
materials

Article

A Design Method to Induce Ductile Failure of Flexural
Strengthened One-Way Reinforced Concrete Slabs

Huy Q. Nguyen 1 , Tri N. M. Nguyen 2 , Do Hyung Lee 3 and Jung J. Kim 1,*

����������
�������

Citation: Nguyen, H.Q.; Nguyen,

T.N.M.; Lee, D.H.; Kim, J.J. A Design

Method to Induce Ductile Failure of

Flexural Strengthened One-Way

Reinforced Concrete Slabs. Materials

2021, 14, 7647. https://doi.org/

10.3390/ma14247647

Academic Editor: Angelo

Marcello Tarantino

Received: 1 November 2021

Accepted: 7 December 2021

Published: 12 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Civil Engineering, Kyungnam University, Changwon-si 51767, Korea;
nguyenquochuy@muce.edu.vn

2 Campus in Ho Chi Minh City, University of Transport and Communications, No. 450-451 Le Van Viet Street,
Tang Nhon Phu A Ward, Thu Duc City, Ho Chi Minh City 700000, Vietnam; trinnm_ph@utc.edu.vn

3 Department of Civil, Railroad and Unmanned Systems Engineering, PaiChai University, 155-40 Baejaero,
Seo-gu, Daejeon 35345, Korea; dohlee@pcu.ac.kr

* Correspondence: jungkim@kyungnam.ac.kr; Tel.: +82-552-496-421; Fax: +82-505-999-2165

Abstract: Strengthening existing reinforced concrete (RC) slabs using externally bonded materials is
increasingly popular due to its adaptability and versatility. Nevertheless, ductility reduction of the
rehabilitated flexural members with these materials can lead to brittle shear failure. Therefore, a new
approach for strengthening is necessary. This paper presents a methodology to induce ductile failure
of flexural strengthened one-way RC slabs. Ultimate failure loads can be considered to develop
the proposed design methodology. Different failure modes corresponding to ultimate failure loads
for RC slabs are addressed. Flexural and shear failure regions of RC slabs can be established by
considering the failure modes. The end span of the concrete slab is shown for a case study, and
numerical examples are solved to prove the essentiality of this methodology.

Keywords: reinforced concrete slab; end span; flexural failure; failure modes; design methodology;
continuous slab

1. Introduction

The demand for strengthening and rehabilitation of infrastructures becomes more
urgent in modern society [1–3]. Apart from the aging, corrosion, unexpected excessive
loads, and accidental damage, the rectify of initial design and construction faults or up-
grading the load capacity of reinforced concrete (RC) structures are also of interest to
structural engineers and researchers [4–6]. Moreover, strengthening the existing structures
is preferable to demolishing and building an entirely new system due to its lower costs
and minimized environmental deterioration simultaneously [7].

Repairing or strengthening RC structures using reinforced concrete, ferrocement, steel,
or fiber reinforced polymer (FRP) materials on the tension parts of the RC structures is
one of the most common techniques [8]. In addition, the development of FRP composite
materials allows improving significant loading capacity of strengthened structures [9–13].
Over four decades, several studies have been solved to examine the performance of the
structures strengthened with FRP and proven its effectiveness due to its high tensile
strength and corrosion resistance [14–18]. The post strengthening with FRP materials can
rehabilitate the original flexural capacity of the damaged structures and even increase
it significantly. There are many methods for post strengthening flexural RC slabs with
FRP [19–22]. One of the typical methods is the addition of FRP on the top and bottom parts
of the slabs subjected to the positive (+) and negative (–) flexural moments, respectively,
as shown in Figure 1. However, the brittle failure and the ductility reduction of the
rehabilitated flexural members were recognized [23,24].
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modes can suggest the appropriate enhancement of the existing RC slabs. Based on that, 
the methodology limiting the additional strength for post-strengthened RC slabs through 
the failure modes to prevent brittle failure and induced ductile failure is also determined. 

In this paper, different failure modes for the end span of a continuous RC slab corre-
sponding to ultimate failure loads for RC slabs are addressed for a case study. The results 
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This work focuses on determining the failure limits of the end span of a continuous 

slab subjected to uniformly distributed load. For flexural members in a frame, the flexural 
rigidities of members and supporting columns are decisive factors in the distribution of 
bending moments. Thus, the moment at the support and the mid-span sections of the 
frame members, subjected to a uniformly distributed load 𝑤, could be established, as 𝑀 = 𝐶𝑤𝑙 , where C is a coefficient according to flexural rigidities of respective flexural 
members and l is the clear span length. If infinite rigidity of columns is considered, the 
well-known results for a fixed-end moment of a flexural member subjected to a uniformly 
distributed load 𝑤, coefficient C will be 1/12 [38]. For practical design purposes, moment 
and shear coefficients for continuous RC slabs subjected to a uniformly distributed load 
(𝑤 ) are reported by ACI 318M [39] with column support cases, as shown in Figure 2. 
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Figure 1. Externally bonded FRP strengthened slab at conventional locations.

