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Abstract
Objective: The only possible solution to increase the patients’ fatality rate is lung cancer early-stage detection. Recently, deep

learning techniques became the most promising methods in medical image analysis compared with other numerous computer-

aided diagnostic techniques. However, deep learning models always get lower performance when the model is overfitting.

Methods: We present a Lung Cancer Data Augmented Ensemble (LCDAE) framework to solve the overfitting and lower per-

formance problems in the lung cancer classification tasks. The LCDAE has 3 parts: The Lung Cancer Deep Convolutional GAN,

which can synthesize images of lung cancer; A Data Augmented Ensemble model (DA-ENM), which ensembled 6 fine-tuned

transfer learning models for training, testing, and validating on a lung cancer dataset; The third part is a Hybrid Data

Augmentation (HDA) which combines all the data augmentation techniques in the LCDAE. Results: By comparing with existing

state-of-the-art methods, the LCDAE obtains the best accuracy of 99.99%, the precision of 99.99%, and the F1-score of 99.99%.

Conclusion: Our proposed LCDAE can overcome the overfitting issue for the lung cancer classification tasks by applying dif-

ferent data augmentation techniques, our method also has the best performance compared to state-of-the-art approaches.
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Introduction
Cancers are a major cause of mortality worldwide, there are
accounted to be around 10 million deaths in 2020.1 The
cancers can exist in different organs. For example, the brain,
lungs, liver, stomach, colon, skin, and prostate.2–4 They also
have different xenogeneses: daily habits such as smoking and
alcohol intake; the ultraviolet and radiation are regarded as
physical carcinogens; moreover, the chemical carcinogens
such as genetic and biological carcinogens.1 If cancer has not
been treated in the early stage, most cancer cells will eventually
become uncontrollable and spread throughout the different
organs as time goes on.5 Among the various types of cancers,
lung, colon, and rectum cancers caused the most deaths for
males and females. In 2020, there are around 2.21 million
new cases reported as lung cancers and more than 1.8 million
deaths due to lung cancers worldwide.1 Fortunately, if cancer
can be diagnosed at early stages, the survival rate of patients

will increase, and the patients also have enough time to do treat-
ment. However, there are only 20% of patients are diagnosed in
the early stage of lung cancer,6–8 and using traditional diagnosis
methods to detect lung cancer in the early stage is difficult.

Computer-aided diagnosis systems aim to support doctors in
analyzing medical images and making decisions quickly.9 In
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the last few decades, deep learning has been a common method
in medical image analysis for pattern recognition, image classi-
fication, and image segmentation.10–13 However, overfitting
problems are common in deep learning models. The main
reasons behind the overfitting are various: presence of noise,
limited size of training data, and complexity of models.14

Especially in medical image analysis, lacking medical training
datasets is a common problem, and the data features are not
easy to present like in other domains. Moreover, most models
cannot perform excellently on medical image datasets. It is
better to concatenate different models or do fine-tuning to get
higher performance for the medical image analysis tasks.
Therefore, to resolve these challenges, we proposed a Lung
Cancer GAN based Ensemble (LCDAE) framework. There
are 3 parts of the LCDAE. Firstly, a Lung Cancer Deep
Convolutional GAN (LDCGAN) can make 3 types of artificial
lung cancer images. Another part is a data augmented ensemble
model called DA-ENM. The DA-ENM uses 6 pretrained
models: DenseNet121, GoogleNet, ResNet101, VGG19-BN,
VGG16-BN, and VGG16. The last part is a Hybrid Data
Augmentation (HDA) which combines all the data augmenta-
tion techniques in the LCDAE, it includes LDCGAN and
other data augmentation techniques in the DA-ENM. In order
to solve the overfitting problem. Firstly we use generated syn-
thetic lung cancer images from LDCGAN as an additional train-
ing dataset to train the DA-ENM. Secondly, we use multiple
data augmentation techniques to increase the generalizability
of our framework. Thirdly, before we create the ensemble
model, we use fine-tuning techniques for all the pretrained
models to learn the higher-order feature representations and
improve the performance.

We analyze the results of LCDAE with existing
state-of-the-art approaches. Our method reaches the highest
accuracy of 99.99%, the precision of 99.99%, and the
F1-score of 99.99%, except the sensitivity of 99.99%, which
is a bit lower than the highest one, 100%. The contributions
are summarized as follows:

• A data augmented ensemble framework LCDAE is intro-
duced to classify different classes of lung cancer datasets
and also overcome the overfitting issues. The ensemble
model can concatenate different submodels, which can
help the model to explore the hidden data features of
the dataset.

• A LDCGAN can produce artificial lung cancer images,
and the model solves the problem of the small number
of medical images by generating synthetic pictures.
The synthesized medical images also can help the
model to get higher performance.

