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Abstract: Determining spatial links between disease risk and socio-demographic characteristics is
vital in disease management and policymaking. However, data are subject to complexities caused
by heterogeneity across host classes and space epidemic processes. This study aims to implement a
spatially varying coefficient (SVC) model to account for non-stationarity in the effect of covariates.
Using the South Africa general household survey, we study the provincial variation of people living
with diabetes and hypertension risk through the SVC model. The people living with diabetes
and hypertension risk are modeled using a logistic model that includes spatially unstructured and
spatially structured random effects. Spatial smoothness priors for the spatially structured component
are employed in modeling, namely, a Gaussian Markov random field (GMRF), a second-order random
walk (RW2), and a conditional autoregressive (CAR) model. The SVC model is used to relax the
stationarity assumption in which non-linear effects of age are captured through the RW2 and allow the
mean effect to vary spatially using a CAR model. Results highlight a non-linear relationship between
age and people living with diabetes and hypertension. The SVC models outperform the stationary
models. The results suggest significant provincial differences, and the maps provided can guide
policymakers in carefully exploiting the available resources for more cost-effective interventions.

Keywords: Bayesian inference; diabetes; hypertension; spatially varying coefficients; conditional
autoregressive

1. Background

Non-communicable diseases (NCDs) continue to be significant global public health
challenges, being responsible for sizeable mortality and morbidity, and their frequency is
expanding in low- and middle-income countries [1,2]. Moreover, this has been attributed
to increasing life expectancy and globalization of food manufacturing [1,3]. For instance,
out of the 57 million total deaths in 2008, statistics indicated that approximately 63% were
attributed to NCDs, while annual deaths are anticipated to rise globally [4]. Additionally,
in sub-Saharan African (SSA) countries, infectious diseases have been identified as the
principal cause of death [5–7]. However, due to the treatment intervention of infectious dis-
eases, predominantly HIV, as life expectancy increased, so did the prevalence of NCDs [5].
Other studies have attributed a higher proportion of deaths in SSA to infectious settings
and projected that, by 2030, NCDs would cause 46% of deaths [5]. Likewise, published
statistics on disease threat estimates in South Africa indicate that NCDs triggered 28%
of the total disease threat measured by disability-adjusted life years (DALYs) [8]. This is
projected to upsurge significantly over the next few decades if proper measures do not
fight the inclination [5]. On the other hand, the menace of these diseases is rising in rural
settings of South Africa; they suspiciously affect underprivileged individuals living in
urban locations [9]. For example, in the Western Cape, one of the provinces of South Africa,
NCDs constitute five of the ten leading causes of death [10].
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Moreover, the World Health Organization (WHO) estimates that the threat of the risk
of death associated with NCDs is two to three times higher in South Africa than in high-
income countries (developed) [3,11]. Meanwhile, the spread of NCDs shows socioeconomic
inequalities, with a substantial burden among disadvantaged people in urban settings.
With this background, the increasing morbidity and mortality from NCDs have important
implications for the distribution of acute and chronic health care services [3]. Moreover,
this has financial consequences for households, individuals, and nations [11].

Therefore, predicting NCDs’ progression and geographic spread is vital in public
health for resource allocation. With this background, this study focused on modeling
hypertension and diabetes, knowing that they are two significant NCDs that significantly
contribute to the drain of all cardiovascular diseases (CVDs) and the risk of death. It was
established that the epidemiology of hypertension and diabetes divulges various risk fac-
tors. In line with this, studies have revealed that socioeconomic factors (such as low levels
of educational status and high household wealth index) and demographic factors (such as
age and gender—specifically, male) increase the risk of hypertension and diabetes [12,13].
Similarly, lifestyle behaviors (such as smoking and alcohol consumption) and dietary habits
also significantly influence the risk of hypertension and diabetes [12,14,15]. Other studies
and systematic reviews between 1980 and 2018 have shown an overall estimate of 57%
for the frequency of hypertension [16]. Other studies reported a substantial disparity in
the frequency of those aware of their hypertension status, at 7 to 56% [17]. At the same
time, systematic reviews and meta-analyses have reported that urban residents were at an
increased risk of hypertension and diabetes than those in rural settings [18]. Furthermore,
another meta-analysis of studies on undiagnosed diabetes [19] indicated that the incidence
of diabetes varied between 3.9% and 8.7%, with an overall estimate of 5.4%. As predicted by
the International Diabetes Federation, diabetes is expected to increase to 13% by 2030 [20].