Additionally, RC structures in contact with FRP composite materials have signifi-
cant and unavoidable effects on their behavior [25]. The failure mode of strengthened
RC structures tends to be more brittle compared with the counterpart steel-reinforced
concrete structures due to the intrinsic bond conditions between FRP and concrete and
the linear-elastic brittle tensile behavior of FRP as well [26]. Structural ductility should be
considered an important design factor because it can prevent brittle shear modes [27,28].
A well-designed structure should warn of impending failure when it is subjected to an
overload [29]. Several studies have shown the necessity of failure modes in reflecting the
corresponding behavior of the structure under load [30–32]. Although some studies have
been investigated on the failure modes of strengthened structures [33–36], there is little
reported work on strengthened flexural structures avoiding sudden failure and inducing
ductile failure.

This research work recommends using carbon fiber reinforced polymer (CFRP) uni-
directional laminates to enhance the strength of existing continuous slabs. However, the
excessive improvement of the flexural strength relative to the shear strength of the strength-
ened sections can lead to brittle shear failure [37]. To the best of our knowledge, there is not
yet a complete design process of preventing brittle failure for strengthened RC slabs. This
study proposes a new classification of failure modes that reflect the corresponding behavior
of the RC slab under load. Structural evaluation through new failure modes can suggest
the appropriate enhancement of the existing RC slabs. Based on that, the methodology
limiting the additional strength for post-strengthened RC slabs through the failure modes
to prevent brittle failure and induced ductile failure is also determined.

In this paper, different failure modes for the end span of a continuous RC slab corre-
sponding to ultimate failure loads for RC slabs are addressed for a case study. The results
would contribute to developing a design methodology for the strengthened RC slab to
ensure ductile failure.

2. Failure Limits

This work focuses on determining the failure limits of the end span of a continuous
slab subjected to uniformly distributed load. For flexural members in a frame, the flexural
rigidities of members and supporting columns are decisive factors in the distribution of
bending moments. Thus, the moment at the support and the mid-span sections of the frame
members, subjected to a uniformly distributed load w, could be established, as M = Cwl2,
where C is a coefficient according to flexural rigidities of respective flexural members and
l is the clear span length. If infinite rigidity of columns is considered, the well-known
results for a fixed-end moment of a flexural member subjected to a uniformly distributed
load w, coefficient C will be 1/12 [38]. For practical design purposes, moment and shear
coefficients for continuous RC slabs subjected to a uniformly distributed load (wu) are
reported by ACI 318M [39] with column support cases, as shown in Figure 2.
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where Mn,N and Mn,P are the moment carrying capacity of the support and mid-span sec-
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Figure 2. Moment and shear coefficients for continuous RC slabs with column supports reported by ACI 318M.

Considering a flexural member having unsymmetric boundary conditions, which is
comparable to the end span in Figure 2, the different failure modes could be established
according to the relationship between the moment limit of the negative moment Mn,N and
positive moment Mn,P at the support and the mid-span sections, respectively, and the shear
limit of Vn of the slab sections. In case the sections at the mid-span and the exterior face
of the first interior support (N2) fail simultaneously by forming two plastic hinges, the
moment limits subjected to a uniform distributed load can be written as a formula of the
shear carrying capacity, Vn, as follows:

Mn,N =
2Cm,N2

Cv2
Vnln (1)

Mn,P =
2Cm,P

Cv2
Vnln (2)

At the same time, the moment carrying of the interior face of the exterior support (N1)
can be expressed as follows,

MN1 =
2Cm,N1

Cv2
Vnln (3)

where Mn,N and Mn,P are the moment carrying capacity of the support and mid-span
sections; MN1 is the moment carrying of the N1 section; Vn is the shear carrying capacity of
the RC slab sections; Cm,N1, Cm,N2, and Cm,P are the moment coefficients for the negative
moments at the N1 section, N2 section, and the positive moment at the mid-span section,
respectively; Cv2 is the shear coefficient at the N2 section; and ln is the clear span length
between support columns.