• A Hybrid Data Augmentation (HDA) can increase the
generalizability and overcome the overfitting problem
of the model. It also can prevent data scarcity and
reduce the cost of collecting labeled data.

• Our method gets the best performance compared with
existing up-to-date methods: 99.99% (accuracy),

99.99% (precision), 99.99% (F1-score), and 99.99%
(sensitivity).

Related Work

Lung Cancer Classification
In 2022, Patra et al15 proposed a Deep Maxout Network with
Dolphin-based Henry Gas Solubility Optimization. Firstly,
they used a Gaussian filter. Secondly, the RoI extraction is
also used for the image preprocessing, then using the U-Net
model to generate segments to do classification, the final
results have accuracy of 93.08% and sensitivity of 94.81%.

A novel DL-based supervised learning method was proposed
by Masud et al5 to classify 5 types of lung cancer tissues. This
approach applied 2 feature extraction methods: 2D Fourier
Features and 2D Wavelet Features. Then they concatenated 2
domain transformations to build the final resultant features. In
the end, their work reached 96.33% (accuracy) and 96.38%
(F-measure score).

Shakeel et al16 have developed a method, which achieved a
2.12% of minimum error rate and 99.48% of prediction rate.
Firstly, they normalize the original data and then examine the
redundant features before fed into the AdaBoost optimized
ensemble learning generalized neural network.

Lakshmanaprabu et al17 introduced the Optimal Deep Neural
Network with additional hidden layers to classify the lung com-
puted tomography (CT) images. They also proposed a Linear
Discriminate Analysis to decrease the features’ dimensions.
The developed technique got the results as follows: 94.56%
(accuracy), 96.2% (sensitivity), and 94.2% (specificity).

Khan et al18 proposed a contrast-based feature fusion and
selection method for the lung cancer CT image classification
tasks. In this proposed method, they used gamma correction
max intensity weights (GCmIW) to enhance the contrast, and
they also used a serially canonical correlation-based method
to fuse the multiple feature maps. Finally, this approach
reached an accuracy of 99.4% on the Lungs Data Science
Bowl 2017 dataset. In 2019, Khan et al19 also introduced a
Lungs nodule detection framework with a support vector
machine, the proposed framework used several data augmenta-
tion techniques such as contrast enhancement and feature
extraction, and this work got a sensitivity of 97.45% on the
Lungs Image Consortium Database dataset.

Moreover, there are related works using ensemble for the
classification tasks, such as Onan et al.20–23 And other different
models for the classification tasksin Onan24 and Onan and
Korukoğlu,25 Further related works also related to the back-
ground of this research are in the literature.26–32

Avoid Overfitting for Deep Learning
Deep learning models have shown powerful performance on
computer vision applications and tasks. However, the big
dataset is always the key part of models to present overfitting
problems. Overfitting refers to a function of the model which
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is exactly fitted against its limited aligned data, and the function
cannot perform well on the new dataset.33 There are various
ways to avoid the overfitting problem in deep learning. Here
we summarize them as 3 different parts: data augmentation,
model architectures, and functional solutions.

Data Augmentation. Data augmentation includes a series of
approaches that focus on enhancing the size and quality of
the original dataset in order to provide sufficient high-quality
training images to train the neural network. Here, we summarize
all the data augmentation techniques into 2 categories. Initially,
we will explain the basic image manipulations. Then we will
discuss the approaches based on deep learning.

Basic image manipulations are well used for most deep learn-
ing applications. Firstly, the geometric transformations which
include flipping, color space transformations, cropping, rotation,
translation, and noise injection.33 These geometric transforma-
tion techniques are very efficient to deploy in the deep learning
models. The next one is the kernel filter. It is the most classical
method to sharpen and blur images. Kang et al34 used a unique
kernel filter technique called PatchShuffle Regularization. It
reached an accuracy of 94.34% on the CIFAR-10 dataset. The
third one is mixing images. According to the experiments con-
ducted by Inoue35, they calculate the mean of pixel values for
each channel of the image, which can be regarded as an efficient
augmentation method. The random erasing developed by Zhong
et al36 is another efficient technique inspired by dropout regular-
ization. It will randomly erase certain features of images in the
entire dataset. The technique proves its feasibility when dealing
with the occlusion problem of image recognition tasks. The
last one is combining different basic image manipulations
based on the demands of the deep learning applications.