With this background, a clear understanding of South Africa’s spatial distribution of
NCDs, which can bring about accurate disease modeling and mapping in understanding
the burden of NCDs across different districts, is needed. However, no spatial analysis
of diabetes and hypertension using spatially varying coefficient (SVC) models has been
reported in South Africa. The drive of spatial modeling in public health comprises three
circles: unfolding current spatial patterns of risk; trying to comprehend the biological
apparatuses that lead to disease existence; and estimating what will ensue in the medium- to
long-term future (temporal prediction) or in diverse geographical areas (spatial prediction).

Meanwhile, individuals in the same geographical area frequently share beliefs and
cultures, which may result in comparable levels of exposure to diseases, such as the
one considered in the present study [21–23]. Thus, countries with varied cultures and
widespread dietary habits are expected to have considerable variations in the prevalence
of people living with hypertension and diabetes based on their geographical location [24].
Therefore, understanding the spatial distribution of people living with hypertension and
diabetes is vital for measuring end strategy achievements at the regional level.

The success of any health care mediation plan primarily hinges on a wide-ranging and
exact consideration of various features that ascertain the existence of diseases and death.
Thus, considering the standing of health care in South Africa, the current statistics on the
reality of NCDs have been founded mainly on data from hospitals. However, hospital
data need to be enhanced by household survey data, because they gather only a subset
of infections and have a bias towards more severe outcomes. As such, they may not be
regarded as the final appropriate measure when modeling the existence of hypertension,
diabetes, and other NCDs for proper plan growth. On the other hand, the household survey
remains one valuable source that, combined with additional complementary information,
can help to provide the evidence base required for a better understanding of human
resources for health and resource allocation. As a surrogate, the demographic survey
housed by the South Africa General Household Survey (GHS) collected various information
on the health status of the citizens of South Africa. Thus, this study intends to perform
spatial modeling on people living with diabetes and hypertension to capture this non-
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linearity of covariates using the GHS data. The literature shows spatial modeling of NCDs
using a standard generalized linear regression model [25–27]. Many studies have adopted
a standard generalized linear regression model utilized in spatial data analysis, but most
of those studies assumed mean and covariance stationarity [26,27]. Mean stationarity
suggests a constant association between the outcome of interest and a set of covariates over
the region. This assumption is unrealistic because of spatial dependencies and unknown
factors that may impact the outcome. Thus, this assumption can only be realistic when the
regression coefficients vary across space [28]. Therefore, the problem of non-stationarity
can be accommodated by allowing the relationships measured to vary over space through
the geographically weighted regression (GWR) model or spatially varying coefficients
parameter (SVCP) [29,30].

Most countries implement GHSs to understand specific health problems and deter-
mine the prevalence and awareness of different diseases. GHS data are a public instrument
to trace and solve many nations’ developmental challenges. The survey data provide ample
information on various diseases, and many studies have applied different statistical meth-
ods to analyze household survey data. However, most of these methods have been utilized
in a manner that may limit interpretations, considering some underlying assumptions. For
instance, accounting for spatial variations using Laplace integrated nested approximation
(INLA) when modeling NCDs was the central focus of a recent paper by Roy et al. [31]. The
study assumed that all of the covariates in the analysis had a linear relationship with the
outcome of interest. Borrowing strength from the literature, current research admits that
this linear relationship may not hold for all variables. Thus, the present study proposes an
approach to relax this stationarity and the linearity assumption considering both the SVC
model and RW2. Specifically, this study offers a generalized linear model (GLM) to build
the SVC model and compares it with the stationary model. The SVC model is used to relax
the stationarity hypothesis, which the previous study failed to address. The non-linear
effects of age are captured by a second-order random walk (RW2) and enable covariates to
vary in space using the conditional autoregressive (CAR) model. The Bayesian posterior
is attained by INLA techniques, a capable substitute for frequently used Markov chain
Monte Carlo techniques (MCMC). This paper contributes to the understanding of spatial
variations in diabetes and hypertension in South Africa using the SVC model approach
based on the INLA technique. Findings from this study can practically benefit the govern-
ment and decision-makers as both search for an improved understanding and response to
the threat posed by NCDs. Similarly, when the covariate predictors are considered based
on the spatial model, the modeling and mapping will produce accurate maps useful for
health policy.

2. Data and Model
2.1. Study Area and Data

The focus of the study was South Africa. There are nine provinces in South Africa:
Western Cape (WC), Eastern Cape (EC), Northern Cape (NC), Free State (FS), KwaZulu-
Natal (KN), North West (NW), Gauteng (Gau), Mpumalanga (Mp), and Limpopo (Lim).
The map of South Africa showing the nine provinces and their major cities is displayed in
Figure 1. Data used in the analysis were drawn from the GHS, conducted across the country
in 2019. It is collected by Statistics South Africa (Stats SA) annually and made accessible
free of charge on its website. Stats SA provides South African data that can be accessed
via [32]. The GHS 2019 collection is based on the 2013 Master Sample (MS). This MS is
based on information collected during the 2011 census conducted by Stats SA [33]. The
MS makes use of a two-stage, stratified design with probability proportional to size (PPS)
sampling of primary sampling units (PSUs) from within strata and systematic sampling of
dwelling units (DUs) from the sampled PSUs [33]. The country was divided into 103,576
enumeration areas (EAs) before the 2011 census.
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Figure 1. Map of South Africa showing the nine provinces and major cities [34].