Here, the signs of the moment coefficients could be neglected because they are only
used to show moment directions, as shown in Figure 2. The limit of Equations (1)–(3)
may be described with a given shear limit and the shear and moment coefficients (refer to
Figure 3). The failure regions of RC slabs could be shown as follows.

Failure modes should be classified according to the order of plastic hinge formation at
sections and the type of failure by analyzing the failure limit for each region in Figure 3.
The summary of different failure modes is shown in Table 1. Details of the analysis for
Table 1 are described in the Appendix A of this article. Failure modes of D-1, D-2, and D-3
are ductile failures and desirable while the failure modes DB-1, DB-2, DB-3a, DB-3b, B-1,
and B-2 are brittle failures and thus may not be suitable for a well-designed structure.
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Table 1. Summary of different failure modes for the end span of an RC slab.

Failure Modes First Plastic Hinge Second Plastic Hinge Third Plastic Hinge Shear Failure Failure Type

D-1 N2 N1 M - Ductile
D-2 N2 M N1 - Ductile
D-3 M N2 N1 - Ductile

DB-1 N2 N1 - N2 Brittle
DB-2 N2 M - N2 Brittle

DB-3a M - - N2 Brittle
DB-3b M N2 - N2 Brittle

B-1 N2 - - N2 Brittle
B-2 - - - N2 Brittle

The limit equations of failure modes in each region are shown in Figure 4. The
ultimate failure load can be determined by the superposition method considering plastic
redistribution of strengthened RC slab. For failure modes of D-1, D-2, and D-3, the ultimate
failure loads can be calculated as:

• Failure mode D-1

w f = φm
8
l2
n

(
Mn,P + Mn,N

(1/8− Cm,P)

Cm,N2

)
(4)

• Failure mode D-2

w f = φm
4
l2
n

(
Mn,P + Mn,N

(1/4 + Cm,N2 − Cm,N1 − Cm,P)

Cm,N2

)
(5)

• Failure mode D-3

w f = φm
4
l2
n

(
Mn,P

(1/4− Cm,N1)

Cm,P
+ Mn,N

)
(6)

For failure modes of DB-1, DB-2, DB-3a, DB-3b, B-1, and B-2, the failure loads can be
calculated as:

w f = φv
2Vn

Cv2ln
(7)
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where strength reduction factors of Φm and Φv are used for the flexural strength and the
shear strength, respectively, as specified by ACI 318M [39].
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3. Design Example

In this case, an RC slab strengthened with an externally bonded CFRP sheet has
been presented. Moment and shear coefficients are considered for the end span of the
column support case, where Cm,N1 = 1/16, Cm,N2 = 1/10, Cm,P = 1/14, Cv1 = 1,
and Cv2 = 1.15, as shown in Figure 2. The strength reduction factors of the flexural
strength and shear strength are 0.90 and 0.75, respectively [39]. The reduction factor for
the strength contribution of CFRP reinforcement ψf is 0.85 [40]. The selected CFRP along
with mechanical properties (tensile strength ffu = 717 MPa, elastic modulus Ef = 65.1 GPa)
is reported by the manufacturers, as recommended by ACI 440R [41]. Additional CFRP
thickness (tF) is assumed as a design variable and installed in tensile regions of the RC slab
corresponding to the width of the slab (refer to Figure 5). The clear span of the rectangular
RC slab is 2.5 m long. Slab material properties and dimensions are summarized in Table 2.
The existing slab is computed in Table 3, and the failure mode considering the relationship
between factor flexural and shear resistance and slab status is extracted, as shown in
Figure 6. In this analysis, a perfect bond between the strengthened materials and the RC
slab is supposed up to the ultimate failure loads.
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Table 2. The RC slab material properties and dimensions for design example.

Section h
(mm)

b
(mm)

As
(mm2)

d
(mm)

f’c
(MPa)

γc
(kg/m3)

fy
(MPa)

Es
(GPa)

Supports 150 1000 355 120 27 2400 410 200
Mid-span

Table 3. Calculation of the existing RC slab.

