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Abstract: Chronic obstructive pulmonary disease (COPD) is a disease with marked metabolic distur-
bance. Previous studies have shown the association between single metabolites and lung function for
COPD, but whether a combination of metabolites could predict phenotype is unknown. We devel-
oped metabolomic severity scores using plasma metabolomics from the Metabolon platform from two
US cohorts of ever-smokers: the Subpopulations and Intermediate Outcome Measures in COPD Study
(SPIROMICS) (n = 648; training/testing cohort; 72% non-Hispanic, white; average age 63 years) and
the COPDGene Study (n = 1120; validation cohort; 92% non-Hispanic, white; average age 67 years).
Separate adaptive LASSO (adaLASSO) models were used to model forced expiratory volume at one
second (FEV1) and MESA-adjusted lung density using 762 metabolites common between studies.
Metabolite coefficients selected by the adaLASSO procedure were used to create a metabolomic
severity score (metSS) for each outcome. A total of 132 metabolites were selected to create a metSS for
FEV1. The metSS-only models explained 64.8% and 31.7% of the variability in FEV1 in the training
and validation cohorts, respectively. For MESA-adjusted lung density, 129 metabolites were selected,
and metSS-only models explained 59.0% of the variability in the training cohort and 17.4% in the
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validation cohort. Regression models including both clinical covariates and the metSS explained
more variability than either the clinical covariate or metSS-only models (53.4% vs. 46.4% and 31.6%)
in the validation dataset. The metabolomic pathways for arginine biosynthesis; aminoacyl-tRNA
biosynthesis; and glycine, serine, and threonine pathway were enriched by adaLASSO metabolites
for FEV1. This is the first demonstration of a respiratory metabolomic severity score, which shows
how a metSS can add explanation of variance to clinical predictors of FEV1 and MESA-adjusted lung
density. The advantage of a comprehensive metSS is that it explains more disease than individual
metabolites and can account for substantial collinearity among classes of metabolites. Future studies
should be performed to determine whether metSSs are similar in younger, and more racially and
ethnically diverse populations as well as whether a metabolomic severity score can predict disease
development in individuals who do not yet have COPD.

Keywords: metabolomics; COPD; lung density; adaptive LASSO

1. Introduction

Chronic obstructive pulmonary disease (COPD) is characterized by persistent respira-
tory symptoms and airflow limitation that is due to airway and/or alveolar abnormalities
usually caused by significant exposure to noxious particles or gases [1]. COPD is one of
the leading causes of death and hospitalizations worldwide and in the United States [2,3].
However, many adults with abnormal pulmonary function are not aware of having any
obstructive lung disease [2]. Although the lung is the main affected organ, there is strong
evidence for systemic effects of COPD as evidenced by muscle wasting, cardiovascular dis-
ease, osteoporosis, and depression, which suggests a generalized metabolic disturbance in
affected individuals [2]. Metabolomic profiling of blood may help to assess these metabolic
disturbances.

Several studies have examined the association between metabolites and lung function
measures. In investigating forced expiratory volume in 1 s (FEV1), FEV1 as a percentage
of predicted and the FEV1/Forced Vital Capacity (FVC) ratio, Cruickshank-Quinn et. al
found 32 and 269 significantly associated metabolites, respectively, in plasma samples from
131 participants from a cohort with COPD [4]. They found significant associations between
glycerophospholipid metabolism and FEV1 percent predicted, and between sphingolipids
and FEV1/FVC [4]. In a large general population study (n = 4742), Yu et al. reported
30 novel metabolites associated with FEV1, out of a total of 95 associated metabolites with
FEV1 using plasma samples [5]. Additionally, they found 100 metabolites associated with
FVC. Yu et al. also showed associations between FEV1 and four metabolic pathways,
including aminoacyl-tRNA biosynthesis; phenylalanine metabolism; nitrogen metabolism;
and alanine, aspartate, and glutamate metabolism [5]. Kelly et al. found 156 metabolites
associated with FEV1 in a general population study of 10,460 participants with a validation
cohort of 437 participants using blood and plasma samples [6].