The census EAs and the auxiliary information for the EAs were used as the frame units
for forming PSUs for the MS. The sample size was composed of 3324 PSUs in the MS, with
an expected sample of approximately 33,000 DUs, using the power allocation method. PSUs
are enumeration areas (EAs) from the census list with a household count of more than 25,
excluding workers’ hostels, convents, and monasteries [33]. The PSUs were sampled in
each district using a probability proportional to the number of households in a PSU as
calculated in the census. In each PSU, dwelling units were selected using a systematic
sampling technique. The MS was designed to be representative at the provincial level and
within provinces at metropolitan and nonmetropolitan geographical area levels [33]. Within
the metropolitan, the sample is further distributed by geographical type. This implies that,
within a metropolitan area, the sample is representative of the different geography types
that may exist within that metropolitan area. A stratified design with a PPS selection
of PSUs was used in the first stage. In contrast, DU sampling with systematic sampling
was employed in the second stage. The survey’s target population consisted of all private
households in all nine provinces of South Africa and residents in workers’ hostels. There are
68,986 observations in the 2019 GHS dataset, with 149 variables. Among the 68,986 people
interviewed, 15,455 (22.4%) resided in Gauteng, 12,462 (18.1%) were in KZN, and 9279
(13.5%) were from EC; Lim (8192, 11.9%), WC (6051, 8.8%), Mp (5901, 8.6%), NW (4420,
6.4%), FS (4070, 5.9%), and NC (3156, 4.6%). While the 2019 GHS sample included 68,986
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individuals aged zero (0) years and older, only persons aged 35 and above were included
in the model.

2.2. Model Specification and Statistical Analysis

Frequentists and Bayesians extensively use logistic regression models to study the
association between covariates and the binary response outcome. Moreover, it has received
much consideration in disease mapping to model dichotomous response data in order to
describe geographic variation that arises in the data. In the current study, we assumed
that yij represented the binary status of hypertension (hypertensive/non-hypertensive)
or diabetes (diabetic/non-diabetic) for an individual i in province j: j = 1, 2, . . . , 9. For
a randomly selected individual, the probabilistic behavior is typically explained by the
univariate Bernoulli probability function—that is, yij ∼ Bern(pij)—such that pij is the
probability of being hypertensive (or being diabetic) for the ith individual in the jth province
and, thus, E

(
Yij
)
= pij and Var

(
Yij
)
= pij

(
1− pij

)
. The GLM approach linked the mean

response and the potential k predictors
(

xij1, . . . . . . . . . . . . , xijk

)T
so that a function pij was

equal to a linear combination of the predictors. The province of the respondent was labeled
as sj ∈ (1, 2, 3, . . . , 9), where the label matched the labels on the map. The spatial effect of
the province sj where the respondent resided was represented by fspatial

(
sj
)
. The spatial

effect comprised two parts: a structured effect and an unstructured effect. Thus,

fspatial
(
sj
)
= fstr

(
provincej

)
+ funstr

(
provincej

)
Thus, the following models were formulated:

log it
(

pij
)
= β0 +

k

∑
m=1

βmxijm (1)

log it
(

pij
)
= β0 +

k

∑
m=1

βmxijm + νj (2)

log it
(

pij
)
= β0 +

k

∑
m=1

βmxijm + sj (3)

log it
(

pij
)
= β0 +

k

∑
m=1

βmxijm + νj + sj (4)

where β0, νj, and sj represent the intercept, spatially unstructured term, and spatially
structured term, respectively. Additionally, νj accounts for unexplained variability in the
model [35], while sj describes the effect of location by assuming that geographically close
areas are more similar than distant areas [36,37]. The structured part of the spatial effect was
modeled by assigning a Gaussian Markov random field (GMRF) [38–40]. The GMRF is a
direct generalization of a first-order random walk to two dimensions. In this approach, two
regions (provinces), provincea and provinceb, are defined as neighbors if they share a com-
mon boundary. Suppose that the index s ∈ (1, 2, . . . . . . , P) represents the geographically
connected regions. The spatial smoothness prior to the function fstr

(
provincej

)
evaluations

using the GMRF is given by

fstr
(

provincej
)∣∣∣∣∣ fstr(provincek), k 6= j, τ2

str ∼ N

(
Σk∈N(j)

fstr(provincek)

dj
,

τ2
str
dj

)

where N(j) and dj are the set and number of adjacent regions i, respectively. Therefore, the
conditional mean fstr

(
provincej

)
is an average evaluation of the function fstr

(
provincej

)
of neighboring districts. On the other hand, τ2

str, a spatial variance, measures the amount of
spatial heterogeneity [39]. In addition, the unstructured part of the spatial funstr

(
provincej

)
was
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assigned i.i.d. Gaussian priors. This means that funstr
(

provincej
)
= aj, with aj ∼ N

(
0, σ2

unstr
)
,

j = 1, . . . . . . , P, where P denotes the total number of provinces.