Data augmentation based on deep learning approaches is
also a promising way to be implemented in image analysis
applications. These approaches can be divided into 4 types:
neural style transfer; adversarial training; augmentation in
feature space, and GAN-based data augmentation.33 The
primary image manipulations are focused on the input space.
Instead, the feature space augmentation will focus on the lower-
dimensional feature representations. Terrance and Graham37

discussed the augmentation technique in the feature space.
Adversarial training is a machine learning technique that uses
obtainable models to create malicious attacks.38 Adversarial
attacking is one of the most common techniques used in

adversarial training frameworks. The adversarial attacking has
multiple rival networks to learn the data augmentations for
the misclassified images.33 The third one is GAN-based data
augmentation. It has an impressive performance to produce
additional datasets and get better performance for the image
classification and segmentation tasks. Finally, the neural style
transfer39 is also a potential data augmentation technique to
transfer the style of the source image to the target image, it
gets excellent success for the artwork domain.

Model Architectures. Apart from the data augmentation tech-
niques, some strategies also focus on the model architecture
itself to avoid overfitting and improve model’s generalization
ability. There already exists various model architectures
which proved to be the reliable model architectures such as
LeNet-5,40 AlexNet,41 GoogLeNet,42 ResNet,43 VGG16,44

and DenseNet.45

Functional Solutions. There already exist many successful func-
tional solutions in many deep learning applications, such as
layer normalization, batch normalization, and dropout regulariza-
tion. Beyond basic functional solutions, the transfer learning
aims to use pretrained models to get better performance across
similar domains.46 Meta learning can evaluate the differences
between different machine learning models deployed on new
tasks or new domains with less training examples, it is also
known as “learning to learn.”47 Ensemble is also an efficient
way to get better generalization ability by combining different pre-
dictions from the multiple models to decide the final prediction.48

Methods

Dataset
The dataset includes 15000 histopathological lung cancer images68

with 3 classes: lung adenocarcinoma, lung benign, and lung squ-
amous cell carcinoma. For each class, there are 5000 images. The
original size of the images is 768 × 768 in jpeg format. The
example of lung adenocarcinoma is shown in Figure 1(a), lung
benign in Figure 1(b) and lung squamous cell carcinoma in
Figure 1(c). Overall, our original dataset includes 3 classes and
5000 images for each class, in total 15 000 images.

Proposed Data Augmented Ensemble LCDAE
Framework
Our proposed LCDAE framework consists of 3 parts: the gen-
erative model LDCGAN; data augmented ensemble model
DA-ENM, and hybrid data augmentation (HDA). We will
discuss the generative model LDCGAN in section “Generative
Model LDCGAN”, the data augmented ensemble model
DA-ENM in section “Data Augmented Ensemble Model
DA-ENM” and hybrid data augmentation (HDA) in section
“Hybrid Data Augmentation”. The entire architecture of LCDAE
is shown in Figure 2.

Figure 1. The example of (a) lung adenocarcinoma, (b) lung benign,
and (c) lung squamous cell carcinoma from the raw dataset.
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Generative Model LDCGAN. The LDCGAN is inspired by the
DCGAN,50 and we tailored it to classify different types of
lung cancer images. The LDCGAN has 2 components. The
first one is a generator G, and the second one is a discriminator
D. It belongs to unsupervised learning, which consists of tradi-
tional convolutional architecture with additional constraints.
The generatorG is trying to obtain the features from the original
dataset and generate a synthetic dataset. The discriminator D is
trained to predict the outputs generated from the G, whether
they are real or artificial images. Both G and D compete with
each other, the G trying to generate fake images as similar to
the real images as possible, then trying to make D’s prediction
to be wrong. The role of D is trained to improve the accuracy of
distinguishing authentic and artificial images. The idea of GAN
comes from the minimax algorithm in game theory. Finally, the
G is well trained to produce synthetic lung cancer images when
the D cannot find the differences between artificial images and
authentic images. The mathematical representation will be illus-
trated in the next paragraph.

We use pg to present the probability distribution of the gen-
erator. The x is training data and the input noise is pz(z). The
generator’s parameters are indicated by θg, and G(z, θg) is the

data space with parameters θg, which comes from the input
noise pz(z).

Equation (1) shows the principle behind the training process
of GAN. Firstly, the generator G tries to decrease the loss
L(D, G), and train the discriminator D to maximize it. After
the training process, we can get a well-trained generator to
produce synthesized images that the discriminator cannot
predict whether images are real or fake. The entire process
can be regarded as a minimax game between D and G. In this
game, G tries to minimize the chance that the D will output
results as synthetic images, the probability represented by the
log (1− D(G(z))), and D will try to improve the probability
that it can make the right predictions logD(x). Overall, equation
(1) describes the loss function of the GAN.

minG maxD V (D, G) = Ex∼pdata(x) logD(x)
[ ]

+Ez∼pz(z) log (1− D(G(z)))
[ ] (1)

Apart from the default setting for the original DCGAN, we use
some additional settings to avoid checkerboard patterns and
overfitting problems:

Figure 2. The architecture of LCDAE.
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1. Add more filters for each layer, especially for the front
layers of the generator. The additional filters can help
the generator capture more original image features and
avoid producing blurry images.

