, compared to other times of the year. However, the seasonal 
dynamics of competition between these major pollinator groups are not well understood. Here, we investigate whether the 
strength of exploitative competition for nectar between honeybees and bumblebees varies seasonally, and whether competi-
tive pressure is greatest in summer months. We carried out experimental bee exclusion trials from May to late September, 
using experimental patches of lavender, variety Grosso, in full bloom. In each trial, we compared the numbers of honeybees 
(HB) foraging on patches from which bumblebees had been manually excluded (bumblebee excluded, BBE) versus control 
(CON) patches, HB(BBE-CON). This measure of exploitative competition varied significantly with season. As expected, mean 
HB(BBE-CON) was significantly greater in summer trials than in spring or autumn trials. This was despite high nectar standing 
crop volumes in BBE patch flowers in spring and autumn trials. Mean HB(BBE-CON) was not different between spring and 
autumn trials. Our results show that nectar competition between honeybees and bumblebees varies seasonally and is stronger 
in summer than spring or autumn, adding to current understanding of the seasonality of resource demand and competition 
between bee species. This information may also help to inform conservation programs aiming to increase floral resources 
for bees by showing when these resources are most needed.
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Introduction

Exploitative competition, in which one consumer species 
depletes a resource used by other species or individuals 
(Wootton 1994), can play an important indirect role in shap-
ing community structure and can cause competitive exclu-
sion (Alley 1982; Schoener 1983; Kreutzer and Lampert 
1999; Balfour et al. 2015a). More generally, exploitative 
competition can have a wide range of effects on compet-
ing species including behavioural change in resource-use 
and niche partitioning (Hardin 1960; Inouye 1978; Car-
penter 1979; Finke and Snyder 2008; Clink et al. 2017). 
The strength of competitive pressure for shared resources 
is expected to vary in response to per-individual resource 
availability, which can change seasonally in both temperate 
(e.g. Schmitt and Holbrook 1986; Balfour et al. 2018) and 
tropical (e.g. Knott 1998; Clink et al. 2017) areas. This can 
cause species with overlapping foraging niches to seasonally 
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adjust their behaviour (Schmitt and Holbrook 1986), which 
may mitigate the effects of competition. For example, in 
seven co-occurring North American waterfowl species, 
greater competition during resource-scarce winter months 
caused greater specialisation in food type, habitat utilisation 
and foraging behaviour between species pairs compared to 
summer (DuBowy 1988). Conversely, seasonal periods of 
resource abundance can cause shifts in behavioural strate-
gies through reduced intra- and inter-specific exploitative 
competition. For example, primates exhibit greater dietary 
selectivity when fruit availability is high in ‘mast’ years 
(Knott 1998; Clink et al. 2017).

Seasonal variation in exploitative competition among 
bee species would be expected to influence foraging behav-
iour, since many species are generalist nectar-feeders that 
can flexibly alter the flower species they visit in response 
to resource availability. Flower choice can be influenced 
directly by changes in reward quality or quantity (Heithaus 
1979; Cnaani et al. 2006) or indirectly through fluctuations 
in competitor abundance (Heinrich 1976; Walther-Hellwig 
et al. 2006; Fontaine et al. 2008; Balfour et al. 2015a). Sev-
eral studies have shown exploitative competition between 
bee species (e.g. Heinrich 1976; Inouye 1978; Ings et al. 
2006, Walther-Hellwig et al. 2006; Balfour et al. 2015a), 
but these have largely been carried out at a particular time 
of year and so do not address possible seasonal variation. An 
April to September study of four heathland sites in southern 
England provided some evidence of seasonal change in the 
foraging-niche breadth of long-tongued bumblebees with 
increasing honeybee abundance, but it was not clear whether 
this was due to competition (Forup and Memmott 2005). 
Nevertheless, it is probable that the strength of exploitative 
competition for nectar among bee species does vary season-
ally in many locations. Waggle dance decoding showed that 
honeybee foraging distances were greatest during July and 
August in Sussex, southeast England, suggesting a relative 
scarcity of available floral resources at this time of year com-
pared to spring and autumn (Couvillon et al. 2014a). Since 
many bee and other flower-visiting insect species also dem-
onstrate a July–August summer peak in abundance in the UK 
(Falk 2015; Balfour et al. 2018), it is likely that these factors 
combine to cause a predictable, seasonal, summer increase 
in nectar competition.