2.3. Specification of the Spatially Varying Coefficient Model (SVC)

In spatial data analysis, the well-known issue is identifying the nature of the associa-
tion between variables. However, in many scenarios, a simple model may not describe the
association between some sets of variables, sometimes referred to as spatial non-stationarity.
Thus, the model must reflect the spatially varying construction within the data to over-
come this shortcoming. Based on previous studies, the assumption is that the relationship
between the outcome and independent variables is constant throughout the study re-
gion [28,41]. However, this assumption may not be realistic for spatial processes, due to
the contribution of factors such as altitude and cultures. The two commonly used spatially
varying models are the GWR and SVC models. This study focused on the SVC model, a
statistical approach developed to relax the spatial stationarity assumption of a regression
relationship for spatial data. In addition, the Bayesian spatially varying parameter model
was used here to make an inference. The disparity between the present study and other
previous studies on NCDs is that our study allowed for coefficients to vary spatially. The
specification of the SVC model involves two distinct stages [42]. The starting point consists
of the specification of the data distribution conditional on unknown parameters. At the
same time, the latter stage entails the specification of the unknown parameters dependent
on the other parameters. Based on previous studies [42], the SVCP model is represented
as follows:

yij
∣∣pij ∼ Ber(pij)

ψ
(
ηij
)
= log it

(
pij
)
= XT

ij β + GT
ij π

Thus, the prior distribution for the regression coefficient parameters is represented as
follows [43]: [

π
∣∣∣µπ , ∑π

]
= N

(
1n×1 ⊗ µπ , ∑π

)
The vector µπ = (µπ0, . . . , µπp)

T contains the means of the regression coefficient terms.
In addition, the prior on regression coefficient accounts for the possible spatial dependence
through the covariance ∑π . The Bayesian spatial varying coefficient was employed in this
study to relax the stationarity assumption. In contrast, the varying coefficient is achieved
by specifying the priors for the π′s, and the most adopted model is a simultaneously
autoregressive model (SAR) and CAR model. The SAR model is computationally easier to
use with likelihood methods.

In contrast, the CAR model is computationally easier for Gibbs sampling used with
Bayesian model fitting. Gibbs sampling is an approach that iteratively draws an instance
from the distribution of each variable, conditional on the current values of the other
variables, to estimate complex joint distributions [43,44]. In the present study, we used the
CAR priors for the π′s.

Furthermore, for the specification of the CAR model, we considered φ = (φ1, . . . , φk)
T ,

with k components that follow a multivariate Gaussian distribution having a mean of zero
and B as the inverse of the dispersion matrix, such that B represents a k × k symmetric and
positive definite matrix. By positive definite matrix, we mean a matrix that is symmetric
and whose eigenvalues are positive. Therefore, the density for φ is given by

π(φ) = (2λ)−k/2|B|−1/2 exp
{

1
2

φT Bφ

}
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For the CAR model, the conditional distribution of one component in terms of the
elements of the matrix B = aik is expressed as

π(φ

∣∣∣∣∣φ−i) = exp

{
−aii

2
(φi −∑

k=i

−aik
aii

φk)
2
}

This implies that φi|φ−i ∼ N
(
−aik

aii
φk, 1

aii

)
. Let G = (gik) =

−aik
aii

and H = diag(τ2
1 , . . . , τ2

i ),

such that gikτ2
k = gkiτ

2
i . Thus, the inverse of the dispersion matrix B is related to G and H

as illustrated below:
B = H−1(I − G)

The joint distribution φ is MVN
(
0, H−1(I − G)

)
, provided (I − H)G−1 is symmetric

and positive definite, and I is the identity matrix [45]. As reported by [46,47], the logic
here is that G and H must be appropriately modeled to ensure symmetry in B, while
matrix G indicates the relationship between the neighbors. Notably, the CAR model is
an attractive way to handle spatial statistical dependencies (see [28,46]). Typically, the
prior for the structured and unstructured random effects followed the CAR model and an
independently and identically distributed (i.i.d.) normal distribution.