Calculation Existing RC Slab

Moment and shear coefficients for the end span of the column support case [39] Cm,N1 = 1/16, Cm,N2 = 1/10, Cm,P = 1/14
Cv1 = 1, and Cv2 = 1.15

Designed resistance φ f Mn,P = 15.3 kNm, φ f Mn,N = 15.3 kNm,
φvVn = 77.94 kNm;

Failure mode D-2, as shown in Figure 6

Ultimate failure load: Equation (5) for D-2 w f =
4

2.52

(
15.3 + 15.3 (1/4+1/10−1/16−1/14)

1/10

)
= 31 kN/m

Preparatory computations for strengthened design
Self-weight wD = γcbh wD = (2400)(9.8× 10−3)(0.15) = 3.53 N/mm

Factored moment MD = CmwD l2
n

At N2 section
MD,N = (1/10)(3.53)(25002)/1000 = 2205 kNmm

At mid-span section
MD,P = (1/14)(3.53)(25002)/1000 = 1575 kNmm

Modulus of elasticity Ec = 4700
√

f ′c Ec = 4700
√

27 = 24400 MPa

Cracking moment Icr
Neutral axis depth c = kd

At both sections (N2 and mid-span sections)
Icr = 31.4× 106 mm4

c = 7.5 mm
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ε
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, 6
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Figure 6. Failure limits for the flexural strengthened slab with CFRP.

4. Results and Discussions

For the calculation of the existing slab shown in Table 3, the ultimate failure load
(w f ) of the existing slab is determined as 31 kN/m, as indicated by Equation (5). The
failure mode of the slab is named D-2, as shown in Figure 6. Notably, the existing slab can
continue to be strengthened to also fail in ductile failure. The calculation procedure for
1 mm thick CFRP sheet strengthened for positive and negative moment sections of the RC
slab is shown in Table 4, as specified by ACI 440 [40]. In step 2, the existing state of strain is
determined. CFRP debonding is computed at step 3 and is used in steps 4 to 8 and shows
that concrete strain is less than the failure strain of 0.003. In this case, debonding of CFRP
occurs before the failure strain of concrete reaches ε = 0.0021. The coefficients of rectangular
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stress block α1 and β1 for the failure strain in the concrete at the limit state are applied.
The design flexural and shear strength are calculated in steps 9 through 12, whereas the
ultimate failure load (w f ) is computed in steps 13 through 14 with corresponding failure
mode. The failure mode of the slab is named B-2, as shown in Figure 6, with the ultimate
failure load w f = 54.2 kN/m using Equation (7). Although the ultimate failure load is
increased 75% compared to the ultimate failure load of the existing slab, brittle failure is
not a desirable result.

Table 4. Calculation of the strengthened slab.

Procedure Strengthened Slab

1. CFRP thickness, tF At both sections: tF,N = tF,P = 1 mm
2. Existing state of strain

εbi =
MD(d f−kd)

Icr Ec

kd is c in Table 3

At N2 section: εbi,N =
(2.205×106)(150.6−7.5)

(31.4×106)(24400) = 0.00041

At mid-span section: εbi,P = (1.575×106)(150.6−7.5)
(31.4×106)(24400) = 0.00029

3. Design strain of CFRP

ε f d = 0.41
√

f ′c
nEF tF

≤ 0.9ε f u
ε f d = 0.41

√
27

(1)(65100)(1) = 0.0083 < 0.9(0.011) = 0.0099

4. Assume concrete strain at failure ε
Revise ε until equilibrium achieved At both sections: εc,N = εc,P = 0.0021

5. Compute neutral axis depth At both sections: cN = cP = 32.7 mm

6. Compute CFRP strain

ε f e = εc

(
h−c

c

)
− εbi ≤ ε f d

At N2 section:
ε f e,N = 0.0021

(
150−32.7

32.7

)
− 0.00041 = 0.0072 < 0.0099

At mid-span section:

ε f e,N = 0.0021
(

150−32.7
32.7

)
− 0.00029 = 0.0073 < 0.0099

7. Compute tension steel strain

εs = εc

(
d−c

c

) At both sections:
εs,N = εs,P = 0.0021

(
120−32.7

32.7

)
= 0.0056 > 0.002 yield

8. Check for force equilibrium

β1 = 4ε′c−εc
6ε′c−2εc

, α1 = 3ε′cεc−ε2
c

3β1ε′ c2
ε′c is strain relative to f ′c

ε′c =
1.7 f ′c

Ec
Check the neutral axis depth

c = As fs+t f bε f e EF
α1 f ′c β1b

ε′c =
1.7(27)
24400 = 0.0019, β1 = 4(0.0019)−0.0021

6(0.0019)−2(0.0021) = 0.77

α1 = 3(0.0019)(0.0021)−0.00212

3(0.77)(0.00192)
= 0.92

At N2 section:

cN = (355)(410)+(1)(1000)(0.0072)(65100)
(0.92)(27)(0.77)(1000) = 32.3 mm (OK)