2. Add additional dropout layers to the structure of the dis-
criminator. These dropout layers can avoid the overfit-
ting problem.

3. According to the experiments by Shi et al51, we make
that the size of the kernel is divisible by the stride.
Moreover, set the maximal kernel size. The biggest
kernel size can capture the features in the front layers,
and it can solve checkerboard patterns.

4. Use a bilinear interpolation algorithm during the process
of resizing to avoid checkerboard patterns of produced
images. The algorithm of bilinear interpolation shows
in the equation (2). Here, we use a 2D bilinear interpo-
lation algorithm on 2 axes (x and y axes). We define 4
locations: (i1, j1) of P11, (i1, j2) of P12, (i2, j1) of P21

and (i2, j2) of P22. In the rectangle defined by these loca-
tions, we can calculate any location (i, j) which is inside
the rectangle.

5. Additional batch normalization52 layers are added to the
generator and discriminator. These batch normalization
layers can standardizes inputs of the current layer, and
help models avoid overfitting problems. The algorithm
of batch normalization is shown in equation (3). In
this algorithm, τ is a batch of training data, and it has
n training examples. Firstly, we calculate the mean of
the current batch. Secondly, the variance is calculated.

Then the algorithm normalizes xj. Finally, it scales
and shifts the final result.

f (i, j) ≈ f (P11)
(i2−i1)(j2−j1)

(i2 − i)(j2 − j)

+ f (P21)
(i2−i1)(j2−j1)

(i− i1)(j2 − j)

+ f (P12)
(i2−i1)(j2−j1)

(i2 − i)(j − j1)

+ f (P22)
(i2−i1)(j2−j1)

(i− i1)(j − j1)

(2)

ητ ←
1
n

∑n

j=1

x j 0.5cm mean of the batch

ν2τ ←
1
n

∑n

j=1

(x j − ητ)
2 0.5cm variance of the batch

x̂j ←
xj−ητ����
ν2τ+ϵ

√ 0.5cm normalization,

yj ← γx̂j + ϕ ≡ BNγ,ϕ(xj) 0.5cm scale and shift

(3)

Figure 3 compares different lung benign images. The image in
Figure 3(a) is generated by the DCGAN, as the picture shows,
the default setting of DCGAN will generate images with check-
erboard patterns and blurry effects. When applying part settings
of our DA-ENM, we find that the image in Figure 3(b) does not
have checkerboard patterns. After applying all our settings,
Figure 3(c) is more clear than Figure 3(b). By comparing the
original image in Figure 3(d) and the image produced by the
LDCGAN, the synthetic image no longer exists with checker-
board patterns and blurry effects.

After the additional settings beyond the original DCGAN,
we resized the images of the raw dataset from 768 × 768 to 64 ×
64 dimensions with a 256 batch size. When training the
LDCGAN, we divided the dataset into 3 classes individually
to train the LDCGAN, and we get three LDCGAN models
that can synthesize different images for 3 lung cancer classes.
Finally, we use LDCGAN to generate 10 000 artificial images
for different lung cancer classes. These images are 64 × 64
pixels. Then we use these synthetic images combined with the
resized original dataset (5000 images for each lung cancer class
and overall 15 000 images) to produce a new dataset: 15 000
images for each lung cancer class, which contains 5000 original
images and 10 000 synthetic images. In total, there are 45 000
images. The new dataset will be the dataset for training the
DA-ENM (the second part of our LCDAE framework).

The first part of Figure 2 shows the overall architecture of
our LDCGAN. Initially, we take random noise as the genera-
tor’s input and generate the synthetic images. Then we take
these synthetic images and real images as input data to the dis-
criminator. Finally, after finishing the training process of the
LDCGAN, the generator can generate synthetic images close
to the authentic images, and the discriminator cannot distin-
guish them from real images.

Data Augmented Ensemble Model DA-ENM. The DA-ENM
includes 2 parts, the dataset preprocessing and the ensemble

Figure 3. Comparison of lung benign images generated by the
DCGAN, LDCGAN with original image. (a) DCGAN’s image, (b, c)
artificial image, and (d) raw image.
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model. We implemented different data augmentation techniques
to the dataset in the first part. In the second part, the ensemble
model contains 3 parts: the pretrained CNNs, fine-tuning
process, and the multimodel ensemble part. We will discuss
the performance evaluation of DA-ENM in section “Results.”

Dataset Preprocessing. As we mentioned in section “Generative
Model LDCGAN”, we produced a new dataset that contains 45
000 images in total for 3 different classes of lung cancer. Before
we fed this dataset into the DA-ENM, we implement several
data augmentation techniques to the current dataset.