Similarly, the specification of the Bayesian SVC can be completed with the description
of the prior distribution. The posterior distribution for a model of this type cannot be han-
dled analytically. Thus, a fully Bayesian integrated method based on INLA implemented
in R-INLA, a package built within the R statistical package for approximating the model
parameters, was utilized [47,48]. Conclusively, all of the models used in the analysis were
compared using the deviance information criterion (DIC) values [49,50]; the model with the
smallest DIC values was preferred for estimating the parameters [51–54]. DIC is defined as
DIC = D + pD, where D is the posterior mean of the model deviance, which is a measure
of goodness of fit, and pD is the adequate number of parameters, which indicates the
complexity of the model and penalizes over-fitting.

3. Results
3.1. Descriptive Statistics

The statuses of both hypertension (yes, no) and diabetes (yes, no) were considered
as two outcome variables. The predictors introduced in the model were sex (male versus
female); age (years); race: African versus White, Indian/Asian, or Colored; working for
a wage: yes or no; working without remuneration: yes or no; salary period: per week,
monthly, or annually; type of residence: urban or rural; educational status: no primary
education versus primary, secondary, or tertiary; and marital status: single versus married,
widowed/divorced/separated. Table 1 shows the statistical description of people living
with diabetes and hypertension across the covariates. The GHS data come from private
households in all nine provinces of South Africa and residents in workers’ hostels. Among
the 68,986 people interviewed, 33,151 (48.1%) were male, and 35,835 (51.9%) were female.
The racial spread of the data specifies that, out of all of the people interviewed in this
survey, the highest proportion (57,930, 84%) were black Africans. In contrast, the lowest
proportion (1217, 1.8%) belonged to the Indian/Asian group. Additionally, the GHS 2019
sample included 68,986 people aged zero (0) years and above, but only 35 years or above
(5571) were included in the model.
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Table 1. Descriptive summary of variables utilized in the study.

Description n (Percent)

Metrical Variable Mean (SD)

Age Age of the respondent 46.45 ± 8.22

Socio-demographic variables

Sex
Male 2807 (50.4)
Female 2764 (49.6)

Marital status
Single 1701(30.5)
Married 3203 (57.5)
Divorced/Separated/Widowed 667 (12.0)

Educational status
No primary education 225 (4.0)
Primary 990 (17.8)
Secondary 3508 (63.0)
Tertiary 848 (15.2)

Race
African 4718 (84.7)
Colored 496 (8.9)
Indian/Asian 57 (1.0)
White 300 (5.4)

Working for a wage
Yes 4547 (81.6)
No 1024 (18.4)

Working without
remuneration

Yes 83 (1.5)
No 5498 (98.5)

Salary period
Per week 762 (13.7)
Per month 4775 (85.7)
Annually 34 (0.6)

Residence type
Urban 3861(69.3)
Rural 1710 (0.6)

Province
Western Cape 489 (8.8)
Eastern Cape 700 (12.6)
Northern Cape 380 (6.8)
Free State 398 (7.1)
KwaZulu-Natal 548 (9.8)
North West 387 (6.9)
Gauteng 1557 (27.9)
Mpumalanga 600 (10.8)
Limpopo 512 (9.2)

3.2. Model Performance Comparison

To assess the effect of various individual-level predictors on hypertension and diabetes,
four models described earlier were fitted separately for hypertension and diabetes and
compared using their DIC values to identify the best fitted model. The DICs for the
stationary and SVC models are presented in Tables 2 and 3, respectively. The selection of
the best model is based on DIC values. Findings revealed that the SVC models had a lower
DIC than the stationary models. Additionally, it can be seen from Table 3 that Model 7 had
the smallest DIC value for both diabetes and hypertension. Models with differences in DIC
values less than 3 cannot be differentiated, while those with differences between 3 and 7
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can be weakly differentiated [55]. Thus, further interpretation of the results is based on
Model 7.

Table 2. Bayesian values of stationary model diagnostic measures.

Outcome Model Fit
Statistics Model 1 Model 2 Model 3 Model 4

Diabetes
pD 14.78 17.77 17.71 17.65

D(θ) 2166.80 2067.81 2068.02 2068.16
DIC 2181.58 2085.58 2085.73 2087.37

Hypertension
pD 14.91 24.85 21.67 24.19

D(θ) 4723.10 4382.83 4391.61 4389.19
DIC 4738.01 4407.68 4413.28 4413.38

Table 3. Bayesian values of SVC model diagnostic measures.