At mid-span section:

cP = (355)(410)+(1)(1000)(0.0073)(65100)
(0.92)(27)(0.77)(1000) = 32.7 mm (OK)

Assumption of ε is satisfied.
9. Compute flexural strength at N2 section provided by

- Steel: Mn,Ns = As,N fs,N(d− β1cN
2 )

- CFRP: Mn,N f = t f bε f eEF

(
d f −

β1cN
2

) Mn,Ns =
(355)(410)

106

(
120− (0.77)(32.3)

2

)
= 15.64 kNm

Mn,N f =
(1)(1000)(0.0072)(65100)

106

(
150.6− (0.77)(32.3)

2

)
= 64.25 kNm

10. Compute flexural strength at mid-span section provided by

- Steel: Mn,Ps = As,P fs,P

(
d− β1cP

2

)
- CFRP: Mn,P f = A f ,P f f e,P

(
d f −

β1cP
2

) Mn,Ps =
(355)(410)

106

(
120− (0.77)(32.7)

2

)
= 15.64 kNm

Mn,P f =
(1)(1000)(0.0073)(65100)

106

(
150.6− (0.77)(32.7)

2

)
= 65.31 kNm

11. The design flexural strength

φ f Mn = φ f

(
Mns + ψ f MnF

)
φ f = 0.9; ψ f = 0.85

At N2 section:
φ f Mn,N = 0.9(15.64 + (0.85)(64.25)) = 63.23 kNm

At mid-span section:
φ f Mn,P = 0.9(15.64 + (0.85)(65.31)) = 64.04 kNm

12. The design shear strength

φvVn = φv

(
d
√

f ′c
)

b
6

φv = 0.75
φvVn = 0.75

6 (120)
√

27 = 77.94 kN

13. Failure mode B-2, as shown in Figure 6
14. Ultimate failure load

Equation (7) for B-2 w f =
2(77.94)

(1.15)(2.5) = 54.2 kN/m
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A similar calculation procedure is performed while the CFRP sheet thickness is as-
sumed as a design variable and adjusted to ensure ductile flexural failure. The existing slab
can be reinforced by installing 0.12 mm thick CFRP sheets for positive and negative moment
sections. The ultimate failure load of the strengthened slab w f , found from Equation (5), is
estimated as 47.9 kN/m, which increased by 55% compared to the ultimate failure load of
the existing slab. The failure mode is named D-2, as shown in Figure 7.
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In another approach for ease of application [19], a 0.26 mm thick CFRP sheet could
be applied at the upper side of the slab to enhance negative moment capacity. The failure
mode is named D-3, as shown in Figure 7. Using Equation (6), the ultimate failure load of
the strengthened slab w f is determined as 47.1 kN/m, which is increased by 52% compared
to the ultimate failure load of the existing slab.

The flexural strengthened RC slab capacities are shown in Table 5. From this table, one
can realize that the strengthened slab with 0.12 mm thick CFRP for positive and negative
sections and 0.26 mm thick CFRP for only negative parts has the efficiency to enhance the
factored design load by 155% and 152%, respectively. Especially, the failure mode of the
strengthened RC slab is a desirable ductile failure to which there is little reported concern
to prevent sudden failure.

Table 5. The strengthened slab capacities for the design example.

Slabs Failure Mode wf(kN/m) tFN (mm) tFP (mm)

Existing slab D-2 31.0 [100%] - -
Strengthened both sections D-2 47.9 [155%] 0.12 0.12

Strengthened negative sections D-3 47.1 [152%] 0.26 -

5. Conclusions

Failure modes of the continuous RC slab considering the relationship between the
flexural strength and shear strength to prevent brittle shear failure and induce flexural
ductile failure are presented.

An efficient procedure to strengthen slabs flexurally with an externally bonded CFRP
avoiding sudden failure and ensuring ductile failure is demonstrated through several
examples. By using 0.12 mm thick CFRP for positive and negative sections and 0.26 mm
thick CFRP for only negative parts of the slab, the factored design load can be enhanced by
155% and 152%, respectively.

A simple approach to determine the additional strength limit for flexural slabs consid-
ering failure modes is introduced. Adjusting the thickness of the CFRP sheet could achieve
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the desired increase in flexural strength. Additionally, CFRP discrete strips may also be
used instead of CFRP sheets if their thickness is fixed by manufacturers.

The method has advantages in constructability and economic aspects. It can be applied
to strengthen the existing floor slabs or bridge decks. Furthermore, the additional flexural
strength with an externally bonded CFRP could be also optimized with a warning of
impending failure under overload.