The association between COPD, metabolic pathways, and clusters of metabolites
indicates a need for multivariable metabolite models, instead of single metabolite models,
to elucidate important metabolic profiles among patients with COPD. One approach to
multivariable metabolite modeling entails creating a score. Metabolomic scores are useful
in predicting a variety of chronic diseases and disease risk markers, including incident
coronary heart disease [7,8], weight gain [9], and type 2 diabetes [10]. The methods
used to develop these scores range from least absolute shrinkage and selection operator
(LASSO) to random forest modeling. These scores can also sometimes include clinical
markers. However, a metabolomic score has not been developed for COPD. Pinto-Plata
et al. evaluated a panel of untargeted metabolomics using random forest and support
vector machines to classify controls, surviving patients, and nonsurviving patients with
COPD, but they did not develop a score metric [11]. Furthermore, none of these studies
used an independent population to validate the performance of a COPD score.
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A challenge in developing scores is determining which variables to use, particularly
when the number of variables is larger than the number of subjects and when there is
collinearity among variables. As with LASSO, the adaptive LASSO (adaLASSO) model
shrinks beta parameters to exactly 0 to drop unimportant metabolites, and additionally,
adaLASSO adds individual weights for each variable to control bias in estimators, which
allows for more consistent variable selection. The coefficients from the adaLASSO can
then be used as weights to develop a final score and are interpretable in terms of the linear
relationship between the metabolite and the outcome. In this analysis, we use adaLASSO to
develop separate metabolomic severity scores (metSSs) for two important clinical manifesta-
tions of COPD—airflow limitation and emphysema—using two independent cohorts. Since
airflow limitation is relatively easy and inexpensive to assess with spirometry, the severity
scores may demonstrate the mechanistic associations between the clinical manifestations
and metabolic disturbances.

2. Results
2.1. Demographic Characteristics

Demographics and clinical characteristics for both the training and validation cohorts
are presented in Table 1. Cohorts show significant differences in all characteristics except for
sex and BMI. The SPIROMICS (training) cohort had a greater proportion of self-identified
Black/African American participants (18.8% vs. 8.5%, Chi-squared p-value < 0.001), and
a higher percentage of current smokers (33.5%, vs. 23.9%, Chi-squared p-value < 0.001).
However, the COPDGene (validation) cohort had more participants with Global Initiative
for Chronic Obstructive Lung Disease (GOLD) stage 4 (5.6% vs. 2.3%, p-value < 0.001),
a lower postbronchodilator FEV1 (2.2 vs. 2.3 L, t-test p-value = 0.003), and lower MESA-
adjusted lung density (g/L) (81.7 vs. 86.1 g/L, t-test p-value < 0.001) indicating more severe
COPD.

Table 1. Training and Validation Data Characteristics.

Characteristic
SPIROMICS

(Training)
(n = 648)

COPDGene
(Validation)

(n = 1120)
p

Age (yrs): mean (sd) 63.2 (8.89) 67.3 (8.82) <0.001
Sex: n (%)

Male 349 (53.9) 562 (50.2) 0.149
Female 299 (46.1) 558 (49.8)

Race/Ethnicity: n (%)
Non-Hispanic, White 469 (72.4) 1025 (91.5) <0.001

Black/African American 122 (18.8) 95 (8.5)
Other 57 (8.8) 0 (0)

BMI (kg/m2) 28.4 (5.22) 28.8 (6.14) 0.206
Spirometry category †: n (%)

PRISm 11 (1.7) 101 (9.1) <0.001
GOLD 0 261 (40.3) 505 (45.7)
GOLD 1 113 (17.5) 114 (10.3)
GOLD 2 181 (28) 208 (18.8)
GOLD 3 66 (10.2) 115 (10.4)
GOLD 4 15 (2.3) 62 (5.6)

Smoking Status: n (%)
Never Smoker 57 (8.9) 65 (5.8) <0.001

Former Smoker 369 (57.6) 787 (70.3)
Current Smoker 215 (33.5) 268 (23.9)

Smoking pack-yrs: mean (sd) 45.1 (30.94) 42.4 (26.18) 0.048
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Table 1. Cont.