Outcome Model Fit
Statistics Model 5 Model 6 Model 7 Model 8

Diabetes
pD 12.11 12.41 12.92 12.35

D(θ) 2074.84 2074.41 2073.74 2074.49
DIC 2086.95 2086.82 2086.66 2086.84

Hypertension
pD 16.97 17.26 16.91 17.91

D(θ) 4385.94 4386.39 4383.82 4388.54
DIC 4402.91 4403.65 4400.73 4406.45

3.3. Spatially Varying Effects of Diabetes

This national-level study embodied nine provinces of urban and rural areas of South
Africa from data collected from the GHS. The entire country entails nine provinces: Eastern
Cape, Free State, Gauteng, KwaZulu-Natal, Limpopo, Mpumalanga, Northern Cape, North
West, and Western Cape (Figure 1). Choropleth is a map that divides different geographical
provinces based on a data variable. It is a type of thematic map where other provinces are
shaded according to the covariate under consideration and the proportion of representation
of the covariate for a province. The data covariate uses color progression to represent itself
in each map province. Thus, a choropleth uses color-coding to indicate quantitative values
across geographical areas on a map. The choropleth maps in Figures 2 and 3 suggest that
the effects of some of the covariates vary spatially. The DIC value affirms the superiority of
the SVC models over their stationary counterparts, particularly the hypertension model.
The choropleth maps reveal the varying effects of each covariate through space.

Meanwhile, the maps depicted in Figure 2 indicate that the covariates’ effects in the
models vary through space. For instance, considering the varying spatial effect of gender
on diabetes, the choropleth shows that the spatial effects for the model fitted ranged from
about 0.3535 to 0.3550. Usually, the color scale is darker for the large values, while the lighter
color scale is associated with the small ones. Meanwhile, the impact of educational status
on people living with diabetes was more pronounced in the North Cape, Western Cape,
North West, and Free State, specified by the light yellow to orange shading. Additionally,
the effect of working for a wage and without was almost identical across the country, except
for some parts of Gauteng province, where the effect was more significant, as specified
by blue shading on the choropleth map. Thus, identifying the implications of individual
covariates for each province can help to inform measures to curb the diabetes burden.
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3.4. Spatially Varying Effects for Hypertension

Additionally, as previously explained, the choropleth maps reveal the varying effects
of individual covariates through space and indicate that the impact in the models varies.
For example, hypertension (shown in blue shading) in those working without a wage was
lesser in the Eastern Cape, Limpopo, and KwaZulu-Natal parts than in other provinces. As
well, the effect of place of residence also speckled spatially. The effects (yellow shading)
were higher in the North West province. On the other hand, the effect of educational status
on hypertension was more pronounced (shaded in light blue) in Eastern Cape and Limpopo
compared to other provinces. Thus, identifying the implications of individual covariates in
each province can help to inform measures to curb the risk of hypertension.

3.5. Spatial Effects

Figure 4 reveals the results of the spatial effects for the fitted model after controlling for
other covariates. Also shown is the 95% posterior probability map of significance. The colors
on the choropleth map show the log-odds scale, individually indicating the province’s
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influence on diabetes and hypertension. Moreover, the choropleth map also revealed a
significant spatial effect of 0.001 to 0.0005 (diabetes) and −0.010 to 0.010 (hypertension)
(Figure 4). Provinces marked in blue and black had a negative spatial effect and were
associated with lower odds of diabetes and hypertension. Provinces shown in yellow
and orange had a positive spatial effect and were associated with higher odds of diabetes
and hypertension. Spatial effects are surrogates for unknown environmental factors and
climate influences.

Int. J. Environ. Res. Public Health 2022, 19, x FOR PEER REVIEW 12 of 18 
 

 

3.4. Spatially Varying Effects for Hypertension 
Additionally, as previously explained, the choropleth maps reveal the varying effects 

of individual covariates through space and indicate that the impact in the models varies. 
For example, hypertension (shown in blue shading) in those working without a wage was 
lesser in the Eastern Cape, Limpopo, and KwaZulu-Natal parts than in other provinces. 
As well, the effect of place of residence also speckled spatially. The effects (yellow shad-
ing) were higher in the North West province. On the other hand, the effect of educational 
status on hypertension was more pronounced (shaded in light blue) in Eastern Cape and 
Limpopo compared to other provinces. Thus, identifying the implications of individual 
covariates in each province can help to inform measures to curb the risk of hypertension. 

3.5. Spatial Effects 
Figure 4 reveals the results of the spatial effects for the fitted model after controlling 

for other covariates. Also shown is the 95% posterior probability map of significance. The 
colors on the choropleth map show the log-odds scale, individually indicating the prov-
ince’s influence on diabetes and hypertension. Moreover, the choropleth map also re-
vealed a significant spatial effect of 0.001 to 0.0005 (diabetes) and −0.010 to 0.010 (hyper-
tension) (Figure 4). Provinces marked in blue and black had a negative spatial effect and 
were associated with lower odds of diabetes and hypertension. Provinces shown in yellow 
and orange had a positive spatial effect and were associated with higher odds of diabetes 
and hypertension. Spatial effects are surrogates for unknown environmental factors and 
climate influences. 