Honeybees (Apis mellifera) and bumblebees (Bombus 
spp.) are generalist bees that overlap in floral resource use 
(Steffan-Dewenter and Tscharntke 2000; Forup and Mem-
mott 2005; Thomson 2006) and are known to undergo 
inter-specific resource competition, which can affect forag-
ing patterns and behaviour in both groups (e.g. honeybees, 
Balfour et al. 2015a, b; bumblebees, Sáez et al. 2017). Apis-
Bombus resource competition has also been shown to cause 
fitness costs (reduced growth and reproduction) in bumble-
bees (Thomson 2004; Goulson and Sparrow 2009; Elbgami 

et al. 2014) though not honeybees in the existing literature 
(reviewed in Wojcik et al. 2018).

Both Apis and Bombus often occur in large numbers on 
flowers relative to other bees and insects (Garbuzov and 
Ratnieks 2014b) due in part to their large eusocial colonies 
(Seeley 1995; Goulson 2003). The absolute and relative 
abundance of Apis and Bombus changes over the foraging 
season in the UK. Bumblebees have annual colonies and 
are less abundant in spring/early summer and autumn when 
colonies are in the stages of growth and senescence, respec-
tively (Falk 2015). In comparison, honeybees have perennial 
colonies and undergo much smaller seasonal fluctuations in 
numbers, with foragers active from March to October in our 
study area (Garbuzov and Ratnieks 2014a; Couvillon et al. 
2014a) and often even earlier and later in the year. Therefore, 
seasonal changes in both competitor abundance and resource 
availability could cause seasonal change in the strength of 
Apis-Bombus exploitative competition. However, our knowl-
edge of this is currently limited despite the increasing (see 
Breeze et al. 2011) importance of these bees for the pollina-
tion of crop and wildflower plant species (Corbet et al. 1991; 
Carreck and Williams 1998; Woodcock et al. 2013; Garratt 
et al. 2014), and the potential effects of Apis-Bombus floral 
resource competition on bee fitness (growth and reproduc-
tion; Thomson 2004; Goulson and Sparrow 2009), foraging 
behaviour (Walther-Hellwig et al. 2006; Nielsen et al. 2017) 
and pollination effectiveness (Greenleaf and Kremen 2006).

Previous research in July and August has shown that 
bumblebees displace honeybees via exploitative competi-
tion on patches of lavender flowers (Lavandula x intermedia 
‘Grosso’). Bumblebees outcompete honeybees in this system 
because they are able to visit Grosso lavender flowers at 
three times the rate of honeybees (Balfour et al. 2013), which 
depletes nectar levels to a point at which honeybees can-
not make an energy profit. When bumblebees were experi-
mentally excluded honeybee numbers increased 14-fold 
in response to reduced resource depletion, demonstrating 
ecological release from competition (Balfour et al. 2015a).

In this project, we aim to determine the seasonal dynam-
ics of Apis-Bombus exploitative competition on lavender 
flowers. We extend the previous research to incorporate 
seasonality by carrying out foraging exclusion experiments 
from late May to September 2017 on patches of Grosso lav-
ender in full bloom, thereby extending the period over which 
Apis-Bombus competition is studied. Importantly, we use a 
single plant variety thereby controlling the resource. We test 
the hypotheses that the strength of Apis-Bombus competition 
for nectar i) varies over a foraging season and ii) is greater 
in summer than in spring and autumn.
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Methods

Study site and species

Field work was carried out on the University of Sus-
sex campus in southeast England (50.8671° N; 0.0879° 
W). We repeated 10 identical three-day exclusion trials 
from May to September 2017. Data on bee foraging were 
collected only on days considered suitable for forag-
ing, > 12 °C, with light winds and no rain, when honey-
bees and bumblebees were seen to be actively foraging on 
the lavender plants and/or on other flowers in the study 
area. There were two apiaries belonging to the Labora-
tory of Apiculture and Social Insects within < 1 km of 
the study site each (with between 6 and 10 colonies in 
total during the study period), plus three further apiaries 
within < 2 km, and a high density of colonies managed by 
beekeepers in the wider local area. Honeybees mainly for-
age for nectar and pollen from March to October (Couvil-
lon et al. 2014a), and healthy colonies consist of between 
20 and 40,000 adult bees in May–June and some 40,000 
in September (Hooper 1991). Therefore, it is certain that 
foraging honeybees were present and abundant in the area 
throughout the study period.

We used the same lavender variety, Lavandula x inter-
media ‘Grosso’ (Lamiaceae), as the previous research that 
demonstrated exploitative competition for nectar between 
Apis and Bombus in summer (Balfour et al. 2013, 2015a).