Characteristic
SPIROMICS

(Training)
(n = 648)

COPDGene
(Validation)

(n = 1120)
p

Postbronchodilator FEV1 (L): mean (sd) 2.32 (0.84) 2.19 (0.91) 0.003
Postbronchodilator FEV1/FVC: mean (sd) 0.65 (0.15) 0.67 (0.15) 0.008

Postbronchodilator FEV1 percent predicted:
mean (sd) 80.7 (23.5) 79.3 (26.5) 0.297

Percent Emphysema ‡: mean (sd) 5.79 (8.08) 6.66 (9.8) 0.058
MESA-adjusted lung density (g/L): mean (sd) 86.1 (24.4) 81.7 (22.6) <0.001

t-tests used for continuous variables and Chi-squared/Fisher’s Exact for categorical variables. † PRISm (Preserved
Ratio Impaired Spirometry) defined as postbronchodilator FEV1/FVC ≥ 0.7 and FEV1 % predicted < 80%;
GOLD 0 defined as postbronchodilator FEV1/FVC ≥ 0.7 and FEV1 % predicted ≥ 80%; GOLD 1–4 defined as
postbronchodilator FEV1/FVC < 0.7 and FEV1 % predicted ≥ 80% for GOLD 1, 50–80% for GOLD 2, 30–50% for
GOLD 3, <30% for GOLD 4 ‡ measured as percent of lung voxels <−950 Hounsfield units.

2.2. Adaptive LASSO Results

For FEV1, the adaLASSO procedure selected a total of 132 metabolites. The top
25 metabolites are shown in Table 2 (all metabolites and weights are shown in Table S1).
Additionally, to depict the association of the adaLASSO-selected metabolites and FEV1,
scatterplots of the four largest-coefficient metabolites are shown in Figure S1. In the
validation data set, the metSS-only model explained 31.7% of the variability in FEV1. The
combined metSS and covariate model explained 53.4% of the variability, which was more
than the covariate-only model (46.4%) (p < 0.001). In the training data set, the metSS-only
model explained almost 1.5 times the variability in FEV1 compared with the covariate-only
model (64.8% vs. 42.1%) (Table 3). When combined, the clinical covariates and metSS
explained 4.1% more variability compared with the metSS-only model (p < 0.001) in the
training cohort. Mean squared error (MSE) showed similar patterns in the error for each
model. Figure 1 shows the relationship between the metSS-predicted FEV1 values and the
observed FEV1 values in the training and validation data sets. The figure shows a bias in
the predicted scores with predictions for the highest and lowest FEV1 values being under-
and over-predicted, respectively.

Table 2. Top 25 metabolites for FEV1 from adaLASSO analysis, adaLASSO coefficient, and Super and
Sub pathways annotated from Metabolon.

Metabolite adaLASSO β
Super Pathway

(Metabolon) Sub Pathway (Metabolon)

vanillylmandelate (VMA) −0.5654 Amino Acid Tyrosine Metabolism
N1-methyladenosine −0.3571 Nucleotide Purine Metabolism, Adenine containing

Glutamine −0.3414 Amino Acid Glutamate Metabolism
2-hydroxypalmitate −0.3264 Lipid Fatty Acid, Monohydroxy
choline phosphate 0.2924 Lipid Phospholipid Metabolism

1-palmitoyl-2-stearoyl-GPC
(16:0/18:0) 0.2912 Lipid Phosphatidylcholine (PC)

cerotoylcarnitine (C26) * 0.2859 Lipid Fatty Acid Metabolism (Acyl Carnitine, Long
Chain Saturated)

phenylalanine −0.2675 Amino Acid Phenylalanine Metabolism
dimethylarginine (SDMA + ADMA) 0.2646 Amino Acid Urea cycle; Arginine and Proline Metabolism

myo-inositol 0.2568 Lipid Inositol Metabolism
imidazole lactate 0.2561 Amino Acid Histidine Metabolism

1-stearoyl-2-arachidonoyl-GPC
(18:0/20:4) −0.2456 Lipid Phosphatidylcholine (PC)

N-acetylvaline 0.2374 Amino Acid Leucine, Isoleucine and Valine Metabolism
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Table 2. Cont.