As Figure 4 shows, we divide the dataset 0 (the dataset gen-
erated from the LDCGAN) into 2 sets, 20% for the test data and
80% for the train & validation data. Then we combine the train
& validation dataset with 3 augmented datasets together to
produce the new train & validation dataset. The data augmenta-
tion methods used in the 3 datasets are as follows:

• Augmented Dataset 1
1. Change the value of the brightness, contrast, and

saturation.
2. Random rotation for all the images.
3. Random affine transformation of the images and

keep center invariant.
4. Normalize data to shift the scale between 0 and 1

with mean and standard deviation.
• Augmented Dataset 2

1. Random horizontal flip of the images.
2. Random rotation of images.
3. Random affine transformation of the images.
4. Randomly erase a rectangle region for images.
5. Normalization.

• Augmented Dataset 3
1. Random horizontal flip ofthe images.
2. Random rotation of images.
3. Random affine transformation of data.
4. Normalization.

After the dataset is produced by different data augmentation
techniques mentioned above, we also do a global standardiza-
tion. Initially, we calculate the mean of the dataset. Then we
compute the standard deviation across all the channels within
the entire dataset. The calculated mean and standard deviation
values for this dataset are listed in Table 1.

Figure 5 shows the differences between the original images and
data augmented images. By comparing Figures 5(a) and 5(b),
Figure 5(a) is a small set of the original dataset, and Figure 5(b)
are images after applying different data augmentation techniques.
We can easily find there are significant differences between them.
Applying data augmentation techniques can help the model avoid
overfitting problems. In the next step, we will use these data aug-
mented datasets to train our DA-ENM model.

Ensemble Model. Pretrained CNNs: In the second part of
the LCDAE framework, firstly, we use 6 different models
with pretrained weights to do transfer learning. These models

are DenseNet121,45 GoogLeNet,42 Resnet101,43 VGG19 with
Batch Normalization,44 VGG16 with Batch Normalization,44

VGG16.44 All the pretrained models already show promising
results for medical image classification tasks. When we load
these pretrained models, we replace all the classifiers of these
models. The last layer is replaced with a fully connected layer
which has 3 output features. During the training process, we
use the optimizer with adaptive moment estimation (Adam)53

with an initial learning rate of 0.001, then we will dynamically
decrease the learning rate when the loss has stopped improving
with the patience of 3 epochs and factor of 0.1. When we start
the training process, we train the classifiers of each model, after
finishing the training of classifiers, we do a fine-tuning process
for each model to improve the performance. We will discuss
this in the next paragraph.

Fine-tuning: Fine-tuning is an efficient technique that can
outperform the feature extraction method. After we trained
the classifiers for each model, we unfroze each model’s param-
eters to do a fine-tuning process. The fine-tuning can make the
feature extraction phase of each model more suitable for the
current dataset, and it can improve the performance of each
model. During the training process of fine-tuning, we use the
same optimizer and dynamic learning rate adjustment tech-
nique, which are the same as the previous process of training
the classifiers. After the fine-tuning, we found that it improves
the accuracy of the model and decreases the loss significantly.
We will discuss the results in section “Results.” Multimodel
Ensemble:When we finished the training process of pretrained
model and fine-tuning. We concatenate the outputs for each
model and add a new classifier to the final ensemble model.
The classifier has a fully connected layer with a softmax func-
tion. The optimizer and the learning rate scheduler are the same
as in the previous fine-tuning step. It needs to mention that we
have not added more layers of the classifier in the ensemble
model, according to the performances of pretrained and fine-
tuned models, the overall performance is relatively high, then
we just need to concatenate their outputs together and train a
small classifier to get the final classification results.

The second part of Figure 2 shows the entire architecture of
DA-ENM. Firstly, we load 6 original pretrained models to
predict the results and we add classifiers to each model. Then
we unfreeze all parameters of each model and do a fine-tuning
process for each model. Finally, we combine the output of each
model to get the final output.

Hybrid Data Augmentation. The hybrid data augmentation
(HDA) contains all the data augmentation techniques used in
the LCDAE. Firstly, the LDCGAN is 1 component of the
HDA. As section “Data Augmentation” mentioned that the
GAN is also a data augmentation technique. Moreover, the
HDA also includes the methods shown in section “Dataset
Preprocessing”, we summarize them as follows:

• Randomly change the value of the brightness, contrast,
and saturation.

• Random rotation for all the images.
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• Random affine transformation of the images and keep
center invariant.

• Normalize data to shift the scale between 0 and 1 with
mean and standard deviation.

• Random horizontal flip of the images.
• Randomly erase a rectangle region for images.

The HDA is an essential part of LCDAE. By combining these
different data augmentation techniques with an ensemble
model, then we can get the excellent performance of the LCDAE.