A total of 700 Grosso plants in 3 L pots were obtained 
from Downderry Nursery, Sussex (www.downd​erry-nurse​
ry.co.uk), the same supplier as for the previous competi-
tion studies (Balfour et al. 2013, 2015a). The plants had 
been grown in ways to cause bloom at different times. 
300 plants were kept in greenhouses and polytunnels by 
Downderry Nursery to induce early flowering in May and 
June. 150 plants were grown normally, without treatment, 
and flowered in late July. A final batch of 250 plants were 
trimmed during the summer to delay bloom until Septem-
ber, with 150 plants used in the final two trials, 9 and 10. 
Some of this batch flowered in late August and 96 spare 
plants were used to replace plants that were near the end 
of their bloom in Trial 8 (21–24 August), to ensure a simi-
lar level of bloom across trials. Different growth regimes 
did not affect the general appearance of the plants and 
average nectar secretion rate was similar between batches 
(Results).

Trial design and experimental exclusions

The May to September study period was categorised into 
three seasons, spring (May and June), summer (July and 

August), and autumn (September). July and August were 
combined as summer since honeybee foraging distances 
are highest in the study area in these months, which indi-
cates a dearth in overall nectar availability (Couvillon 
et al. 2014a). Pre-July study months were combined as 
spring. Autumn was defined according to the National 
Met Office definition of meteorological autumn as start-
ing on 01 September (National Met Office 2019), and also 
coincided with the flowering of ivy (Hedera spp.) in the 
study area from early September, following Couvillon 
et al. (2014a).

Each trial consisted of three exclusion days. Exact trial 
dates were dependent on suitable weather conditions. We 
aimed to carry out an even number of trials per season, 
but this was not possible due to poor weather conditions 
in spring and the lack of lavender plants in full bloom in 
autumn following the final trial. We achieved three trials 
in spring (1–3: 23–25 May, 31 May–02 June and 13–15 
June), five in summer (4–8: 04–06 July, 10–13 July, 31 
July–04 August [data not collected on 02–03 August due to 
bad weather], 14–16 August and 21–23 August) and two in 
autumn (9–10: 12–14 and 19–22 September) making ten in 
total. We alternated trials between two sites 600 m apart on 
the University campus to reduce any potential local-effect 
bias.

Following Balfour et al. (2015a), each three-day trial was 
set up using 150 plants in three patches of 50 pots, separated 
by 100–200 m. Plants were selected at the start of the trial to 
give approximately equal total bloom per patch. Each patch 
was randomly assigned to a treatment: honeybees excluded 
(HBE), bumblebees excluded (BBE) and control (CON, 
no bees excluded). Following established methods (Bal-
four et al. 2015a), bees of the “wrong” type were excluded 
throughout each day using a light tap with a bamboo cane. 
On all patches we excluded male wool carder bees (Anth-
idium manicatum), since these are highly territorial and 
aggressive towards other bee species, and the conopid fly 
(Sicus ferrugineus) which lays its eggs on foraging bumble-
bees (Falk 2015), in case these insects were causing hon-
eybees and bumblebees to avoid the lavender; both were 
rarely present.

We estimated the total number of flowers in each patch 
once during each trial by counting the number of flowering 
inflorescences in the patch and multiplying this by the aver-
age number of flowers calculated from 40 randomly-selected 
inflorescences.

Bee count data

Data collection followed established and effective methods 
for counting bees visiting flowers (Garbuzov and Ratnieks 
2014b; Balfour et al. 2015a). We counted bees foraging in 
each patch from 09:00 to 17:30 on each trial day. To do 
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this we made a near instantaneous count every 30 min in 
which we scanned the patch by eye for approximately 30 s 
and recorded any bees and other insects actively foraging at 
that time (Garbuzov and Ratnieks 2014b). In general, bees 
spend < 30 min in a patch during a single foraging attempt. 
Therefore, although individuals will revisit patches, the 
30-min interval between counts means that the count data 
represent different visits (Garbuzov and Ratnieks 2014b). 
After 17:30 all patches were covered with netting to prevent 
insect access until targeted exclusions resumed the following 
morning (Balfour et al. 2015a).

Bumblebees, including parasitic cuckoo species (subge-
nus Psithyrus), were mostly identified according to species. 
The two-banded white-tailed bumblebees Bombus terrestris 
and B. lucorum are difficult to distinguish in the field and 
were grouped as B. terrestris/lucorum (Fussell and Corbet 
1992). Solitary bees were identified according to species 
where possible, or to genus. Any bees that could not be 
recognised by eye were caught and identified using a hand 
lens or microscope. The vast majority of foragers were col-
lecting nectar only and were only ever observed carrying 
trace amounts of pollen, supporting previous observations in 
which less than 5% of the foragers on Grosso were observed 
with pollen in their corbiculae (Balfour et al. 2013).