 
Figure 4. Map of South Africa showing posterior means of spatial effects of diabetes and hyperten-
sion. 

3.6. Non-Linear Effect of Age 
Another advantage of using the SVC model is incorporating non-linear effects due to 

continuous covariates. Figure 5a,b gives the posterior mean of the smooth function, esti-
mating the impact of the respondent’s age as a non-linear effect, and its 95% confidence 
interval. The age of individuals had non-linear implications for diabetes and hyperten-
sion, as shown in Figure 5a and Figure 5b, respectively. The solid black lines represent the 
posterior, while the dashed lines indicate the 80% and 95% credible intervals. It is evident 
from Figure 5a,b that, as respondent age increased, its effect on diabetes and hypertension 
also increased. The risk of diabetes and hypertension was lower among respondents 40 to 
50 years of age. Figure 5a displays a nearly logarithmic form for respondent age. It was 
apparent that the effect of respondent age was non-linear. 

  

Figure 4. Map of South Africa showing posterior means of spatial effects of diabetes and hypertension.

3.6. Non-Linear Effect of Age

Another advantage of using the SVC model is incorporating non-linear effects due
to continuous covariates. Figure 5a,b gives the posterior mean of the smooth function,
estimating the impact of the respondent’s age as a non-linear effect, and its 95% confidence
interval. The age of individuals had non-linear implications for diabetes and hypertension,
as shown in Figures 5a and 5b, respectively. The solid black lines represent the posterior,
while the dashed lines indicate the 80% and 95% credible intervals. It is evident from
Figure 5a,b that, as respondent age increased, its effect on diabetes and hypertension also
increased. The risk of diabetes and hypertension was lower among respondents 40 to
50 years of age. Figure 5a displays a nearly logarithmic form for respondent age. It was
apparent that the effect of respondent age was non-linear.
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4. Discussion

This study focused on visualizing and assessing spatial patterns of diabetes, hyperten-
sion, and socio-demographic features and identified significant spatial variations in the
associations between these variables and diabetes and hypertension. These two diseases
pose a serious health risk to citizens, and their determining factors relate to varying de-
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grees among individuals and within provincial settings. The 2019 South Africa General
Household Survey data were used for the analysis, where a fully Bayesian approach was
implemented. Moreover, the non-linear effect of respondent age was modeled using a
second-order random walk. To the best of our knowledge, the SVC model proposed for
these two diseases had not been investigated previously. We proposed SVC to examine the
effects of some selected covariates and non-linear effects on diabetes and hypertension. This
study adopted the Bayesian approach because it can produce a reliable and more robust
estimation. This study found that the impact of covariates on diabetes and hypertension
varied spatially; however, the spatially varying hypertension model differed significantly
from the stationary model. The significant benefit of the SVC model is that it can show the
effect of each covariate on hypertension in each district [54,56,57]. Additionally, the SVC
model allowed the mapping of the residual spatial impact while considering the outcome
of the non-linear covariates on the assumption of additivity. This approach allows the as-
sessment of the understated influence of the continuous covariates’ non-linear relationship,
which is impossible in a linear model. Moreover, there was a spatial variation in diabetes
and hypertension cases among provinces.

The effects of educational status on people living with hypertension were dominant in
the Eastern Cape and Limpopo provinces. In contrast, the effect was dominant for people
living with diabetes in the North Cape, Western Cape, North West, KwaZulu-Natal, and
Free State. Thus, the findings of our study show that educational status has different effects
across the provinces of South Africa when investigating NCDs. This regional variation
could well be due to differences in lifestyle, level of urbanization, and health care services.
Indeed, based on the trend and prevalence of diabetes and hypertension by province,
studies revealed that those with less than a high school education had a higher prevalence
of hypertension and diabetes in Limpopo than in other provinces [58]. Additionally, other
studies have established that education is related to NCDs [59,60]. The effect of marital
status on people living with hypertension was dominant in the Eastern Cape, KwaZulu-
Natal, and Limpopo provinces. This finding could be ascribed to traditional practices in sub-
Saharan African countries, such as wife inheritance. Residential type affected hypertension
in the Northern Cape, Limpopo, KwaZulu-Natal, and Mpumalanga provinces.