Evaluation Methods
In this article, we measure the results of our LCDAE by a multi-
classification confusion matrix. The confusion matrix contains
accuracy, precision, sensitivity, and F1-score. For each class
of lung cancer, we can calculate these indexes by equation
(4). The TP refers to the value of true positive, the FP refers
to the value of false positive, the FN refers to the value of
false negative, and the TN indicates the value of true negative.

accuracyj = TPj+TNj

TPj+FPj+FNj+TNj

recallj = TPj

TPj+FNj

precisionj = TPj

TPj+FPj

F1-scorej = 2×precisionj×recallj
precisionj

(4)

To evaluate the overall performance of LCDAE, we use macro-
averaged metrics to calculate them. The metrics include macro-
averaged accuracy, precision, recall, and F1-score. Here, because
the data contributions of each lung cancer class are the same, we
use macroaveraged metrics instead of weighted-average metrics.
The calculation of macroaveraged metrics is calculated by

equation (5):

Accuracymacro avg =
∑m

j=1

1

m
× accuracyj

=
∑m

j=1

1

m
×

TPj+TNj

TPj+FPj+FNj+TNj

Precisionmacro avg =
∑m

j=1

1

m
× precisionj

=
∑m

j=1

1

m
×

TPj

TPj + FPj

Recallmacro avg =
∑m

j=1

1

m
× recallj

=
∑m

j=1

1

m
×

TPj

TPj + FNj

F1-scoremacro avg =
∑m

j=1

1

m
× F1-scorej

=
∑m

j=1

1

m
×
2 × precisionj × recallj

precisionj

(5)

Results

Set-up of Experiments
The LDCGAN is training on an NVIDIA TESLA P100 GPU
with 16GB RAM. The CPU is Xeon with 13GB RAM. The
data augmentation of the original dataset was trained on the
GTX 1070 8GB GPU with 32GB RAM. The data augmented
ensemble model was trained on an A100 GPU with 80GB

Figure 4. The final dataset after applying different data augmentation techniques.
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RAM. In addition, the LDCGAN is running on the Keras54

framework, and other data augmentation techniques and
DA-ENM were deployed by the PyTorch55 framework.
Finally, we utilized the scikit-learn56 framework to generate
our results.

Results and Analysis
Images Synthesized by LDCGAN. The synthetic examples pro-
duced by the LDCGAN are shown in Figure 6. The images
on the first row are from the original dataset and they are
labeled as “REAL.” The images in the second row are synthetic
images generated from LDCGAN, and they are labeled as
“LDCGAN.” By comparison with “REAL” and “LDCGAN”
images, we can find that the synthetic images inherit most of
the features and patterns of the real images for all lung cancer
classes. And they are difficult to distinguish from each other.
After generating synthetic images, we feed the synthetic
dataset and original dataset to our DA-ENM. Our results
show that the synthetic dataset with other data augmentation

techniques helped the DA-ENM achieve excellent results. We
will discuss this in section “The Results of LCDAE”.

The Results of LCDAE. On our DA-ENM, we do a fine-tuning
process for all the pretrained models before we implement the
final multimodel ensemble. As Figure 7 shows, every model
has 2 figures to describe the changes in accuracy and loss
after the fine-tuning process. For each image, there is a red ver-
tical bar, the left part of the red vertical bar illustrates the perfor-
mance of the original pretrained model, and the right part of the
red vertical bar shows the performance of the pretrained model
after the fine-tuning process. We can see that there are apparent
performance changes after the fine-tuning process. In Table 2,
we show the accuracy improvements for each model: the accu-
racy of DenseNet121 increases by 7.21% after fine-tuning; the
accuracy of GoogleNet rise by 14.96%, which is the highest
increment after fine-tuning; the ResNet101 up to the 99.58%,
which raises by the 7.6% of accuracy; and the VGG19-BN,
VGG16-BN, and VGG16 grow by the 4.94%, 4,63%, and
6.97%, respectively. By analyzing the data in Figure 7 and
Table 2, it is evident that the fine-tuning process increases the
performance of all the models with pretrained weights, and
the accuracies of all the models reached at least 99.35%.
Moreover, the highest accuracy is 99.80% of DenseNet121.
After the fine-tuning process for each model, we integrate all
the models to increase the performance of the final ensemble
model.

Table 3 presents the results of LCDAE. The classification
results of lung adenocarcinoma are listed as follows: 99.99%
(accuracy), 100% (precision), 99.97% (recall), and 99.98%
(F1-score); for lung benign, all the metrics are 100% except
the accuracy of 99.99%; for lung squamous cell carcinoma,
the accuracy of 99.99%, the precision is 99.97%, the recall is
100%, and the F1-score is 99.98%. In the last row of Table 3,

Table 1. The Calculated Mean and Standard Deviation Across Each
RGB Channel of the Entire Dataset.