Nectar measurement

During each trial we measured secretion rate, standing crop 
and sugar concentration using microcapillary pipette tubes 
(Drummond Microcaps 1 µL, 64 mm, 1-000-0010-64 or 0.25 
µL, 32 mm, 1-000-00025) inserted into an open flower to 
extract the nectar from the base of the corolla. The length 
of nectar drawn up into the tube was measured using a ruler 
and used to calculate the per-flower volume of nectar as a 
proportion of the overall tube volume (Corbet 2003; Bal-
four et al. 2013). Each microcap was used a single time 
only (Corbet 2003). Nectar measurements were made once 
per trial, between 12:00 and 14:00 to minimise day-to-day 
variation.

To measure the per-flower volume of nectar available to 
insects (standing crop) we extracted nectar from 10 flow-
ers in each patch. Nectar sugar concentration (% Brix) was 
measured for each sample with sufficient volume using a 
hand-held refractometer (Bellingham and StanleyTM, 0–50% 
Brix). To measure hourly nectar secretion rate per flower we 
used microcaps to empty as fully as possible several flowers 
in the CON patch, taking care not to damage the nectaries 
(Corbet 2003). We marked these flowers and bagged the 
entire inflorescence using fine gauze bags to prevent insect 
access. After 60 min, we extracted nectar from the marked 
flowers individually and recorded the volume of liquid con-
tained in the microcap.

Statistical analysis

We analysed seasonal changes in honeybee visits to lav-
ender flowers when bumblebees were manually excluded 
(BBE patch) relative to the control (CON) patch over ten 
trials. The following statistical analysis uses the second and 
third exclusion days of each trial, when bee numbers and 
foraging behaviour had stabilised following one full day 
of exclusions. This is because we observed that honeybee 
numbers on the BBE patch often varied considerably over 
the course of the first trial day, which is consistent with pre-
vious research in which honeybee numbers took approxi-
mately 1.5 days to plateau following the start of bumblebee 
exclusion from lavender patches (Balfour et al. 2015a, b). 
To remove this noise in the data, we removed the first trial 
days from analysis.

As a proxy measure of competition we calculated the 
absolute difference in per-day mean honeybee counts 
from 09:00 to 17:30 (n = 18 counts per day) between the 
two patches [(mean HB(BBE))–(mean HB(CON))], hereafter 
HB(BBE-CON), since this metric gives a clear indication of 
the increase in honeybee visits to the BBE patch compared 
to the control. Using daily average counts removed pseudo-
replication from the raw data, and normalised the positively 
skewed distribution, thereby also correcting for overdisper-
sion. HB(BBE-CON) also accounts for any between-trial vari-
ation in the number of flowers.

To analyse between-season variation in HB(BBE-CON) 
we used a linear mixed effects model [lmer, package lme4 
(Bates et al. 2015)] with per-day HB(BBE-CON) as the response 
(n = 20) and season (spring, summer, autumn) as a fixed 
effect. Trial was included in the model as a random effect 
since we expected between-trial variation in HB(BBE-CON), 
but were not directly testing differences in the response 
between specific trials in this model (Bolker et al. 2009). 
Trial day (2 or 3) and site were added as interaction terms 
to assess any confounding effect on HB(BBE-CON) with the 
effect of season, but neither were significant and so were 
not included in the final model. Residuals were visually 
checked for normality and homoscedasticity, and approved. 
Differences between seasons were calculated using post 
hoc pairwise comparisons across groups, using lsm [pack-
age lsmeans (Lenth 2016)] within glht [package multcomp 
(Hothorn et al. 2008)], with P values adjusted for multiple 
comparisons by the single-step method.

We did not expect honeybee exclusion (HBE) to impact 
bumblebee visitation, given previous results (Balfour 
et al. 2015a), although a seasonal effect was possible and 
worth investigating since the previous study was con-
ducted only in summer (July–August). In fact, honeybee 
abundance on control patches was consistently low, and 
there was no increase in bumblebee numbers on the HBE 
patch relative to the control (Fig. 1; Online Resource 1). 
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Therefore, seasonal changes in bumblebee abundance 
were not explored statistically. We also did not analyse 
the effects of honey- and bumblebee exclusion on other 
insect groups since frequencies of these were too low for 
statistical analysis.

Nectar standing crop volumes were compared between 
patch treatments in each trial using per-trial Kruskal–Wallis 
H tests and post hoc Dunn’s tests for pairwise comparisons 
between treatments with Bonferroni adjustment of P values 
(results in Online Resource 3). One-hour nectar secretion 
rates were compared between batches of lavender plants 
(n = 4 batches) and between trials (data available for eight 
of 10 trials) using Kruskal–Wallis H tests for non-parametric 
data.

Significance was defined at P < 0.05. All analyses were 
performed using R Studio Version 1.1.419.