This study is theoretical, and it would contribute to developing a design methodology
for the strengthened RC slab to ensure ductile failure, completed through finite element
analysis and experimental research in further studies.
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Appendix A

Details of the analysis for failure regions of Figure 3.
Region I: At Region I, where Mn,P < 2Cm,PVnln/Cv2 and Mn,N < 2Cm,N1Vnln/Cv2,

shown in Figure 3 includes a balanced flexural failure, the mid-span and the N1 sections
fail simultaneously after the first plastic hinge forming at the N2 section as the applied
load reaches its limit value. The sections at the mid-span and the N1 fail simultaneously
when the condition in Equation (A1) is satisfied.

Mn,N

Mn,P
=

Cm,N1

Cm,P
(A1)

When the left term in Equation (A1) is less than the right term, the first plastic hinge
is formed at N2 section to warn of impending failure, followed by the second hinge at
N1, and the ultimate slab failure can be observed once the third one is developed at the
mid-span section, as shown in Figure A1. This failure is called “D-1”. In addition, the
sections at the mid-span and the N2 fail simultaneously can occur when the condition in
Equation (A2) is satisfied.

Mn,N

Mn,P
=

Cm,N2

Cm,P
(A2)

When the left term in Equation (A2) is greater than the right term, a plastic hinge is
formed at the mid-span section first, followed by the second hinge at the N2 section, and
finally, the ultimate failure of the slab will occur upon the appearance of an additional
plastic hinge at the N1 section as shown in Figure A5. This failure is called “D-3”. In the
rest of the region I in Figure 3,

Cm,N1

Cm,P
<

Mn,N

Mn,P
<

Cm,N2

Cm,P
(A3)
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In case the conditions in Equation (A3) are satisfied, the formation of the first hinge at
the N2 section is recognized, followed by the second hinge at the mid-span section, and
the ultimate slab failure can be observed once the third hinge is formed at the N1 section,
as shown in Figure A3. This failure is called “D-2”.

Regions II, III, and V: For Regions II, III, and V in Figure 3, either the flexural failure or
the flexural−shear failure at sections of the RC slab can be recognized. In Region II, where
Mn,P > 2Cm,PVnln/Cv2 and Mn,N < 2Cm,N1Vnln/Cv2, the support sections fail and form
the first plastic hinge at the N2 section. The value of the applied load (w f ) forming the first
plastic hinge at the N2 section is calculated as follows,

wa =
Mn,N

Cm,N2l2
n

(A4)
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Figure A1. Failure mechanism for D-1 region. (a) Flexural failure at the N2 section first; next, (b) flexural failure at the N1
section; and finally, (c) flexural failure at the mid-span section.

After forming the first plastic hinge at the N2 section, it is subjected to Mn,N. At the
same time, the N1 section is subjected to the moment of MN1 = Cm,N1wal2

n. Considering
the remaining flexural strength of the N1 section, (Mn,N −MN1), the value of additional
distributed load to form a hinge at the N1 can be predicted.

wM
b =

8(Mn,N −MN1)

l2
n

(A5)

Consequently, the N1 section, which holds the moment Mn,N, cannot take any more load.
At the same time, the mid-span section is subjected to the moment of MP = Cm,Pwal2

n + wbl2
n/8,

and the N2 section is subjected to the shear force of VN2 = Cv2(wa + wb)ln/2. In case the
additional moment at the mid-span section controls the ultimate failure load of the slab,
as shown in Figure A1c, and considering the remaining flexural strength of the mid-span
section, (Mn,P −MP), the additional distributed load capacity may be computed.

wM
c =

8(Mn,P −MP)

l2
n

(A6)

The shear force at the N2 section, subjected to a uniformly distributed load, is always
higher than that at the N1 section. Thus, the N2 section will fail in shear if the additional
shear force at the support section controls the ultimate failure load of the slab as shown in
Figure A2c, and the additional distributed load is calculated as

wV
c =

2(Vn,N −VN2)

ln
(A7)
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Figure A2. Failure mechanism for DB-1 region. (a) Flexural failure at the N2 section first; next, (b) flexural failure at the N1
section; and finally, (c) shear failure at the N2 section.