The respondent’s age was found to have a non-linear relationship with diabetes
and hypertension (Figure 5). The risk of diabetes and hypertension was highest among
individuals aged up to 70 years, compared to their counterparts between 40 and 50 years.
The results show a similar pattern for both diseases examined in this study, implying that
both diabetes and hypertension prevalence peak among middle-aged individuals (around
age 60 years). Consistent with previous studies, this study showed that the effect of age on
diabetes is nearly logarithmic with respect to respondent age [61,62]. Moreover, the study
on the prevalence and associated factors of hypertension in a national sample of older
South Africans who participated in the Study of Global Ageing and Adults’ Health found
high rates of hypertension among older adults (50 years and more) in South Africa [63,64].
Spatial effects in the model account for unobserved variables that correspond to those
variables that vary spatially. Thus, not accounting for spatial variability could result in
skewed results, biased estimates, and inappropriate decisions on the researcher’s part.
Therefore, identifying high prevalence provinces and the relationship between diabetes
and hypertension can offer more insight, which can be beneficial in developing policies and
strategies for specific provinces. The SVC models proposed in this study were assumed
to provide improved smoothing compared to the stationary models, because they give a
covariate effect on diabetes and hypertension in each province.

4.1. Policy Implications

This study has some policy implications for intervention and program design. First,
mapping people living with diabetes and hypertension is essential to assist countries in
designing an appropriate mechanism to protect vulnerable people and reduce pressure on
health systems. This evidence can also enlighten a comprehensive assessment aimed at
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protecting many individuals’ social and economic implications. In addition, it is highly
imperative for the health sector and regional health to offer care to those hot spot provinces,
considering the predictors in order to advance and devise adult-targeted health programs.
Meanwhile, detecting all provinces or districts at some risk is imperative for making plans
for likely health problems [65,66] and designing active policies to decrease transmission to
individuals in a specific location. Statistical modeling implies that it gives policymakers
the information needed to make informed decisions in uncertain circumstances. Finally,
the choropleth map may assist in measuring the impact of the NCD risk at all regional
levels. Further, it can guide in detecting high-risk provinces for targeted interventions and
evaluating the effects of intervention plans, which can help policymakers and other public
health institutions to map programs targeting these provinces.

4.2. Limitations of the Study

The current study has some limitations that must be considered while interpreting the
findings outline. First, the set of covariates used was that most often considered in NCD
risk evaluations. However, some relevant factors, such as dietary habits, physical exercise,
smoking status, biomarker data, and alcohol consumption [12,14], which may increase the
risk of hypertension and diabetes, were not captured, due to the unavailability of data.
Thus, to implement this methodology for future work, we advocate the inclusion of those
relevant available variables. Second, it was a cross-sectional survey; therefore, no causal
inferences could be made from the results and findings. Since the study was based on
secondary datasets, we were limited to using only the variables found in the GHS. Despite
these limitations, the study’s strength lies in the methodology adopted. Similarly, the
regression method incorporated a SVC model to capture the non-linearity in our analytic
approach, resulting in unbiased estimates. The other robustness of this study was using
GHS data, which offered a considerable sample size.

5. Conclusions

In conclusion, there are spatial effects on diabetes and hypertension in South Africa.
The results suggest that province-specific factors are most likely to increase the number
of cases of diabetes and hypertension. Moreover, this study underlines the vital part that
different covariates might play in the spatial variability of people living with diabetes and
hypertension in South Africa. Evaluation of province-specific factors of diabetes and hyper-
tension in the province should be necessary. The spatial distribution of these covariates
offers improved evidence for producing detailed maps for people living with diabetes and
hypertension. These maps illustrate the high spatial variation of people living with diabetes
and hypertension at the regional level of South Africa. Considering the one obtained in
the current study, a comprehensive mapping of the spatial structure of people living with
diabetes and hypertension could improve program efficiency. Such maps make informa-
tion available to advantageously target regions and inform the most needed policies and
strategies for resource allocation. Similarly, another relevant implication evolving from this
study is that it would be precious for census data. For instance, census data are regarded as
one of a country’s main secondary data sources. It would be interesting to initiate a detailed
search on this issue, considering that more respondent background variables are primarily
available in census data. Therefore, considering this type of data source (census data), more
comprehensive and spatial structures could be revealed, highly germane for analytical
and policymaking purposes, since many spatial analyses require detailed demographic
information. Finally, this paper contributes to understanding spatial variations in diabetes
and hypertension in South Africa by applying a Bayesian SVC model approach based on
the INLA technique. More importantly, by proposing this novel approach, we established a
regional variation in diabetes and hypertension prevalence within the nine provinces of
South Africa. These observations may have public health significance, considering the lack
of strategies to prevent and control diabetes and hypertension efficiently. This study is the
first to map diabetes and hypertension in South Africa using a household survey, to the best
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of the authors’ knowledge. The map could have significant implications for the perception
of how diabetes and hypertension are spatially distributed and help health promotion
programs to allocate the resources efficiently. Moreover, from a public health view, it is
essential to map diabetes and hypertension, because this information could enlighten the
development of prevention programs on a community level.
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