Results

Insect abundances on the control patch

Almost all insects (96.4%) observed foraging on the laven-
der control (CON) patches over the 10 trials were bumble-
bees (90.4%) and honeybees (6.0%). Other foraging insects 
included butterflies and moths (1.7%), hoverflies (0.7%) and 
solitary bees (0.6%). The remaining 0.6% were classified as 
other insects and were mainly non-Syrphidae Diptera. The 
number of honeybees per count on the control patches was 
consistently low, often 0, with bumblebees approximately 15 
times more numerous (overall mean ± SD: 0.51 ± 1.09 hon-
eybees v. 7.46 ± 6.30 bumblebees, n = 10 trials; Fig. 1). The 
abundance and species composition of bumblebee foragers 
on the control patch were variable over the study period, 
with Bombus terrestris/lucorum and B. pascuorum most 
frequent (Online Resource 4).

Honeybee response to bumblebee exclusion

The per-trial mean number of honeybees foraging on the 
bumblebee excluded (BBE) patch compared to the control 
patch (HB(BBE-CON)) varied significantly according to season 
(LMER: �2

(2)
 = 28.5, P < 0.001, n = 36 counts per trial; 

Fig. 2). Importantly, the effect of bumblebee exclusion, 
mean HB(BBE-CON), per trial, was substantially and signifi-
cantly greater in summer trials (mean ± SD, 7.77 ± 4.02) 
than in spring (1.69 ± 2.9, GLHT:LSM post hoc, t(7) = 4.55, 
P = 0.0063) or autumn trials (0.68 ± 2.03, GLHT:LSM post 
hoc, t(7) = 4.13, P = 0.0108). Mean HB(BBE-CON) was not sig-
nificantly different between spring and autumn trials 
(GLHT:LSM post hoc, t(7) = 0.14, P = 0.99).

In summer the number of honeybees visiting the BBE 
patch was consistently high in all five trials (mean ± SD, 
8.7 ± 4.27 honeybees; Figs. 1, 3). Mean per-trial HB(BBE-CON) 
ranged from 5.92 ± 3.45 (Trial 5) to 9.67 ± 5.09 (Trial 6) in 
this season. In autumn, the number of honeybees visiting 
the BBE patch was consistently low (1.49 ± 1.82 honeybees; 
Figs. 1, 3), despite many honeybees observed foraging on 
ivy flowers in close proximity to the study patches. Mean 
per-trial HB(BBE-CON) was also low, from 1.11 ± 2.17 (Trial 
9) to 1.78 ± 1.31 (Trial 10).

In spring there was clear variation in the number of hon-
eybees foraging on the BBE patch between trials (Figs. 1, 
3). In Trial 1, many honeybees were observed foraging on 
the BBE patch (5.25 ± 3.11 honeybees) compared to zero 
(0.00 ± 0.00) or few (0.194 ± 0.467) in Trials 2 and 3, respec-
tively. During both Trial 2 and 3, honeybees were seen forag-
ing on bramble flowers and other species of flowering plant 
in the study vicinity.

Fig. 1   Numbers of honeybees (Apis mellifera, dashed lines) and bum-
blebees (Bombus spp., solid lines) foraging on lavender patches from 
which bumblebees have been excluded (BBE), honeybees have been 
excluded (HBE), and unmanipulated control patches (CON), across 
ten trials from May to September 2017. Points show the mean count 
per day averaged over trial days 2 and 3 (n = 36 = 2 days × 18 counts 
per day from 09:00–17:30). Error bars show ± 1 SE
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Bumblebee response to honeybee exclusion

There was no increase in bumblebee numbers in response 
to honeybee exclusion, with similar visitation to HBE and 
CON patches in each trial (Fig. 1; Online Resource 1). Hon-
eybee numbers on CON patches were low throughout the 
study period (Fig. 1), and very few were ever excluded from 
the HBE patches meaning that any effect on bumblebee 
numbers was likely to be negligible. Therefore, this result is 
not discussed further.

Lavender nectar

Overall, mean hourly nectar secretion rate per flower was 
0.038 ± 0.002 µL/h−1 (mean ± SD, n = 154 flowers). Mean 
hourly secretion rate was not different between four lavender 
batches grown under different regimes (Kruskal–Wallis H 
test: �2

(3)
 = 6.77, P = 0.079, n = 4 batches), but differed sig-

nificantly between trials (Kruskal–Wallis H test: �2

(7)
 = 25.47, 

P < 0.001, n = 8 trials).
Per-trial standing crop of nectar in BBE patch lavender 

flowers was inversely related to honeybee visitation rates to 
this patch (see Online Resource 2). When honeybees were 

visiting the flowers in large numbers, nectar standing crop 
volumes (both per bee per patch and per bee per 100 flow-
ers) were small, compared to high volumes when bees were 
visiting in low numbers (Fig. 3).