In this case, plastic hinges at the support sections will be formed before the slab fails
in shear. The design limit could be established as

wM
c = wV

c (A8)

If wM
c in Equation (A6) is less than wV

c , the failure mode will be D-1 described in
Figure A1, while wM

c in Equation (A6) is greater than wV
c , and two plastic hinges at the N1

and N2 sections can be developed before the slab fails in shear. This failure mode is called
“DB-1” and is shown in Figure A2. By using MP and VN2 in Equations (A6) and (A7) and
using limit design in Equation (A8), one can find the design limit at Region II as follow,

Mn,P + Mn,N

(
Cv2/8 + Cm,N1 − Cm,P − Cv2Cm,N1

Cm,N2
+ Cv2 − 1

)
=

1
4

Vnln (A9)

For Region III, the two conditions Mn,P < 2Cm,PVnln/Cv2 and 2Cm,N1Vnln/Cv2 <
Mn,N < 2Cm,N2Vnln/Cv2 are applied. The mid-span section and the N2 section will fail
by forming two plastic hinges, including a balanced flexural, where the sections of the
mid-span and N2 fail simultaneously as the ultimate failure load (wa). This failure mode
occurs when the condition in Equation (A2) is satisfied. When the left term appearing in
Equation (A2) is less than the right term, the first plastic hinge will form at the N2 section
as shown in Figure A3a at the amount of the applied load,

wa =
Mn,N

Cm,N2l2
n

(A10)
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Figure A3. Failure mechanism for D-2 region. (a) Flexural failure at the N2 section first; next, (b) flexural failure at the
mid-span section; and finally, (c) flexural failure at the N1 section.
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Hence, the N2 section, holding the moment Mn,N, cannot take any more load. Simulta-
neously, the moment of the mid-span section is MP = Cm,Pwal2

n. Considering the remaining
flexural strength of the mid-span section, the additional distributed load capacity could be
calculated, (Mn,P −MP), as

wM
b =

8(Mn,P −MP)

l2
n

(A11)

After that, the mid-span section, holding the moment Mn,P, cannot take any more load.
Concurrently, the N1 section is subjected to the moment of MN1 = Cm,N1wal2

n + wbl2
n/8,

and the N2 section is subjected to the shear force of VN2 = Cv2(wa + wb)ln/2 as shown in
Figure A3b. In case the additional moment at the N1 section controls the ultimate failure
load of the slab as shown in Figure A3c, the additional distributed load could be calculated
by considering the remaining flexural moment of the N1 section, (Mn,N −MN1), as

wM
c =

4(Mn,N −MN1)

l2
n

(A12)

The N2 section will fail in shear if the additional shear force at the support section
controls the ultimate failure load of the slab as shown in Figure A4c. The additional
distributed load is calculated as

wV
c =

2(Vn,N −VN2)

ln
(A13)
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Figure A4. Failure mechanism for DB-2 region. (a) Flexural failure at the N2 section first; next, (b) flexural failure at the
mid-span section; and finally, (c) shear failure at the N2 section.

In this case, plastic hinges at the N2 and the mid-span sections will be formed before
the slab fails in shear. The design limit could be established as

wM
c = wV

c (A14)

If wM
c in Equation (A12) is less than wV

c , the failure mode will be D-2 described in
Figure A3, while wM

c in Equation (A12) is greater than wV
c . Two plastic hinges at the N2 and

the mid-span sections can be developed before the slab fails in shear. This failure mode is
called “DB-2”, as shown in Figure A4. By using MN1 and VN2 in Equations (A12) and (A13)
and using limit design in Equation (A14), one can find the design limit at Region III
as follow,

Mn,P(2Cv2 − 1) + Mn,N

(
Cv2/4 + Cm,P − Cm,N1 − 2Cv2Cm,P

Cm,N2
+ 1
)
=

1
2

Vnln (A15)
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When the left term appearing in Equation (A2) is greater than the right term, the mid-
span section will fail first by forming a plastic hinge, followed by the second plastic hinge at
the N2 section, and finally the third hinge at the N1 section. A similar failure mechanism, in
this case, can be seen in Region V, where Mn,P< 2Cm,PVnln/Cv2 and Mn,N >2Cm,N2Vnln/Cv2;
the mid-span section fails first and forms a plastic hinge as shown in Figure A5a at the
amount of the applied load,

wa =
Mn,P

Cm,Pl2
n

(A16)
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Figure A5. Failure mechanism for D-3 region. (a) Flexural failure at the mid-span section first; next, (b) flexural failure at
the N2 section; and finally, (c) flexural failure at the N1 section.