Metabolite adaLASSO β
Super Pathway

(Metabolon) Sub Pathway (Metabolon)

taurine −0.2325 Amino Acid Methionine, Cysteine, SAM, and Taurine
Metabolism

sulfate * 0.2325 Xenobiotics Chemical
3-methyl-2-oxovalerate −0.2206 Amino Acid Leucine, Isoleucine, and Valine Metabolism

gamma-glutamylthreonine 0.2162 Peptide Gamma-glutamyl Amino Acid
proline 0.2127 Amino Acid Urea cycle; Arginine and Proline Metabolism

mannonate * −0.2107 Xenobiotics Food Component/Plant
retinol (vitamin A) 0.2103 Cofactors and Vitamins Vitamin A Metabolism

sphingomyelin (d18:2/21:0,
d16:2/23:0) * −0.1919 Lipid Sphingomyelins

N-acetylcarnosine 0.1825 Amino Acid Histidine Metabolism
3beta-hydroxy-5-cholestenoate 0.1798 Lipid Sterol

pimelate (C7-DC) −0.1790 Lipid Fatty Acid, Dicarboxylate

Table 3. Adjusted R2 and Mean Squared Error (MSE) to assess Linear Regression Models for post-
bronchodilator FEV1 (L).

FEV1 (132 Metabolites)

Adjusted R2 MSE

Clinical
Covariates 1

Only
metSS Only metSS +

Covariates 1

Clinical
Covariates 1

Only
metSS Only metSS +

Covariates 1

SPIROMICS (training) 42.1 64.8 68.9 0.397 0.246 0.213
COPDGene (validation) 46.4 31.7 53.4 0.435 0.559 0.378

1 clinical covariates: sex, age, height, race/ethnicity, BMI, smoking status, smoking pack-years, and clinical site.

Figure 1. metSS Predicted vs. Observed FEV1 for the Training (a) and Validation (b) Cohorts
Adaptive LASSO-based metSS prediction of FEV1. Each point represents an individual’s predicted
and observed FEV1. The blue identity line denotes a perfect prediction of FEV1. The orange line
denotes the observed FEV1 regressed on the metSS-predicted FEV1.
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Linear regression models of covariates-only, metSS-only, and metSS with covariates
for MESA-adjusted lung density showed a similar pattern to the corresponding models for
FEV1 (Table S2). The adaLASSO model selected 129 metabolites for MESA-adjusted lung
density. In the validation data set, the metSS explained 17.4% of the variability; however,
the combined metSS and covariate model outperformed the covariate-only model (adjusted
R2: 42.2% vs. 38.2%). In the training data set, the metSS-only models explained 59%
variability in MESA-adjusted lung density, while combined metSS and covariate models
explained 63% of the variability, similar patterns were seen for MSE in both the validation
and training cohorts.

2.3. Pathway Analysis

For FEV1, metabolites in three KEGG pathways were identified by the MetaboAnalyst
5.0 pathway analysis tool as over-represented (hypergeometric FDR < 0.10): arginine
biosynthesis; aminoacyl-tRNA biosynthesis; and glycine, serine, and threonine metabolism,
as shown in Figure 2. The specific metabolites in each of the significant pathways and their
coefficients (weights) in the adaLASSO are shown in Table 4.

Figure 2. Pathway Analysis for FEV1-annotated pathways indicate pathways with FDR < 0.1. The
colors for each pathway refer to the −log10(p) of the over-representation raw p-value (unadjusted for
multiple comparisons) with red to yellow indicating a higher to lower −log10(p) values. The pathway
impact represents the importance of the matched metabolites normalized by the importance of all
metabolites in the pathway.

Table 4. Metabolites and adaLASSO Coefficients in Significant KEGG Pathways (FDR < 0.1).