The following data all refer to the per-trial average nectar 
standing crop volume extracted from 10 flowers on days 2 
and 3 of each trial (n = 20 flowers) except Trial 1 in which 
nectar was extracted only on day 2 (n = 10 flowers). Nectar 
standing crop volume was always low in the CON patch 
flowers (mean ± SD over ten trials = 0.042 ± 0.078 µL) and 
in HBE patch flowers (0.043 ± 0.090 µL). Nectar standing 
crop in the BBE patch (0.210 ± 0.273 µL) was higher than 
the control patch in every trial, which was significant in all 
trials apart from 1 and 4 according to per-trial Kruskal–Wal-
lis H and post hoc Dunn’s tests for pairwise comparison 
between patch treatments (Online Resource 3). When aver-
aged within seasons, nectar standing crop volume extracted 
from BBE patch flowers was 412% higher than the control 
patch in spring (BBE 0.408 ± 0.276 µL; CON 0.099 ± 0.120 
µL), 275% higher in summer (BBE 0.066 ± 0.085 µL; CON 
0.024 ± 0.047 µL) and 1783% higher in autumn trials (BBE 
0.321 ± 0.361 µL; CON 0.018 ± 0.019).

Nectar standing crop volume in flowers in the HBE com-
pared to CON patch was not significantly different in any 
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Fig. 2   Seasonal change in HB(BBE)–HB(CON) between spring (n = 3 tri-
als), summer (n = 5 trials) and autumn (n = 2 trials) 2017. HB(BBE)–
HB(CON) signifies the number of honeybees foraging on lavender 
plots from which bumblebees had been excluded (BBE) compared 
to unmanipulated control patches (CON; n = 18 counts per day from 
09:00–17:30). All data are from trial days 2 and 3. Boxplot limits 
are the 25th and 75th percentiles, whiskers are 1.5 × the interquar-
tile range, horizontal lines indicate the median, crosses (×) within 
plots represent the mean (described as HB(BBE-CON) in the text) and 
points outside whiskers represent outliers. Initials above plots (A, B) 
denote significance between per-season HB(BBE-CON) means, defined 
at P < 0.05

Fig. 3   Mean number of foraging honeybees and nectar standing crop 
volume per flower on lavender patches from which bumblebees have 
been excluded (BBE) across ten trials from May to September 2017. 
Bars show the mean per-trial honeybee count (n = 18 counts per day 
from 09:00–17:30), error bars show ± 1 SE. Filled diamonds indicate 
mean nectar standing crop volume per flower per trial (µL; n = 10 
flowers per day). Nectar and bee count data for each trial are from 
days 2 and 3, except Trial 1 in which nectar was extracted only on 
day 2. Seasons are indicated above the bars: spring (May–June, Tri-
als 1–3); summer (July–August, Trials 4–8) and autumn (September, 
Trials 9–10)
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trial, according to per-trial Kruskal–Wallis H and post hoc 
Dunn’s tests for pairwise comparison between patch treat-
ments (Online Resource 3).

Discussion

Our results indicate, for the first time to our knowledge, 
that the strength of exploitative competition for nectar 
between two major pollinator groups can vary seasonally. 
As expected, Apis-Bombus competition on lavender Grosso 
flowers was greater in summer than spring or autumn 
(Fig. 2). On average, in summer trials (July and August) 
there were 8.70 honeybees foraging on the bumblebees 
excluded (BBE) patch per count compared to 0.93 honey-
bees on the control (CON) patch, a near tenfold increase, 
demonstrating ecological release from competition. In con-
trast, in spring (May and June) and autumn (September) tri-
als, honeybees were absent or very infrequent on the BBE 
patch, despite high levels of nectar in the flowers, suggesting 
the reverse, that competition for nectar was reduced in these 
periods. This seasonal trend was statistically significant 
using the metric HB(BBE-CON) to compare the number of for-
aging honeybees on BBE vs CON patches between seasons.

Our results suggest that competition for nectar was high 
throughout the summer period. Honeybees consistently vis-
ited the bumblebee excluded (BBE) patch in large numbers 
in each of the five July and August trials, while numbers on 
the control patch remained low (Fig. 1). Exploitative compe-
tition between coexisting species and individuals is expected 
to be strong when shared resources are limited, as a result 
of the interaction between the availability of food resources 
in the landscape and the abundance of competitors. Waggle 
dance decoding has shown that honeybees forage furthest 
from the nest in July and August (Couvillon et al. 2014a), 
and August is also the time with the largest proportion of 
returning foragers having empty crops (Couvillon et al. 
2014b). Since worker honeybees are efficient foragers that 
rapidly recruit nestmates to exploit the most profitable floral 
resources (Núñez 1982; Schmid-Hempel 1987; Requier et al. 
2015), these studies imply that summer is a period of limited 
overall nectar availability for bees.