Dataset Channel Mean STD

Training dataset Red −0.006 0.273
Green −0.033 0.292
Blue 0.105 0.468

Validation dataset Red −0.006 0.274
Green −0.033 0.293
Blue 0.104 0.466

Test dataset Red 0.013 0.249
Green −0.019 0.279
Blue 0.142 0.488

Figure 5. Comparison of original images and augmented images.
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we show the macroaveraged accuracy, precision, recall, and
F1-score of LCDAE are 99.99%, respectively.

Evaluate Performance with State-of-the-art Methods
In Table 4, we evaluate our approach with other state-of-the-art
methods for the same dataset. Most of the methods have not
used GAN as a data augmentation technique. They focus on
the single CNN model to do classification. Our model combines
the CNN model and multiple data augmentation techniques to
get better performance than others.

The best-received result of other researchers is produced by
Abbas et al.57 They used a pretrained ResNet101 model and got
the results as follows: 99.8% (accuracy), 99.97% (precision),
100% (sensitivity), and 99.98% (F1-score). However, the accu-
racy, precision, and F1-score of our method are better than in
Abbas et al.57 To the best of our knowledge, our method gets
the best performance in this dataset.

Generalization of Different Diseases
To evaluate the effectiveness of LCDAE, we also run LCDAE
on the different public datasets. The results of LCDAE are
shown in Table 5. Firstly, we evaluate the performance of the
Brain Tumor MRI dataset,64 the dataset has 7022 images of
human brain magnetic resonance imaging (MRI) images in
total and images are classified into 4 classes: Glioma,
Meningioma, No tumor, and Pituitary. LCDAE got the accu-
racy of 99.71%, the precision of 99.68%, the recall of

99.69%, and the F1-score of 99.69%. Secondly, the LCDAE
is running on the Alzheimer dataset.65 This dataset contains
6330 Alzheimer MRI images with 3 classes: mild demented,
nondemented, and very mild demented. The results of this
dataset are the accuracy of 99.37%, the precision of 99.50%,
the recall of 99.50%, and the F1-score of 99.50%. The last
experiment tests on the COVID-19 dataset,66 which has 454
images with 3 classes: COVID-19, viral pneumonia, and
normal. The results of the COVID-19 dataset are the accuracy
of 98.44%, the precision of 98.15%, the recall of 97.92%,
and the F1-score of 97.97%. By analyzing these results,
LCDAE can also get excellent performance on other datasets.

Discussion
In the present study, we proposed a Lung Cancer Data
Augmented Ensemble LCDAE framework to classify lung
cancer images. The framework contains a generative model
LDCGAN, data augmented ensemble model DA-ENM , and
a hybrid data augmentation (HDA). The LDCGAN can
produce artificial lung cancer images to train the deep neural
network as an additional training dataset. Moreover, these addi-
tional images also can help the model avoid overfitting prob-
lems and improve its performance. The DA-ENM uses
multiple data augmentation techniques to improve the
model’s generalizability. It also provides more training
images to the model. The DA-ENM is an ensemble model,
which combines 6 pretrained models: DenseNet121, GoogleNet,
ResNe101, VGG19-BN, VGG16-BN, and VGG-16. The hybrid

Figure 6. Compare LDCGAN Images with Raw Images.
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Figure 7. The performance of pretrained models after the fine-tuning process.
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data augmentation HDA combines LDCGAN and all the data aug-
mentation techniques used in the DA-ENM. Before building the
ensemble model, we do a fine-tuning process for each model.
Then DA-ENM combines the outputs from these models to
make the final prediction. Finally, our framework obtains the
results as follows: 99.99% (accuracy), 99.99% (precision),
99.99% (sensitivity), and 99.99% (F1-score). The obtained
results show that our method can solve the overfitting problem,
and it can get the best performance evaluated with other latest
methods for lung cancer classification tasks.

In a study conducted by Bukhari et al58, they proposed 3 var-
iants of CNN: ResNet18, ResNet34, and ResNet50. They got the
highest accuracy (93.91%) of ResNet50. The ResNet30 and
ResNet18 got an accuracy of 93.04% individually. Another
study proposed by Phankokkruad59 uses an ensemble model
which combines the outputs from VGG16, ResNet50V2, and
DenseNet201. Their ensemble model achieved an accuracy of
91%. Chehade et al63 designed a machine learning model
called XGBoost, this model is based on the feature engineering