KEGG Pathway adaLASSO (β)

Arginine Biosynthesis
glutamine −0.34
arginine −0.11

N-acetylglutamate −0.10
citrulline −0.10

alpha-ketoglutarate −0.07
aspartate 0.07
fumarate −0.06
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Table 4. Cont.

KEGG Pathway adaLASSO (β)

Aminoacyl-tRNA Biosynthesis
glutamine −0.34

phenylalanine −0.27
proline 0.21

threonine −0.16
tyrosine −0.12
arginine −0.11
aspartate 0.07

serine 0.05
cysteine 0.05

Glycine, serine, and threonine metabolism
threonine −0.16
creatine −0.12
serine 0.05

cysteine 0.05
sarcosine −0.03
choline 0.02

2.4. Sensitivity Analysis

As a sensitivity analysis, the training and validation data sets were exchanged and
metSSs were developed in the COPDGene cohort and validated in the SPIROMICS co-
hort. Results are presented in Tables S3 and S4. In brief, the results were similar with
the combined metSS and covariate models having the highest explained variability for
both FEV1 and MESA-adjusted lung density in both the training and validation data sets;
however, almost double the number of metabolites were chosen by the adaLASSO proce-
dure. Additionally, to correct for the bias depicted in Figure 1, the adaLASSO procedure
was run with the highest and lowest quintiles of the training data weighted by a factor of
5. This incurs a higher penalty in the procedure for incorrectly predicting these subjects.
A smaller number of metabolites were selected by adaLASSO using higher weights for
extreme values. The linear models using the metSS from the extreme value weighted
adaLASSO produced similar results to the original model, with the combined metSS and
covariate model explaining the most variability in FEV1 and MESA-adjusted lung density;
however, the metSS-only models underperformed compared with the original analysis.

3. Discussion

This is the first publication of a metabolomic severity score for a respiratory disease.
The major advantage of the metSS is that, similar to a genetic risk score, it combines the pre-
dictive power of many variables that individually, typically, explain only a small percentage
(<5%) of the variability of a phenotype. For instance, in the absence of clinical covariates,
our metSS was able to explain 32% of the variability in the independent validation cohort,
similar to the SNP-based polygenic risk scores developed on hundreds of thousands of
individuals [12]. Indeed, when clinical covariates (sex, age, height, race/ethnicity, BMI,
smoking status, smoking pack-years, and clinical center) were added to the metSS, there
was a 7% increase in explanation of variance over the covariate-only model. These findings
support a key role of the blood metabolome in understanding COPD, as the metabolome
reflects various physiological processes important in COPD pathogenesis, from immune
regulation and energy homeostasis to protein synthesis/degradation and skeletal muscle
dysfunction.

We considered two approaches to generating a metSS: with clinical covariates and
without clinical covariates. The major advantage of a metSS without clinical covariates is
that it is a standalone blood test and does not need separate interpretation based on age,
sex, race, etc. An alternative would be to develop a score that included those covariates;
however, that would limit the application of metSS to only subjects who have all covariates
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measured. Thus, using only metabolites in the adaLASSO procedure to derive a severity
score allows for a broadly useful score for the population.

Studies have used a variety of methods to develop risk scores for different diseases.
For this metSS, our goal was to create a parsimonious model for FEV1 using only metabolite
data. Since the number of metabolites exceeds the sample size (p > n), and metabolites can
be highly correlated, adaLASSO was our preferred method for variable selection. As with
LASSO, adaLASSO performs both variable selection and effect estimation simultaneously.
However, adaLASSO has an advantage over LASSO in that it uses individual weights for
each variable to reduce the bias in large coefficients found in LASSO [13]. For this analysis,
the inverse of the absolute value of ridge regression coefficients were used as individual
penalties for each metabolite, which allows for correlated metabolites to be included in the
final model. Additionally, adaLASSO has been shown to select the true subset of variables
and estimate the weight of the true variables as if only the true variables were included in
the model in simulated datasets, which is called the oracle property [13,14]. One drawback
to adaLASSO is that it lacks the ability to model nonlinear effects. However, metabolites
selected by adaLASSO are interpretable in the same way as effects from multivariable
regression models. Other methods such as random forests and support vector regression
may be able to model nonlinear effects, but they can be difficult to interpret.