Absolute nectar provision in kilograms per hectare is in 
fact estimated to be highest in July and August in the UK 
overall (Baude et al. 2016). However, this is likely to be sub-
ject to local effects. For example, summer-flowering heather 
species Erica cinerea and Calluna vulgaris together are esti-
mated to have contributed 16.5% of annual national nectar 
provision in 2007 (Baude et al. 2016), but these are virtually 
absent in our study area. Additionally, non-woody flower-
ing plants (herbs) make up the majority of insect-pollinated 
plant species flowering in July and August (Balfour et al. 
2018). However, this floral group is known to have suffered 

extensive declines in the 20th century (Stroh et al. 2014) 
including significant decreases in the range and frequency 
of important summer-flowering pollinator forage plants 
(Carvell et al. 2006). Even if absolute nectar provision is 
greater in summer, per-insect nectar availability could still 
be lower in this season if there are many more nectar-feed-
ing insects. A recent study of British phenological records 
showed that 62% of flower-visiting insect species (71% of 
aculeate wasp, 60% bee, 72% butterfly and 49% of hover-
fly species) peak in abundance in July and August (Balfour 
et al. 2018). It is, therefore, possible that increased insect 
abundance and reduced flower availability combine to create 
a summer increase in competitive pressure for pollinating 
insects due to lower per-insect nectar availability.

Stronger nectar competition in summer is likely to affect 
competition between honey- and bumblebees since they are 
floral generalists that often have a high level of interspecific 
dietary overlap, particularly for nectar (e.g. Forup and Mem-
mott 2005; Thomson 2006; but see Leonhardt and Blüthgen 
(2012) for differences in pollen foraging). For example, in a 
summer foraging ‘hotspot’ for honeybees 2–3 km from our 
study site, which was identified by waggle dance decod-
ing (Couvillon et al. 2014a), honeybees and bumblebees 
visited similar flowers in July and August (Balfour et al. 
2015b). Additionally, both Apis and Bombus are eusocial 
and have substantial colony requirements: a typical honey-
bee colony requires 20 kg pollen and 120 kg nectar per year 
(Seeley 1995), while in one study Bombus terrestris colonies 
consumed on average 176 g pollen and 935 g sugar over a 
12-week lifecycle (Rotheray et al. 2017). Honeybees and 22 
of 27 UK bumblebee species have a summer peak in abun-
dance (Falk 2015; Balfour et al. 2018). Increased demand for 
limited per-insect nectar and pollen resources in summer is a 
likely explanation for our findings and previous work show-
ing strong competition between honeybees and bumblebees 
at this time of the year in the UK (Goulson and Sparrow 
2009; Elbgami et al. 2014; Balfour et al. 2015a) and Europe 
(Walther-Hellwig et al. 2006).

In contrast to summer, in spring and autumn trials we 
observed that although honeybees were seen visiting flow-
ering plant species in the close vicinity, they foraged infre-
quently or not at all on the BBE lavender patches despite a 
much greater nectar standing crop volume in the flowers, 
on average sixfold greater in spring and fivefold greater in 
autumn compared to summer (Fig. 3). This strongly sug-
gests that nectar competition was reduced in these seasons, 
since exclusion of bumblebees caused little or no increase 
in honeybees: ecological release from competitive displace-
ment was not apparent. It suggests that honeybees did not 
‘need’ the lavender nectar in autumn and spring, perhaps 
due to higher per-insect nectar availability in the wider local 
environment. This may relate partly to the seasonal bloom of 
certain wildflowers, which is known to have an ecologically 
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significant impact on the amount of nectar available to bees 
(Seeley 1995). In autumn the apparent drop in Apis-Bombus 
competition was likely due to the blooming of ivy (Hedera 
helix), which is abundant and a major source of pollen and 
nectar in autumn for many insects (Garbuzov and Ratnieks 
2014a; Jacobs et al. 2010). Since ivy significantly impacts 
foraging behaviour when it is in flower and is likely to 
cause a marked increase in nectar availability (Couvillon 
et al. 2014a), its flowering period may also cause a seasonal 
reduction in inter- and intra-specific exploitative competition 
between insects foraging at this time of year. Similarly, in 
spring trials, lower Apis-Bombus competition overall may 
have been due to a generally richer floral community in May 
and June than summer months (Balfour et al. 2018).