Hence, the mid-span section, holding the moment Mn,P, cannot take any more load.
Concurrently, the N2 section is subjected to the moment of MN2 = Cm,N2wal2

n and the
shear force of VN2 = Cv2(waln/2). In Region III, the additional moment controls the
ultimate failure load of the RC slab by forming a second plastic hinge at the N2 section,
as shown in Figure A5b. In Region V, the ultimate failure load of the RC slab can be
governed by either an additional moment or an additional shear force. If the additional
moment at the N2 section controls the ultimate failure load of the RC slab, the additional
distributed load is calculated by considering the remaining flexural moment of the N2
section, (Mn,N −MN2), as

wM
b =

8(Mn,N −MN2)

l2
n

(A17)

If the ultimate failure load of the RC slab is governed by the additional shear force at
the N2 section, as shown in Figure A6b, the additional distributed load is calculated.

wV
b =

2(Vn,N −VN2)

ln
(A18)

In this case, only a plastic hinge at the mid-span section will be formed before the slab
fails in shear at the N2 section. The design limit could be established as

wM
b = wV

b (A19)

If wM
b in Equation (A17) is less than wV

b , the second hinge will be formed at the N2
section described in Figure A5b, while wM

b in Equation (A17) is greater than wV
b , and a

plastic hinge at the mid-span section can be recognized before the slab fails in shear. This
failure is called “DB-3a” and is shown in Figure A6. Thus, considering the design limit
in Equation (A19) with Equations (A17) and (A18), the design limit at Region V can be
derived as follows,

Mn,P

(
Cv2/8− Cm,N2

Cm,P

)
+ Mn,N =

1
4

Vnln (A20)
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The N2 section will fail in shear if the additional shear force at the support section 
controls the ultimate failure load of the slab as shown in Figure A7c, and the additional 
distributed load is calculated as 
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Figure A6. Failure mechanism for DB-3a region. (a) Flexural failure at the mid-span section first and
then (b) shear failure at the N2 section.

In case the second hinge forms at the N2 section after subjecting to the additional dis-
tributed load wb, the N2 section cannot be subjected to any more load. Simultaneously, the
N1 section is subjected to the moment of MN1 = Cm,N1wal2

n + wbl2
n/8, and the N2 section

is subjected to the shear force of VN2 = Cv2(wa + wb)ln/2. In case the additional moment
at the N1 section controls the ultimate failure load of the slab as shown in Figure A5c,
the additional distributed load could be calculated by considering the remaining flexural
moment of the N1 section, (Mn,N −MN1), as

wM
c =

4(Mn,N −MN1)

l2
n

(A21)

The N2 section will fail in shear if the additional shear force at the support section
controls the ultimate failure load of the slab as shown in Figure A7c, and the additional
distributed load is calculated as

wV
c =

2(Vn,N −VN2)

ln
(A22)
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Figure A7. The failure mechanism for DB-3b region. (a) Flexural failure at the mid-span section first; next, (b) flexural
failure at the N2 section; and finally, (c) shear failure at the N2 section.
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In this case, two plastic hinges at the mid-span section and the N2 section will be
formed before the slab fails in shear. The design limit could be established as

wM
c = wV

c (A23)

If wM
c in Equation (A21) is less than wV

c , the failure mode will be D-3, described
in Figure A5, while wM

c in Equation (A21) is greater than wV
c , and two plastic hinges at

mid-span section and N2 section can be developed before the slab fails in shear. This
failure is called “DB-3b” and is shown in Figure A7. Thus, considering the design limit in
Equation (A23) with Equations (A21) and (A22), the design limit at Regions III and V can
be derived as follows:

Mn,P

(
Cv2/4 + Cm,N2 − Cm,N1 − 2Cv2Cm,N2

Cm,P

)
+ 2Cv2Mn,N =

1
2

Vnln (A24)

Regions IV and VI: For Regions IV and VI in Figure 3, the slab will fail in shear, either
forming a plastic hinge at the N2 section or without forming any plastic hinge. In Region IV,
where Mn,P > 2Cm,PVnln/Cv2 and 2Cm,N1Vnln/Cv2 < Mn,N < 2Cm,N2Vnln/Cv2, a plastic
hinge at the N2 section can be recognized before the slab fails in shear at the same section
as shown in Figure A8. This failure mode is called “B-1”. At Region VI, the two conditions
Mn,P > 2Cm,PVnln/Cv2 and Mn,N > 2Cm,N2Vnln/Cv2 are applied. The shear failure at the
N2 section without forming any plastic hinge can be recognized, as shown in Figure A9.
This failure mode is called “B-2”.
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Figure A8. The failure mechanism for B-1 region; shear failure at N2 section after forming a plastic
hinge at the N2 section.
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