As adaLASSO has the ability to select only signal metabolomic features (i.e., the
oracle property), it is worth investigating which metabolomic features are selected in the
metSS. Approximately 70% of selected metabolites consisted of amino acid and lipid super
pathway metabolites, split evenly between the two categories. The five metabolites with
the strongest weights were vanillylmandelate (VMA), N1-methyladenosine, glutamine, 2-
hydroxypalmitate, and choline phosphate. While this is the first report of these metabolites
and lung function or COPD, other metabolites selected by adaLASSO have been reported
to be associated with COPD (Table S1). For instance, dimethylarginine and, specifically,
asymmetric dimethylarginine (ADMA) results in a “functionally relevant shift” in l-arginine
breakdown and has been associated with airflow obstruction [15]. Sphingomyelin has been
associated with progression of percent emphysema and with worsening lung function [4,16].
Finally, 12,13 DiHOME has been associated with sex-specific effects with increased levels
found in female smokers compared with female non-smokers [17].

The KEGG pathways that were over-represented in the metabolites selected in the
adaLASSO procedure were arginine biosynthesis; aminoacyl-tRNA biosynthesis; and
glycine, serine, and threonine metabolism. Glutamine and arginine, important amino
acids in both the arginine biosynthesis and aminoacyl-t-RNA biosynthesis pathways, were
inversely associated with FEV1. These findings are concordant with prior studies that
found serum glutamine to be elevated in individuals with COPD compared with controls,
and both serum glutamine and arginine to be elevated specifically in individuals with
GOLD 4 COPD compared with controls [18,19].

AdaLASSO selection of dimethylarginine (DMA) further supports dysregulation of the
arginine pathway in COPD. DMA is produced when methylated arginine residue proteins
are degraded. DMA can be stimulated by hypoxia and is important in inflammation
because it inhibits nitric oxide synthases (NOS) [20]. Our findings are supported by several
smaller publications. In a study of 44 COPD patients and 30 healthy subjects, DMA was
higher in patients with COPD [21]. These findings were supported by another study
of 58 COPD patients and 30 healthy subjects [20]. In another study of 23 moderate-to-
severe COPD patients and 19 healthy older controls, whole-body arginine was higher
in COPD patients and related to de novo arginine production [22]. Additionally, the
arginine pathway was also implicated in smoke-mediated emphysema in mice through
its role in oxidant/antioxidant balance [23]. However, in a study of 25 COPD patients
and 21 controls, a negative association was found between arginine and COPD status [24],
while in another study comparing healthy smokers and smokers with COPD, Naz et al.
found differences by sex with COPD women having lower ratios of arginine/(citrulline
+ ornithine) and higher ratios of asymmetric (ADMA) and symmetric dimethylarginine
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(SDMA) to arginine compared with healthy female smokers, but no difference in men [25].
KEGG analysis also identified aminoacyl-tRNA biosynthesis and glycine, serine, and
threonine pathway overrepresentation in the metSS, which suggests disturbances in general
amino acid metabolism. Aminoacyl-tRNAs are vital for protein synthesis and have been
associated with oxidative stress [5,6,26]. Similarly, multiple studies have found enrichment
of the glycine, serine, and threonine metabolism pathways, which have been associated
with COPD exacerbation severity [4,27]. The reason for amino acid metabolism dysfunction
in COPD is unclear but has been speculated to be a result of systemic inflammation and
skeletal muscle energy metabolism dysfunction [28].