Why did honeybees not forage on lavender flowers in 
spring and autumn trials, despite the absence of the domi-
nant competitor and resultant high nectar standing crop; 
what mechanism could be involved? A nectar volume of 
0.019 µL and 39% sugar concentration resulted in a sub-
stantial energetic profit for honeybees foraging on Grosso 
lavender (Balfour et al. 2015a), enough to cause a 14-fold 
increase in honeybee numbers. In this study, nectar volume 
reached a much greater maximum per-trial average of 0.506 
µL in BBE patch flowers in spring (concentration 41.4% 
sugar, n = 17 flowers; Trial 3) and 0.404 µL in autumn (con-
centration 32.8% sugar, n = 17 flowers; Trial 9), suggesting 
that honeybees would certainly have been able to make a sig-
nificant profit from foraging on the flowers in these seasons.

Although the high nectar standing crop in BBE patch 
lavender flowers in spring and autumn trials implies that 
foraging honeybees could make a profit, it is possible that 
lavender Grosso was nevertheless suboptimal compared 
to other floral resources in the environment. More abun-
dant nectar availability in these seasons may have reduced 
recruitment of nestmates to the BBE patch (Seeley 1995). 
When colony nectar intake is high, honeybee nectar foragers 
adaptively raise their dance thresholds, meaning that only 
high-quality food sources are advertised by returning forag-
ers (Seeley 1995). In contrast, in resource-scarce summer 
months greater honeybee recruitment to the BBE flowers 
may be explained by a lower colony dance threshold.

Both honeybees and bumblebees are often numerically 
dominant foragers on a wide range of flower species (N. J. 
Balfour, unpublished data). This is likely often to impact the 
foraging behaviour of other common flower-visiting insects 
including solitary bees, butterflies and hoverflies. In this 
study, we did not analyse the effects of competitor removal 
on other insect groups, since these were too infrequent on 
the lavender flowers for the necessary statistical power. 
Plants with a greater number of non-Apis/Bombus insect 
foragers may be more suitable for experiments in which the 
exclusion method used here could begin to examine com-
petition between honeybees, bumblebees and other insect 

taxa through the removal of both Apis and Bombus, as well 
as each group separately; this deserves further investigation.

The effect of seasonal fluctuations in exploitative com-
petition between Apis and Bombus at a population level in 
areas where both are native is not clear. However, in one 
UK study conducted in August, workers of four bumblebee 
species had smaller average thorax size in sites where hon-
eybees were present compared to where they were absent 
(Goulson and Sparrow 2009). It is possible that there may 
be negative fitness implications in times of increased com-
petitive pressure, at least for bumblebees, although further 
research is needed to clarify this. Future research could also 
investigate whether these possible population-level effects 
could be compensated for by seasons in which exploitative 
competition is weaker.

We show here that the strength of competition for a stand-
ardised floral nectar resource between bumblebees and hon-
eybees varies seasonally, with a summer peak in July and 
August. This is similar to previous work in which waggle 
dance decoding showed that honeybees forage furthest from 
the hive in July and August, indicating a dearth in envi-
ronmental nectar availability relative to other times of the 
year (Couvillon et al. 2014a). Our results, therefore, also 
help confirm that waggle dance decoding can provide useful 
information about foraging conditions for honeybees. Hon-
eybee foraging distances are thought to act as an indicator of 
seasonal foraging challenge for other flower-visiting insects 
(Couvillon et al. 2014a). We suggest that seasonal trends 
in competition between honeybees and bumblebees may 
similarly predict patterns of competitive pressure for flo-
ral resources between flower-visiting insects more broadly. 
While we have studied lavender as a useful phytometer with 
which to observe changes in Apis-Bombus competition, 
future studies should also extend this to include other loca-
tions and plant species, including native and wild-growing 
flowers if possible, to confirm our findings.

Understanding the seasonality of resource demand and 
competition between bee and other insect species is also 
important for informed conservation practice (Williams 
et al. 2015). Many insect species are in decline in Europe 
and globally (e.g. Potts et al. 2010; Hallmann et al. 2017) 
and for flower-visitors a major driver is thought to be a wide-
spread loss of floral resources (Goulson et al. 2008; Potts 
et al. 2010). A need to help insect pollinators may be par-
ticularly important in July and August months, when com-
petition for nectar seems to be increased in the UK (Couvil-
lon et al. 2014a; Balfour et al. 2018; this study). Seasonal 
plant–pollinator interactions are also likely to be affected 
by climate change, which can be mitigated by increasing 
floral availability at certain times of the year (Memmott et al. 
2010). Overall, there is a clear need to ensure that floral 
resources for bees and other insects are sustained throughout 
the foraging season by considering per-insect floral resource 
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availability in local and landscape-scale resource manage-
ment. A better understanding of seasonal variation in nectar 
competition can help in achieving this.
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