method known as unsharp masking. The results of
XGBoost are as follows: 99.53% (accuracy), 99.33% (preci-
sion), 99.33% (recall), and 99.33% (F1-score). The best
results for the current dataset are obtained by Abbas
et al.57 They used a number of pretrained models to do
lung cancer classification. These models are AlexNet,
VGG19, ResNet18, ResNet-34, ResNet50, and ResNet101.
The best results are 99.8% (accuracy), 99.97% (precision),
100% (recall), and 99.98% (F1-Score). By comparing
these methods, our LCDAE is the only 1 using the GAN
as a data augmentation technique with other possible data
augmentation techniques. Our results show that the
LDCGAN can be a powerful technique to produce synthetic
images to improve the model’s performance. Moreover, our
DA-ENM combines most of the efficient pretrained models
to get the best performance. Furthermore, our method can
efficiently overcome the overfitting issue when classifying
lung cancer images. It gets the highest accuracy of
99.99%, the precision of 99.99%, and the F1-score of
99.99% compared with the latest approaches.

Although we achieved excellent performance and solved the
overfitting of the lung cancer classification tasks, there are still
some potential works that we need to improve in the future.
These limitations are shown below.

1. There are still variances between synthetic images and
original images.

2. We cannot generate different classes of lung cancer
images by using 1 model, we have to train 3 separate
models to generate 3 different classes of lung cancer
images.

Table 2. The Improvements of Pretrained Models After Fine-tuning.

Model Pretrained Fine-tuning Improvements

DenseNet121 92.59% 99.80% 7.21%
GoogleNet 84.48% 99.45% 14.96%
ResNet101 91.98% 99.58% 7.60%
VGG19_BN 94.57% 99.51% 4.94%
VGG16_BN 95.00% 99.64% 4.63%
VGG16 92.37% 99.35% 6.97%

Table 3. The Results of LCDAE.

Accuracy Precision Recall F1-score

lung adenocarcinoma 99.99% 100% 99.97% 99.98%
lung benign 99.99% 100% 100% 100%
lung squamous cell
carcinoma

99.99% 99.97% 100% 99.98%

macro avg 99.99% 99.99% 99.99% 99.99%

Table 4. Compare the Performance of Different State-of-the-art Methods.

Author Method Accuracy Precision Sensitivity F1-score

Bukhari et al.58 RESNET50 93.91% 95.74% 81.82% 96.26%
RESNET18 93.04% 96.81% 84.21% 95.79%
RESNET34 93.04% 95.74% 80.95% 95.74%

Phankokkruad59 Ensemble 91% 92% 91% 91%
ResNet50V2 90% 91% 90% 90%

Hlavcheva et al.60 CNN-D 94.6% - - -
Masud et al.5 DL-based CNN 96.33% 96.39% 96.37% 96.38%
Hatuwal and Thapa61 CNN 97.2% 97.33% 97.33% 97.33%
Mangal et al.62 Shallow-CNN 97.89% - - -
Chehade et al.63 XGBoost 99.53% 99.33% 99.33% 99.33%
Abbas et al.57 Pre-ResNet101 99.8% 99.97% 100% 99.98%
Our method LCDAE 99.99% 99.99% 99.99% 99.99%

Table 5. The Macroaverage Results of LCDAE on Different Datasets.

Datasets Accuracy Precision Recall F1-score

Brain Tumor MRI64 99.71% 99.68% 99.69% 99.69%
Alzheimer65 99.37% 99.50% 99.50% 99.50%
COVID-1966 98.44% 98.15% 97.92% 97.97%
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3. LDCGAN cannot generate high-resolution images. The
images with high resolution are very important for the
biomedical domain.

4. The ensemble model consumes much computation
power and time to train.

We also plan the possible solutions for the limitations mentioned
above. For the differences between synthetic and real images, we
can try to use different loss functions to minimize the differences
between them. For generating different classes of lung cancer
images, we can try to use CGAN67 to solve the problem. The
last limitation is generating high-resolution images. We can try
to use StackGAN or its variants to synthesize high-resolution
images. These potential solutions are working well in other
domains. We will explore the performance of these potential
solutions for lung cancer classification tasks.

Conclusions
In this article, we developed a data augmented ensemble frame-
work LCDAE, it includes a LDCGAN as a data augmentation
technique, a data augmented ensemble model DA-ENM, and
a hybrid data augmentation (HDA). Before we train the ensem-
ble model, we use multiple data augmentation techniques in the
HDA to increase the generalizability of the DA-ENMand avoid
overfitting problems for the lung cancer classification tasks. By
comparing with other latest methods, our approach reaches the
best performance with 99.99% (accuracy), 99.99% (precision),
99.99% (sensitivity), and 99.99% (F1-score). The motivation
comes from the fact that there are limited datasets in lung
cancer classification tasks, and the deep learning models have
potential risks of overfitting the source domain features with
poor generalizability. Our framework can remedy this short-
coming and reach the highest performance.
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