There are several limitations to our metSS approach. For instance, our metSS was
developed in a population enriched with COPD, which could limit the generalizability and
the deconvolution of those metabolomic pathways related to COPD progression versus
those that regulate lung development and variability in the general population. This is
supported by the overall low, but not negligible, overlap of metabolites associated with
FEV1 between our analysis and those involving general population cohorts that included a
significant proportion of individuals who never smoked and/or who had normal FEV1 [5,6].
Beyond disease progression versus lung-development-related metabolites, differences in
methodological approaches (adaLASSO vs. multivariable regression models) between
analyses might also explain these results and warrant further investigation. Additionally,
the severity score was developed with a cross-sectional sample and the findings may not
to apply to the longitudinal progression of COPD within an individual. The utility of the
metSS should be tested with a longitudinal sample to determine the viability of the metSS
in predicting progression of COPD. We chose the SPIROMICS data as our training set,
even though it was smaller than COPDGene, as the population was more racial/ethnically
diverse, had a higher proportion of current smokers and had less severe disease status,
which should improve the utility of the score in undiagnosed populations and in early
COPD patients where disease identification and prevention is most relevant. Age is also an
important factor for the metabolome; the cohorts used to derive and validate the severity
score were older adults, which again limits the generalizability of the score to younger
populations. Finally, due to the low cost and accessibility of spirometry, the metSS, currently,
should be used in research settings to better understand the pathobiology of COPD rather
than a clinical tool.

In summary, we show that we can use adaLASSO to generate a metSS, similar to
polygenic risk scores, which is highly associated with the variability of FEV1 in two in-
dependent cohorts of individuals with a smoking history and with or at risk for COPD.
The FEV1 metSS is significantly enriched in amino acid pathways (particularly, arginine
metabolism), suggesting the importance of these pathways in COPD pathogenesis. Further
work in younger subjects without disease who have multiple long-term spirometry assess-
ments should be undertaken to assess whether a metSS can predict disease development or
progression.

4. Materials and Methods
4.1. Study Populations
4.1.1. Training Cohort

The Subpopulations and Intermediate Outcome Measures in COPD Study (SPIROMICS)
(ClinicalTrials.gov Identifier: NCT01969344) provided metabolomic data for training in
the development of our metSS. In brief, this study recruited 2771 participants between
40–80 years old with at least 20 pack-years of smoking and 202 participants who were never
smokers; 73% of participants self-identified as non-Hispanic white. Of participants return-
ing for their 5–7 year follow-up visit, the first 649 were selected for metabolomic profiling
of baseline fasting blood samples. Details of the cohort are provided elsewhere [29,30].
Data from 648 participants were used in this analysis, as one subject was excluded. Median
standard deviation scores (z-scores) were calculated across metabolites at the subject level.



Metabolites 2022, 12, 368 10 of 14

Subjects with aggregate metabolite median z-scores > 3 SD from the mean of the cohort
were removed.

4.1.2. Validation Cohort

The Genetic Epidemiology of COPD (COPDGene) (ClinicalTrials.gov Identifier:
NCT00608764), another NIH-sponsored multicenter cohort, provided metabolomic data for
validation of the metSS. Details of the COPDGene study are provided elsewhere [31]. In
brief, this study enrolled 10,198 non-Hispanic white and African American participants
between 40–80 years with at least 10 pack-years of smoking and no exacerbations for more
than 30 days, and 465 individuals with no smoking history. At the in-person, 5-year visit,
1136 participants from the National Jewish Health and University of Iowa clinical centers
participated in an ancillary study in which nonfasting blood samples were collected and
processed for metabolomic profiling [29,31,32]. Data from 1125 participants were used in
this analysis and six subjects were excluded based on median standard deviation score
(z-scores), as described above, and another five had missing values of covariates.

Informed consent was obtained from all subjects involved in the study.

4.2. Data and Definitions
4.2.1. Clinical Data and Definitions

COPD severity and interindividual differences are best measured by FEV1 and em-
physema, respectively; due to this heterogeneity, both postbronchodilator forced expiratory
volume in 1 s (FEV1) and quantitative emphysema were used to generate separate metSSs.
Emphysema was quantified using MESA-adjusted lung density from a computed tomogra-
phy scan of the chest and adjusted according to reference equations from the Multi-Ethnic
Study of Atherosclerosis [33]. Clinical covariates included age at time of visit, sex, height,
self-identified race/ethnicity, BMI (kg/m2), current smoking status, smoking pack-years,
and clinical center. Additionally, for MESA-adjusted lung density, scanner model was
included as a covariate. We tested for differences between the two cohorts using t-tests for
continuous variables, and chi-squared tests and Fisher’s Exact test for categorical variables.

4.2.2. Metabolomic Profiling and Processing

Plasma samples from both cohorts were profiled using Metabolon (Durham, NC, USA)
Global Metabolomics Platform, as described previously, although profiling for each cohort
occurred approximately 1 year apart [34–36]. Metabolite values were batch normalized,
within each study, by dividing by the median metabolite value for each metabolite within
a batch. After batch normalization, metabolite PCs showed a significant reduction in
association with batch, so no further normalization was needed [32].

Metabolites were excluded if >80% of samples were missing values (COPDGene: 149;
SPIROMICS: 197). For metabolites missing in 20–80% of samples, a present/absent (1/0)
indicator variable was created and used for all analyses (COPDGene: 248, SPIROMICS:
192). For metabolites missing in <20% of samples, missing values were imputed with k-
nearest neighbor imputation (kNN; k = 10) using the R package ‘impute’ (COPDGene: 995;
SPRIOMICS: 785). In the SPIROMICS study, a total of 1174 metabolites were characterized
by Metabolon, whereas 1392 metabolites were characterized in the COPDGene study.
For the 7 tobacco metabolites identified by Metabolon and common between studies, 1
(nicotine) was excluded since >80% of samples were missing values, and the other six were
converted to present/absent indicator variables.

4.3. Analysis
4.3.1. Statistical and Bioinformatics Analysis

Continuous metabolite values were natural log-transformed for all analyses. Of the
946 metabolites identified in both studies, 73 had <20% missing samples in one study
and 20–80% missing in the other, and 111 had at least one cohort with ≥80% missing
samples; 673 had kNN imputed missing values in both cohorts and 89 were dichotomized
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to present/absent variables in both studies, resulting in 762 metabolites used to develop
the metSSs.

Separate adaptive least absolute shrinkage and selection operator (adaLASSO) analy-
ses were performed to select metabolites and their weights for the metSSs for FEV1 and
MESA-adjusted lung density. Inverted absolute value ridge regression estimates were
used as initial weights for adaLASSO, and a 10-fold cross validation was performed in the
training data set to obtain the penalty parameter (λ), which corresponded to the lowest
mean-squared error across the folds. The adaLASSO procedure did not include clinical
covariates. The metSSs were created with the coefficients and set of metabolites selected by
the adaLASSO procedure.

Separate linear regression models were run to assess the variability explained (adjusted
R2 using the Wherry formula) by (a) the clinical covariates, (b) the metSS, and (c) the metSS
in concert with clinical covariates associated with FEV1 and MESA-adjusted lung density.
Both training and validation data sets were modeled using linear regression. Additionally,
mean squared error (MSE) was calculated to assess fit. Sensitivity analyses were performed
to test the effect of switching the training and validation cohorts and by adding a higher
penalty to errors in the highest and lowest quintiles of the training cohort.

4.3.2. Pathway Analysis

Pathway analysis was conducted using MetaboAnalyst 5.0 web server (accessed
2 November 2021) for KEGG pathways. Details on pathway analysis were previously
published [37]. In brief, pathway analysis used a hypergeometric test to determine over-
representation of pathways based on metabolites selected by adaLASSO and, additionally,
used measures of metabolite centrality, including relative betweenness centrality and out-
degree centrality, to calculate importance in the pathway and determine pathway impact.
Pathway analysis was conducted on metabolites selected by the adaLASSO procedure.

4.3.3. Software

The statistical software R Version 4.0.2 was used for all analyses. The R packages
glmnet and stats were used for adaLASSO and linear regression models, respectively.
The MetaboAnalyst webserver (https://www.metaboanalyst.ca/, accessed on 2 Novem-
ber 2021) was used for pathway analysis. Analysis code can be accessed on GitHub at
https://github.com/sunigodbole/netco-metRS, accessed on 2 November 2021.
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